Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/amazon-science/auto-cot
Official implementation for "Automatic Chain of Thought Prompting in Large Language Models" (stay tuned & more will be updated)
https://github.com/amazon-science/auto-cot
chain-of-thought gpt-3 gpt3-prompts gpt3-resources large-language-models prompt-engineering reasoning
Last synced: 3 days ago
JSON representation
Official implementation for "Automatic Chain of Thought Prompting in Large Language Models" (stay tuned & more will be updated)
- Host: GitHub
- URL: https://github.com/amazon-science/auto-cot
- Owner: amazon-science
- License: apache-2.0
- Created: 2022-10-05T07:47:17.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-03-13T12:25:02.000Z (10 months ago)
- Last Synced: 2025-01-04T20:05:20.626Z (11 days ago)
- Topics: chain-of-thought, gpt-3, gpt3-prompts, gpt3-resources, large-language-models, prompt-engineering, reasoning
- Language: Jupyter Notebook
- Homepage: https://arxiv.org/abs/2210.03493
- Size: 56.6 KB
- Stars: 1,636
- Watchers: 17
- Forks: 147
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-instruction-datasets - Auto CoT - takeshi188/zero_shot_cot/dataset](https://github.com/kojima-takeshi188/zero_shot_cot/tree/main/dataset) \|[kojima-takeshi188/zero_shot_cot/log](https://github.com/kojima-takeshi188/zero_shot_cot/tree/main/log) | amazon-science | | EN | | | | | [download](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Auto-CoT) | (Statistics)
- StarryDivineSky - amazon-science/auto-cot - CoT 使用更多的cheers和多样性来节省思维链提示设计中的巨大手动工作,匹配甚至超过 GPT-3 上的手动设计性能。 (A01_文本生成_文本对话 / 大语言对话模型及数据)
README
# Auto-CoT: Automatic Chain of Thought Prompting in Large Language Models (ICLR 2023)
[![Open Auto-CoT in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/amazon-science/auto-cot/blob/main/try_cot_colab.ipynb)
Cheer AI up with the "let's think step by step" prompt? More plz. *Let’s think not just step by step, but also one by one.*
Auto-CoT uses more cheers & diversity to SAVE huge manual efforts in chain of thought prompt design, matching or even exceeding performance of manual design on GPT-3.
Check out our [25-page paper](https://arxiv.org/pdf/2210.03493.pdf) for more information.
![](https://user-images.githubusercontent.com/22279212/194787183-a1f8dff8-a0ad-43a1-827f-819671503860.png)
![](https://user-images.githubusercontent.com/22279212/194787130-d28c9191-588c-41d2-a259-62377f19c934.png)
## Requirements
Python>=3.8
```
pip install torch==1.8.2+cu111 torchtext==0.9.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
pip install -r requirements.txt
```## Datasets
Download the datasets from the following:
```
https://github.com/kojima-takeshi188/zero_shot_cot/tree/main/dataset
https://github.com/kojima-takeshi188/zero_shot_cot/tree/main/log
```## Quick Start
See ```try_cot.ipynb```
## Instructions
Construct Demos:
```
python run_demo.py \
--task multiarith \
--pred_file log/multiarith_zero_shot_cot.log \
--demo_save_dir demos/multiarith
```Run inference:
```
python run_inference.py \
--dataset multiarith \
--demo_path demos/multiarith \
--output_dir experiment/multiarith
```## Citing Auto-CoT
```
@inproceedings{zhang2023automatic,
title={Automatic Chain of Thought Prompting in Large Language Models},
author={Zhang, Zhuosheng and Zhang, Aston and Li, Mu and Smola, Alex},
booktitle={The Eleventh International Conference on Learning Representations (ICLR 2023)},
year={2023}
}
```## Security
See [CONTRIBUTING](CONTRIBUTING.md#security-issue-notifications) for more information.
## License
This project is licensed under the Apache-2.0 License.