Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/aminhp/gym-mtsim

A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)
https://github.com/aminhp/gym-mtsim

backtesting crypto forex gym-environment metatrader5 openai-gym reinforcement-learning simulator stocks trading trading-algorithm trading-environment

Last synced: 4 days ago
JSON representation

A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

Awesome Lists containing this project

README

        

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator\n",
"\n",
"`MtSim` is a simulator for the [MetaTrader 5](https://www.metatrader5.com) trading platform alongside an [OpenAI Gym](https://github.com/openai/gym) environment for reinforcement learning-based trading algorithms. `MetaTrader 5` is a **multi-asset** platform that allows trading **Forex**, **Stocks**, **Crypto**, and Futures. It is one of the most popular trading platforms and supports numerous useful features, such as opening demo accounts on various brokers.\n",
"\n",
"The simulator is separated from the Gym environment and can work independently. Although the Gym environment is designed to be suitable for RL frameworks, it is also proper for backtesting and classic analysis.\n",
"\n",
"The goal of this project was to provide a *general-purpose*, *flexible*, and *easy-to-use* library with a focus on *code readability* that enables users to do all parts of the trading process through it from 0 to 100. So, `gym-mtsim` is not just a testing tool or a Gym environment. It is a combination of a **real-world** simulator, a **backtesting** tool with *high detail visualization*, and a **Gym environment** appropriate for RL/classic algorithms.\n",
"\n",
"**Note:** For beginners, it is recommended to check out the [gym-anytrading](https://github.com/AminHP/gym-anytrading) project."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"### Install MetaTrader 5\n",
"Download and install MetaTrader 5 software from [here](https://www.metatrader5.com/en/download).\n",
"\n",
"Open a demo account on any broker. By default, the software opens a demo account automatically after installation.\n",
"\n",
"Explore the software and try to get familiar with it by trading different symbols in both **hedged** and **unhedged** accounts.\n",
"\n",
"### Install gym-mtsim\n",
"\n",
"#### Via PIP\n",
"```bash\n",
"pip install gym-mtsim\n",
"```\n",
"\n",
"#### From Repository\n",
"```bash\n",
"git clone https://github.com/AminHP/gym-mtsim\n",
"cd gym-mtsim\n",
"pip install -e .\n",
"\n",
"## or\n",
"\n",
"pip install --upgrade --no-deps --force-reinstall https://github.com/AminHP/gym-mtsim/archive/main.zip\n",
"```\n",
"\n",
"### Install stable-baselines3\n",
"This package is required to run some examples. Install it from [here](https://github.com/DLR-RM/stable-baselines3#installation)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Components"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. SymbolInfo\n",
"\n",
"This is a data class that contains the essential properties of a symbol. Try to get fully acquainted with [these properties](https://github.com/AminHP/gym-mtsim/blob/main/gym_mtsim/metatrader/symbol.py) in case they are unfamiliar. There are plenty of resources that provide good explanations."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Order\n",
"\n",
"This is another data class that consists of information of an order. Each order has the following properties:\n",
"\n",
"> `id`: A unique number that helps with tracking orders.\n",
">\n",
"> `type`: An enum that specifies the type of the order. It can be either **Buy** or **Sell**.\n",
">\n",
"> `symbol`: The symbol selected for the order.\n",
">\n",
"> `volume`: The volume chose for the order. It can be a multiple of *volume_step* between *volume_min* and *volume_max*. \n",
">\n",
"> `fee`: It is a tricky property. In MetaTrader, there is *no* such concept called fee. Each symbol has bid and ask prices, the difference between which represents the **fee**. Although MetaTrader API provides these bid/ask prices for the recent past, it is not possible to access them for the distant past. Therefore, the **fee** property helps to manage the mentioned difference.\n",
">\n",
"> `entry_time`: The time when the order was placed.\n",
">\n",
"> `entry_price`: The **close** price when the order was placed.\n",
">\n",
"> `exit_time`: The time when the order was closed.\n",
">\n",
"> `exit_price`: The **close** price when the order was closed.\n",
">\n",
"> `profit`: The amount of profit earned by this order so far.\n",
">\n",
"> `margin`: The required amount of margin for this order.\n",
">\n",
"> `closed`: A boolean that specifies whether this order is closed or not."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. MtSimulator\n",
"\n",
"This is the core class that simulates the main parts of MetaTrader. Most of its public properties and methods are explained here. But feel free to take a look at the complete [source code](https://github.com/AminHP/gym-mtsim/blob/main/gym_mtsim/simulator/mt_simulator.py).\n",
"\n",
"* Properties:\n",
"\n",
" > `unit`: The unit currency. It is usually *USD*, but it can be anything the broker allows, such as *EUR*.\n",
" >\n",
" > `balance`: The amount of money before taking into account any open positions.\n",
" >\n",
" > `equity`: The amount of money, including the value of any open positions.\n",
" >\n",
" > `margin`: The amount of money which is required for having positions opened.\n",
" >\n",
" > `leverage`: The leverage ratio.\n",
" >\n",
" > `free_margin`: The amount of money that is available to open new positions.\n",
" >\n",
" > `margin_level`: The ratio between **equity** and **margin**.\n",
" >\n",
" > `stop_out_level`: If the **margin_level** drops below **stop_out_level**, the most unprofitable position will be closed automatically by the broker.\n",
" >\n",
" > `hedge`: A boolean that specifies whether hedging is enabled or not.\n",
" >\n",
" > `symbols_info`: A dictionary that contains symbols' information.\n",
" >\n",
" > `symbols_data`: A dictionary that contains symbols' OHLCV data.\n",
" >\n",
" > `orders`: The list of open orders.\n",
" >\n",
" > `closed_orders`: The list of closed orders.\n",
" >\n",
" > `current_time`: The current time of the system.\n",
"\n",
"* Methods:\n",
"\n",
" > `download_data`: Downloads required data from MetaTrader for a list of symbols in a time range. This method can be overridden in order to download data from servers other than MetaTrader. *Note that this method only works on Windows, as the MetaTrader5 Python package is not available on other platforms.*\n",
" >\n",
" > `save_symbols`: Saves the downloaded symbols' data to a file.\n",
" >\n",
" > `load_symbols`: Loads the symbols' data from a file.\n",
" >\n",
" > `tick`: Moves forward in time (by a delta time) and updates orders and other related properties.\n",
" >\n",
" > `create_order`: Creates a **Buy** or **Sell** order and updates related properties.\n",
" >\n",
" > `close_order`: Closes an order and updates related properties.\n",
" >\n",
" > `get_state`: Returns the state of the system. The result is similar to the *Trading tab* and *History tab* of the *Toolbox window* in MetaTrader software."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. MtEnv\n",
"\n",
"This is the Gym environment that works on top of the *MtSim*. Most of its public properties and methods are explained here. But feel free to take a look at the complete [source code](https://github.com/AminHP/gym-mtsim/blob/main/gym_mtsim/envs/mt_env.py).\n",
"\n",
"* Properties:\n",
"\n",
" > `original_simulator`: An instance of **MtSim** class as a baseline for simulating the system.\n",
" >\n",
" > `simulator`: The current simulator in use. It is a copy of the **original_simulator**.\n",
" >\n",
" > `trading_symbols`: The list of symbols to trade.\n",
" >\n",
" > `time_points`: A list of time points based on which the simulator moves time. The default value is taken from the *pandas DataFrame.Index* of the first symbol in the **trading_symbols** list.\n",
" >\n",
" > `hold_threshold`: A probability threshold that controls holding or placing a new order.\n",
" >\n",
" > `close_threshold`: A probability threshold that controls closing an order.\n",
" >\n",
" > `fee`: A constant number or a callable that takes a *symbol* as input and returns the **fee** based on that.\n",
" >\n",
" > `symbol_max_orders`: Specifies the maximum number of open positions per symbol in hedge trading. \n",
" >\n",
" > `multiprocessing_processes`: Specifies the maximum number of processes used for parallel processing.\n",
" >\n",
" > `prices`: The symbol prices over time. It is used to calculate signal features and render the environment.\n",
" >\n",
" > `signal_features`: The extracted features over time. It is used to generate *Gym observations*.\n",
" >\n",
" > `window_size`: The number of time points (current and previous points) as the length of each observation's features. \n",
" >\n",
" > `features_shape`: The shape of a single observation's features.\n",
" >\n",
" > `action_space`: The *Gym action_space* property. It has a complex structure since **stable-baselines** does not support *Dict* or *2D Box* action spaces. The action space is a 1D vector of size `count(trading_symbols) * (symbol_max_orders + 2)`. For each symbol, two types of actions can be performed, closing previous orders and placing a new order. The former is controlled by the first *symbol_max_orders* elements and the latter is controlled by the last two elements. Therefore, the action for each symbol is ***[probability of closing order 1, probability of closing order 2, ..., probability of closing order symbol_max_orders, probability of holding or creating a new order, volume of the new order]***. The last two elements specify whether to hold or place a new order and the volume of the new order (positive volume indicates buy and negative volume indicates sell). These elements are a number in range (-∞, ∞), but the probability values must be in the range [0, 1]. This is a problem with **stable-baselines** as mentioned earlier. To overcome this problem, it is assumed that the probability values belong to the [logit](https://en.wikipedia.org/wiki/Logit) function. So, applying the [expit](https://en.wikipedia.org/wiki/Expit) function on them gives the desired probability values in the range [0, 1]. This function is applied in the **step** method of the environment.\n",
" >\n",
" > `observation_space`: The *Gym observation_space* property. Each observation contains information about *balance*, *equity*, *margin*, *features*, and *orders*. The **features** is a window on the *signal_features* from index *current_tick - window_size + 1* to *current_tick*. The **orders** is a 3D array. Its first dimension specifies the symbol index in the *trading_symbols* list. The second dimension specifies the order number (each symbol can have more than one open order at the same time in hedge trading). The last dimension has three elements, *entry_price*, *volume*, and *profit* of corresponding order.\n",
" >\n",
" > `history`: Stores the information of all steps.\n",
"\n",
"* Methods:\n",
"\n",
" > `seed`: The typical *Gym seed* method.\n",
" >\n",
" > `reset`: The typical *Gym reset* method.\n",
" >\n",
" > `step`: The typical *Gym step* method.\n",
" >\n",
" > `render`: The typical *Gym render* method. It can render in three modes, **human**, **simple_figure**, and **advanced_figure**.\n",
" >\n",
" > `close`: The typical *Gym close* method.\n",
"\n",
"* Virtual Methods:\n",
"\n",
" > `_get_prices`: It is called in the constructor and calculates symbol **prices**.\n",
" >\n",
" > `_process_data`: It is called in the constructor and calculates **signal_features**.\n",
" >\n",
" > `_calculate_reward`: The reward function for the RL agent."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A Simple Example"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### MtSim"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create a simulator with custom parameters"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pytz\n",
"from datetime import datetime, timedelta\n",
"from gym_mtsim import MtSimulator, OrderType, Timeframe, FOREX_DATA_PATH\n",
"\n",
"\n",
"sim = MtSimulator(\n",
" unit='USD',\n",
" balance=10000.,\n",
" leverage=100.,\n",
" stop_out_level=0.2,\n",
" hedge=False,\n",
")\n",
"\n",
"if not sim.load_symbols(FOREX_DATA_PATH):\n",
" sim.download_data(\n",
" symbols=['EURUSD', 'GBPCAD', 'GBPUSD', 'USDCAD', 'USDCHF', 'GBPJPY', 'USDJPY'],\n",
" time_range=(\n",
" datetime(2021, 5, 5, tzinfo=pytz.UTC),\n",
" datetime(2021, 9, 5, tzinfo=pytz.UTC)\n",
" ),\n",
" timeframe=Timeframe.D1\n",
" )\n",
" sim.save_symbols(FOREX_DATA_PATH)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Place some orders"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"balance: 10000.0, equity: 10717.58118589908, margin: 3375.480933228619\n",
"free_margin: 7342.1002526704615, margin_level: 3.1751271592500743\n",
"\n"
]
},
{
"data": {
"text/html": [
"

\n",
"\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" Id\n",
" Symbol\n",
" Type\n",
" Volume\n",
" Entry Time\n",
" Entry Price\n",
" Exit Time\n",
" Exit Price\n",
" Exit Balance\n",
" Exit Equity\n",
" Profit\n",
" Margin\n",
" Fee\n",
" Closed\n",
" \n",
" \n",
" \n",
" \n",
" 0\n",
" 2\n",
" USDJPY\n",
" Sell\n",
" 2.0\n",
" 2021-09-01 00:17:52+00:00\n",
" 110.02500\n",
" 2021-09-06 00:17:52+00:00\n",
" 109.71200\n",
" NaN\n",
" NaN\n",
" 552.355257\n",
" 2000.000000\n",
" 0.0100\n",
" False\n",
" \n",
" \n",
" 1\n",
" 1\n",
" GBPCAD\n",
" Buy\n",
" 1.0\n",
" 2021-08-30 00:17:52+00:00\n",
" 1.73389\n",
" 2021-09-06 00:17:52+00:00\n",
" 1.73626\n",
" NaN\n",
" NaN\n",
" 165.225928\n",
" 1375.480933\n",
" 0.0003\n",
" False\n",
" \n",
" \n",
"\n",
"
"
],
"text/plain": [
" Id Symbol Type Volume Entry Time Entry Price \\\n",
"0 2 USDJPY Sell 2.0 2021-09-01 00:17:52+00:00 110.02500 \n",
"1 1 GBPCAD Buy 1.0 2021-08-30 00:17:52+00:00 1.73389 \n",
"\n",
" Exit Time Exit Price Exit Balance Exit Equity \\\n",
"0 2021-09-06 00:17:52+00:00 109.71200 NaN NaN \n",
"1 2021-09-06 00:17:52+00:00 1.73626 NaN NaN \n",
"\n",
" Profit Margin Fee Closed \n",
"0 552.355257 2000.000000 0.0100 False \n",
"1 165.225928 1375.480933 0.0003 False "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sim.current_time = datetime(2021, 8, 30, 0, 17, 52, tzinfo=pytz.UTC)\n",
"\n",
"order1 = sim.create_order(\n",
" order_type=OrderType.Buy,\n",
" symbol='GBPCAD',\n",
" volume=1.,\n",
" fee=0.0003,\n",
")\n",
"\n",
"sim.tick(timedelta(days=2))\n",
"\n",
"order2 = sim.create_order(\n",
" order_type=OrderType.Sell,\n",
" symbol='USDJPY',\n",
" volume=2.,\n",
" fee=0.01,\n",
")\n",
"\n",
"sim.tick(timedelta(days=5))\n",
"\n",
"state = sim.get_state()\n",
"\n",
"print(\n",
" f\"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\\n\"\n",
" f\"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\\n\"\n",
")\n",
"state['orders']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Close all orders"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"balance: 10717.58118589908, equity: 10717.58118589908, margin: 0.0\n",
"free_margin: 10717.58118589908, margin_level: inf\n",
"\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" Id\n",
" Symbol\n",
" Type\n",
" Volume\n",
" Entry Time\n",
" Entry Price\n",
" Exit Time\n",
" Exit Price\n",
" Exit Balance\n",
" Exit Equity\n",
" Profit\n",
" Margin\n",
" Fee\n",
" Closed\n",
" \n",
" \n",
" \n",
" \n",
" 0\n",
" 2\n",
" USDJPY\n",
" Sell\n",
" 2.0\n",
" 2021-09-01 00:17:52+00:00\n",
" 110.02500\n",
" 2021-09-06 00:17:52+00:00\n",
" 109.71200\n",
" 10717.581186\n",
" 10717.581186\n",
" 552.355257\n",
" 2000.000000\n",
" 0.0100\n",
" True\n",
" \n",
" \n",
" 1\n",
" 1\n",
" GBPCAD\n",
" Buy\n",
" 1.0\n",
" 2021-08-30 00:17:52+00:00\n",
" 1.73389\n",
" 2021-09-06 00:17:52+00:00\n",
" 1.73626\n",
" 10165.225928\n",
" 10717.581186\n",
" 165.225928\n",
" 1375.480933\n",
" 0.0003\n",
" True\n",
" \n",
" \n",
"\n",
"
"
],
"text/plain": [
" Id Symbol Type Volume Entry Time Entry Price \\\n",
"0 2 USDJPY Sell 2.0 2021-09-01 00:17:52+00:00 110.02500 \n",
"1 1 GBPCAD Buy 1.0 2021-08-30 00:17:52+00:00 1.73389 \n",
"\n",
" Exit Time Exit Price Exit Balance Exit Equity \\\n",
"0 2021-09-06 00:17:52+00:00 109.71200 10717.581186 10717.581186 \n",
"1 2021-09-06 00:17:52+00:00 1.73626 10165.225928 10717.581186 \n",
"\n",
" Profit Margin Fee Closed \n",
"0 552.355257 2000.000000 0.0100 True \n",
"1 165.225928 1375.480933 0.0003 True "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"order1_profit = sim.close_order(order1)\n",
"order2_profit = sim.close_order(order2)\n",
"\n",
"# alternatively:\n",
"# for order in sim.orders:\n",
"# sim.close_order(order)\n",
"\n",
"state = sim.get_state()\n",
"\n",
"print(\n",
" f\"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\\n\"\n",
" f\"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\\n\"\n",
")\n",
"state['orders']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### MtEnv"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create an environment"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import gymnasium as gym\n",
"import gym_mtsim\n",
"\n",
"env = gym.make('forex-hedge-v0')\n",
"# env = gym.make('stocks-hedge-v0')\n",
"# env = gym.make('crypto-hedge-v0')\n",
"# env = gym.make('mixed-hedge-v0')\n",
"\n",
"# env = gym.make('forex-unhedge-v0')\n",
"# env = gym.make('stocks-unhedge-v0')\n",
"# env = gym.make('crypto-unhedge-v0')\n",
"# env = gym.make('mixed-unhedge-v0')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* This will create a default environment. There are eight default environments, but it is also possible to create environments with custom parameters."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create an environment with custom parameters"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"import pytz\n",
"from datetime import datetime, timedelta\n",
"import numpy as np\n",
"from gym_mtsim import MtEnv, MtSimulator, FOREX_DATA_PATH\n",
"\n",
"\n",
"sim = MtSimulator(\n",
" unit='USD',\n",
" balance=10000.,\n",
" leverage=100.,\n",
" stop_out_level=0.2,\n",
" hedge=True,\n",
" symbols_filename=FOREX_DATA_PATH\n",
")\n",
"\n",
"env = MtEnv(\n",
" original_simulator=sim,\n",
" trading_symbols=['GBPCAD', 'EURUSD', 'USDJPY'],\n",
" window_size=10,\n",
" # time_points=[desired time points ...],\n",
" hold_threshold=0.5,\n",
" close_threshold=0.5,\n",
" fee=lambda symbol: {\n",
" 'GBPCAD': max(0., np.random.normal(0.0007, 0.00005)),\n",
" 'EURUSD': max(0., np.random.normal(0.0002, 0.00003)),\n",
" 'USDJPY': max(0., np.random.normal(0.02, 0.003)),\n",
" }[symbol],\n",
" symbol_max_orders=2,\n",
" multiprocessing_processes=2\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Print some information"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"env information:\n",
"> prices[GBPCAD].shape: (88, 2)\n",
"> prices[EURUSD].shape: (88, 2)\n",
"> prices[USDJPY].shape: (88, 2)\n",
"> signal_features.shape: (88, 6)\n",
"> features_shape: (10, 6)\n"
]
}
],
"source": [
"print(\"env information:\")\n",
"\n",
"for symbol in env.prices:\n",
" print(f\"> prices[{symbol}].shape:\", env.prices[symbol].shape)\n",
"\n",
"print(\"> signal_features.shape:\", env.signal_features.shape)\n",
"print(\"> features_shape:\", env.features_shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Trade randomly"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"balance: 18179.65219519348, equity: 18179.65219519348, margin: 0.0\n",
"free_margin: 18179.65219519348, margin_level: inf\n",
"step_reward: 0.0\n"
]
}
],
"source": [
"observation = env.reset()\n",
"\n",
"while True:\n",
" action = env.action_space.sample()\n",
" observation, reward, terminated, truncated, info = env.step(action)\n",
" done = terminated or truncated\n",
"\n",
" if done:\n",
" # print(info)\n",
" print(\n",
" f\"balance: {info['balance']}, equity: {info['equity']}, margin: {info['margin']}\\n\"\n",
" f\"free_margin: {info['free_margin']}, margin_level: {info['margin_level']}\\n\"\n",
" f\"step_reward: {info['step_reward']}\"\n",
" )\n",
" break"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Render in *human* mode"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"balance: 18179.65219519348, equity: 18179.65219519348, margin: 0.0\n",
"free_margin: 18179.65219519348, margin_level: inf\n",
"\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" Id\n",
" Symbol\n",
" Type\n",
" Volume\n",
" Entry Time\n",
" Entry Price\n",
" Exit Time\n",
" Exit Price\n",
" Exit Balance\n",
" Exit Equity\n",
" Profit\n",
" Margin\n",
" Fee\n",
" Closed\n",
" \n",
" \n",
" \n",
" \n",
" 0\n",
" 14\n",
" EURUSD\n",
" Buy\n",
" 9.95\n",
" 2021-08-27 00:00:00+00:00\n",
" 1.17955\n",
" 2021-08-31 00:00:00+00:00\n",
" 1.18083\n",
" 18179.652195\n",
" 18179.652195\n",
" 1052.554631\n",
" 11736.522500\n",
" 0.000222\n",
" True\n",
" \n",
" \n",
" 1\n",
" 13\n",
" EURUSD\n",
" Buy\n",
" 0.22\n",
" 2021-08-26 00:00:00+00:00\n",
" 1.17515\n",
" 2021-08-31 00:00:00+00:00\n",
" 1.18083\n",
" 17127.097565\n",
" 18179.652195\n",
" 120.009649\n",
" 258.533000\n",
" 0.000225\n",
" True\n",
" \n",
" \n",
" 2\n",
" 12\n",
" GBPCAD\n",
" Buy\n",
" 7.10\n",
" 2021-08-24 00:00:00+00:00\n",
" 1.72784\n",
" 2021-08-26 00:00:00+00:00\n",
" 1.73770\n",
" 17007.087916\n",
" 17007.087916\n",
" 5140.996853\n",
" 9746.529273\n",
" 0.000675\n",
" True\n",
" \n",
" \n",
" 3\n",
" 11\n",
" EURUSD\n",
" Sell\n",
" 3.33\n",
" 2021-08-20 00:00:00+00:00\n",
" 1.16996\n",
" 2021-08-23 00:00:00+00:00\n",
" 1.17457\n",
" 11866.091062\n",
" 11866.091062\n",
" -1610.650324\n",
" 3895.966800\n",
" 0.000227\n",
" True\n",
" \n",
" \n",
" 4\n",
" 10\n",
" GBPCAD\n",
" Buy\n",
" 6.65\n",
" 2021-07-30 00:00:00+00:00\n",
" 1.73335\n",
" 2021-08-02 00:00:00+00:00\n",
" 1.73577\n",
" 13476.741387\n",
" 13476.741387\n",
" 868.941338\n",
" 9248.130601\n",
" 0.000786\n",
" True\n",
" \n",
" \n",
" 5\n",
" 9\n",
" EURUSD\n",
" Sell\n",
" 0.26\n",
" 2021-07-21 00:00:00+00:00\n",
" 1.17946\n",
" 2021-07-22 00:00:00+00:00\n",
" 1.17707\n",
" 12607.800048\n",
" 12607.800048\n",
" 56.809064\n",
" 306.659600\n",
" 0.000205\n",
" True\n",
" \n",
" \n",
" 6\n",
" 8\n",
" USDJPY\n",
" Buy\n",
" 7.11\n",
" 2021-07-12 00:00:00+00:00\n",
" 110.34900\n",
" 2021-07-16 00:00:00+00:00\n",
" 110.08100\n",
" 12550.990984\n",
" 12550.990984\n",
" -1850.301309\n",
" 7110.000000\n",
" 0.018474\n",
" True\n",
" \n",
" \n",
" 7\n",
" 7\n",
" EURUSD\n",
" Buy\n",
" 4.23\n",
" 2021-07-07 00:00:00+00:00\n",
" 1.17903\n",
" 2021-07-09 00:00:00+00:00\n",
" 1.18774\n",
" 14401.292293\n",
" 14401.292293\n",
" 3618.699910\n",
" 4987.296900\n",
" 0.000155\n",
" True\n",
" \n",
" \n",
" 8\n",
" 6\n",
" GBPCAD\n",
" Sell\n",
" 2.77\n",
" 2021-07-02 00:00:00+00:00\n",
" 1.70511\n",
" 2021-07-05 00:00:00+00:00\n",
" 1.70716\n",
" 10782.592383\n",
" 10782.592383\n",
" -612.337927\n",
" 3831.428119\n",
" 0.000678\n",
" True\n",
" \n",
" \n",
" 9\n",
" 5\n",
" EURUSD\n",
" Sell\n",
" 6.07\n",
" 2021-06-21 00:00:00+00:00\n",
" 1.19185\n",
" 2021-06-22 00:00:00+00:00\n",
" 1.19413\n",
" 11394.930310\n",
" 11394.930310\n",
" -1512.813611\n",
" 7234.529500\n",
" 0.000212\n",
" True\n",
" \n",
" \n",
" 10\n",
" 4\n",
" USDJPY\n",
" Buy\n",
" 4.18\n",
" 2021-06-11 00:00:00+00:00\n",
" 109.68200\n",
" 2021-06-17 00:00:00+00:00\n",
" 110.22100\n",
" 12907.743921\n",
" 12907.743921\n",
" 1980.439673\n",
" 4180.000000\n",
" 0.016785\n",
" True\n",
" \n",
" \n",
" 11\n",
" 3\n",
" GBPCAD\n",
" Buy\n",
" 5.58\n",
" 2021-06-01 00:00:00+00:00\n",
" 1.70755\n",
" 2021-06-02 00:00:00+00:00\n",
" 1.70462\n",
" 10927.304248\n",
" 10927.304248\n",
" -1678.531017\n",
" 7894.516666\n",
" 0.000689\n",
" True\n",
" \n",
" \n",
" 12\n",
" 2\n",
" EURUSD\n",
" Buy\n",
" 2.65\n",
" 2021-05-26 00:00:00+00:00\n",
" 1.21922\n",
" 2021-05-28 00:00:00+00:00\n",
" 1.21896\n",
" 12605.835265\n",
" 12605.835265\n",
" -130.546444\n",
" 3230.933000\n",
" 0.000233\n",
" True\n",
" \n",
" \n",
" 13\n",
" 1\n",
" USDJPY\n",
" Sell\n",
" 6.73\n",
" 2021-05-19 00:00:00+00:00\n",
" 109.22700\n",
" 2021-05-20 00:00:00+00:00\n",
" 108.76700\n",
" 12736.381709\n",
" 12736.381709\n",
" 2736.381709\n",
" 6730.000000\n",
" 0.017759\n",
" True\n",
" \n",
" \n",
"\n",
"
"
],
"text/plain": [
" Id Symbol Type Volume Entry Time Entry Price \\\n",
"0 14 EURUSD Buy 9.95 2021-08-27 00:00:00+00:00 1.17955 \n",
"1 13 EURUSD Buy 0.22 2021-08-26 00:00:00+00:00 1.17515 \n",
"2 12 GBPCAD Buy 7.10 2021-08-24 00:00:00+00:00 1.72784 \n",
"3 11 EURUSD Sell 3.33 2021-08-20 00:00:00+00:00 1.16996 \n",
"4 10 GBPCAD Buy 6.65 2021-07-30 00:00:00+00:00 1.73335 \n",
"5 9 EURUSD Sell 0.26 2021-07-21 00:00:00+00:00 1.17946 \n",
"6 8 USDJPY Buy 7.11 2021-07-12 00:00:00+00:00 110.34900 \n",
"7 7 EURUSD Buy 4.23 2021-07-07 00:00:00+00:00 1.17903 \n",
"8 6 GBPCAD Sell 2.77 2021-07-02 00:00:00+00:00 1.70511 \n",
"9 5 EURUSD Sell 6.07 2021-06-21 00:00:00+00:00 1.19185 \n",
"10 4 USDJPY Buy 4.18 2021-06-11 00:00:00+00:00 109.68200 \n",
"11 3 GBPCAD Buy 5.58 2021-06-01 00:00:00+00:00 1.70755 \n",
"12 2 EURUSD Buy 2.65 2021-05-26 00:00:00+00:00 1.21922 \n",
"13 1 USDJPY Sell 6.73 2021-05-19 00:00:00+00:00 109.22700 \n",
"\n",
" Exit Time Exit Price Exit Balance Exit Equity \\\n",
"0 2021-08-31 00:00:00+00:00 1.18083 18179.652195 18179.652195 \n",
"1 2021-08-31 00:00:00+00:00 1.18083 17127.097565 18179.652195 \n",
"2 2021-08-26 00:00:00+00:00 1.73770 17007.087916 17007.087916 \n",
"3 2021-08-23 00:00:00+00:00 1.17457 11866.091062 11866.091062 \n",
"4 2021-08-02 00:00:00+00:00 1.73577 13476.741387 13476.741387 \n",
"5 2021-07-22 00:00:00+00:00 1.17707 12607.800048 12607.800048 \n",
"6 2021-07-16 00:00:00+00:00 110.08100 12550.990984 12550.990984 \n",
"7 2021-07-09 00:00:00+00:00 1.18774 14401.292293 14401.292293 \n",
"8 2021-07-05 00:00:00+00:00 1.70716 10782.592383 10782.592383 \n",
"9 2021-06-22 00:00:00+00:00 1.19413 11394.930310 11394.930310 \n",
"10 2021-06-17 00:00:00+00:00 110.22100 12907.743921 12907.743921 \n",
"11 2021-06-02 00:00:00+00:00 1.70462 10927.304248 10927.304248 \n",
"12 2021-05-28 00:00:00+00:00 1.21896 12605.835265 12605.835265 \n",
"13 2021-05-20 00:00:00+00:00 108.76700 12736.381709 12736.381709 \n",
"\n",
" Profit Margin Fee Closed \n",
"0 1052.554631 11736.522500 0.000222 True \n",
"1 120.009649 258.533000 0.000225 True \n",
"2 5140.996853 9746.529273 0.000675 True \n",
"3 -1610.650324 3895.966800 0.000227 True \n",
"4 868.941338 9248.130601 0.000786 True \n",
"5 56.809064 306.659600 0.000205 True \n",
"6 -1850.301309 7110.000000 0.018474 True \n",
"7 3618.699910 4987.296900 0.000155 True \n",
"8 -612.337927 3831.428119 0.000678 True \n",
"9 -1512.813611 7234.529500 0.000212 True \n",
"10 1980.439673 4180.000000 0.016785 True \n",
"11 -1678.531017 7894.516666 0.000689 True \n",
"12 -130.546444 3230.933000 0.000233 True \n",
"13 2736.381709 6730.000000 0.017759 True "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"state = env.render()\n",
"\n",
"print(\n",
" f\"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\\n\"\n",
" f\"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\\n\"\n",
")\n",
"state['orders']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Render in *simple_figure* mode\n",
"\n",
"* Each *symbol* is illustrated with a separate color.\n",
"* The **green**/**red** triangles show successful **buy**/**sell** actions.\n",
"* The **gray** triangles indicate that the **buy**/**sell** action has encountered an **error**.\n",
"* The **black** vertical bars specify **close** actions."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAAI1CAYAAABrKEweAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hS9/4H8PeBBMiC7L3jSlxx1q1xxL1btdplx6+37e21e9ne7nU7btftslZbq63a1lbrXlVbbd0jahwxe09CEgIBvr8/yCEhQEISCCT5vJ4nz6OHw+FLAhz48BkcY4yBEEIIIYQQQgghhBDS7QgcvQBCCCGEEEIIIYQQQohjUHCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCwg0RHR+Ouu+5y9DIIIZ3U77//Do7j8Pvvvzt6KYR0WRkZGeA4DmvXrnX0Ugjp9O666y5ER0c7ehmEdBnd7Ry1du1acByHjIyMNl1/woQJmDBhQptvf926dejTpw9cXV3h7e3d5uMQ0llQcLAJ/kWo8U9gYCCSkpKwc+dORy/Pab3++uuYM2cOgoKCwHEcXnrpJYv77tu3D0lJSfD394e3tzeGDx+OdevWmez32Wef4ZZbbkFkZCQ4jrMYXJ0wYYLJ34z/cXV1Ndq3qqoKjzzyCMLDwyEWixEfH4/PPvusVfc1LS0NS5cuRWBgINzc3NCzZ0+sXLnSaJ+77rrL7Hr69OljtF9qaiqeeuopJCYmwsvLCyEhIZg5cyZOnjxpcrtXrlzBo48+ilGjRkEikTR7srT2fpp7vPM/BQUFLf4uoqOjMWvWLLOXnTx50uwbmD/++APTp09HWFgYJBIJIiMjMXv2bGzYsMFov8ZrcXFxga+vL4YMGYIVK1bg0qVLLa7NHiz9XTmOg0Qi6fD1bNiwAR988IHdbyc/Px/PPPMMkpKS4OXl1WyQUqfT4fPPP0diYiI8PT0RFBSE6dOn4+jRo0b7VVVV4cUXX8S0adPg6+vb7JtdS79zjuMwZcoUo32vX7+Om2++GT4+PnB3d8eYMWNw8ODBVt3fffv2YeLEiZDJZPDy8sKQIUOwceNGo32io6PNrucf//iH0X779+/H3XffjV69esHd3R2xsbG49957kZ+fb3K7e/bswT333IN+/fpBKBQ2+6Ha2vtp7WtRR+Bfq3v27Gn28r179xrW9+OPP3bw6hxj69atGDx4sOG18MUXX4RGo7HqujqdDv/5z38QExMDiUSCAQMG4Pvvvze77+XLlzFt2jR4enrC19cXt99+O4qLizvtMe2tufcVqampHb6epvgviziOw3fffWd2n9GjR4PjOPTr16+DV9fx6BxF5yhb6K7nqAkTJnSL14nWSk1NxV133YW4uDisWrUKX375paOXRIjduTh6Ac7qlVdeQUxMDBhjKCwsxNq1azFjxgxs27bNYjCkO3v++ecRHByMQYMGYffu3Rb327p1K+bNm4eRI0fipZdeAsdx2LRpE+644w6UlJTg0UcfNez79ttvQ6FQYPjw4WbfpPBWrlyJe++912hbdXU1/vGPfyA5OdmwTavVYurUqTh58iQeeugh9OzZE7t378aDDz6I8vJyPPfccy3ez7Nnz2LChAkICwvD448/Dj8/P2RlZSE7O9tkX7FYjK+++spom0wmM/r/V199hdWrV2PhwoV48MEHIZfL8cUXX2DEiBHYtWsXJk+ebNj32LFj+Oijj5CQkID4+HicPXvW7Brbcj/5x3tj9viGbPPmzVi8eDESExOxYsUK+Pj4ID09HYcPH8aqVauwdOlSo/2nTJmCO+64A4wxyOVynDt3Dt988w0+/fRTvP3223jsscdsvsaWmPu7AoBQKLTr7Y4bNw5KpRIikciwbcOGDUhJScEjjzxi19u+cuUK3n77bfTs2RP9+/fHsWPHLO775JNP4v3338dtt92GBx98EBUVFfjiiy8wfvx4/Pnnnxg+fDgAoKSkBK+88goiIyMxcODAZjMizX15cPLkSXz44YdGz/Hs7GyMHDkSQqEQTz75JDw8PLBmzRokJydj//79GDduXIv3dc2aNbjnnnswZcoUvPHGGxAKhbhy5YrZ53hiYiIef/xxo229evUy+v/TTz+NsrIy3HLLLejZsydu3LiBTz75BL/99hvOnj2L4OBgw74bNmzAxo0bMXjwYISGhlpcY2vvpzWvRR1FIpHg+vXrOH78uOGxwFu/fj0kEglqa2sdsjYAiIqKglKpNPliyR527tyJefPmYcKECfj4449x4cIFvPbaaygqKrLqS6uVK1firbfewn333Ydhw4bh119/xdKlS8FxHJYsWWLYLycnB+PGjYNMJsMbb7yBqqoqvPvuu7hw4QKOHz9u9JrSWY7ZEcLDw/Hmm2+abG/uudnRJBIJNmzYgNtuu81oe0ZGBo4ePeqQL60aW7VqFXQ6nd1vh85RdI6yFTpHdS179uxp83V///136HQ6fPjhh+jRo4cNV0WIE2PEyJo1axgAduLECaPtZWVlzNXVlS1durRNx42KimJ33nmnDVbonNLT0xljjBUXFzMA7MUXXzS735QpU1hoaCirra01bKurq2NxcXFswIABRvtmZGQwnU7HGGPMw8OjVb+/devWMQBs/fr1hm2bNm1iANjq1auN9l24cCGTSCSssLCw2WNqtVrWr18/dtNNN7Gamppm973zzjuZh4dHi+s8efIkUygURttKSkpYQEAAGz16tNH20tJSVllZyRhj7J133mEADL/3xlpzPy093q0VFRXFZs6cafayEydOMABszZo1hm0JCQmsb9++TKVSmezf9PcPgD300EMm+5WUlLCRI0cyAGz79u1tWndbWft37SgzZ85kUVFRdr+dyspKVlpayhhjbPPmzQwAO3jwoMl+dXV1zM3Njd18881G22/cuMEAsH/961+GbbW1tSw/P58xZv6x0pJ77rmHcRzHsrOzDdsefPBB5uLiwlJTUw3bqqurWUREBBs8eHCLx0xPT2dubm5G67Skucd+Y4cOHWJardZkGwC2cuVKo+25ublMrVYzxpr/27bmfjrTY3b8+PGsb9++rHfv3uyRRx4xukypVDKpVMoWLlzIALDNmzfb5Darqqpschx7SEhIYAMHDmR1dXWGbStXrmQcx7HLly83e92cnBzm6upq9Bqp0+nY2LFjWXh4ONNoNIbtDzzwAHNzc2OZmZmGbXv37mUA2BdffNHpjtkR+Mdqa3TkY+3gwYMMAFuwYAFzcXFhxcXFRpe//vrrLCgoiI0ZM6bV98MSnU7X4nsfR6FzlCk6R7Vedz1HteX1rqPwn1PMfd6xt5dffpkBMHl9JaQro7JiK3l7e8PNzQ0uLsbJlu+++y5GjRoFPz8/uLm5YciQIValmpeVleGJJ55A//794enpCalUiunTp+PcuXNG+/GlI5s2bcLrr7+O8PBwSCQSTJo0CdevXzc57t9//40ZM2bAx8cHHh4eGDBgAD788EOjfVJTU3HzzTfD19cXEokEQ4cOxdatW02OlZaWhrS0NGt+PVb3lKmsrISPjw/EYrFhm4uLC/z9/eHm5ma0b1RUFDiOs+q4TW3YsAEeHh6YO3euYduRI0cAwChTgf9/bW0tfv3112aPuWfPHqSkpODFF1+Em5sbampqoNVqm72OVqtFZWWlxcuHDBkCT09Po21+fn4YO3YsLl++bLTd19cXXl5ezd4e0Pb7qVAoWrw/7ZWWloZhw4aZzQAJDAy06hh+fn744Ycf4OLigtdff93WS7SZixcvYuLEiXBzc0N4eDhee+01fP311ybl4JbK8Jv2KW3ac3DChAnYvn07MjMzDWUu0dHRqKqqgoeHB1asWGFyzJycHAiFQrz55puoq6tDampqs1m5PC8vL/j6+ra4X11dHZRKJYKCgoy2BwYGQiAQGD3HxWKxUUZCa6hUKvz0008YP348wsPDDduPHDmCQYMGoXfv3oZt7u7umDNnDk6fPo1r1641e9zPP/8cWq0Wr7zyCgB9WRljrNnrqNVqVFdXW7x83LhxEAgEJtt8fX1NnuOhoaFWZQO05X629FrUkW699VZs3LjRKKNo27ZtqKmpwaJFi0z2z8zMxIMPPojevXvDzc0Nfn5+uOWWW0zaKvBtEg4dOoQHH3wQgYGBRo+P//3vf4iNjYWbmxuGDx+OI0eOmPQjMtfP6a677oKnpydyc3Mxb948eHp6IiAgAE888YTJa2Z+fj5SU1NRV1fX7O/g0qVLuHTpEv7v//7P6H3Fgw8+CMZYi+8jfv31V9TV1eHBBx80bOM4Dg888ABycnKMMqd++uknzJo1C5GRkYZtkydPRq9evbBp06ZOd0xnwD8m0tLSMGPGDHh5eWHZsmUA9GWrH3zwAfr27QuJRIKgoCDcf//9KC8vNznOzp07MXbsWHh4eMDLywszZ87ExYsXrV7H3LlzIRaLsXnzZqPtGzZswKJFi8xmtK9ZswYTJ05EYGAgxGIxEhISzGaq8m1Ddu/ejaFDh8LNzQ1ffPEFAP1zcs6cOfDw8EBgYCAeffRR7N6926Sct2nPQf759e677+LLL79EXFwcxGIxhg0bhhMnThjdPp2jTNE5qmN05XNUe7T0evXuu++C4zhkZmaaXPfZZ5+FSCQyeh38+++/MW3aNMhkMri7uxuyd1sil8uRmpoKuVze4r5Nf3/Wfq6Ojo7Giy++CAAICAhosWUWIV0FBQctkMvlKCkpQXFxMS5evIgHHngAVVVVJqUbH374IQYNGoRXXnkFb7zxBlxcXHDLLbdg+/btzR7/xo0b+OWXXzBr1iy8//77ePLJJ3HhwgWMHz8eeXl5Jvu/9dZb2LJlC5544gk8++yz+OuvvwxvRHl79+7FuHHjcOnSJaxYsQLvvfcekpKS8Ntvvxn2uXjxIkaMGIHLly/jmWeewXvvvQcPDw/MmzcPW7ZsMTrepEmTMGnSpNb+6po1YcIEXLx4ES+88AKuX7+OtLQ0vPrqqzh58iSeeuopm9xGcXEx9u7di3nz5sHDw8OwXaVSQSgUmgSm3N3dAQCnTp1q9rj79u0DoH/DOHToUHh4eMDd3R1LlixBWVmZyf41NTWQSqWQyWTw9fXFQw89hKqqKqvuQ0FBAfz9/a3at6m23M+kpCRIpVLDm7eW3qC2VVRUFPbv34+cnJx2HScyMhLjx4/HX3/95ZA3kyUlJSY/jddRUFCApKQknD17Fs888wweeeQRfPvttyaB+vZYuXIlEhMT4e/vj3Xr1mHdunX44IMP4Onpifnz52Pjxo0mbwq///57MMawbNky5ObmIj4+Hs8++6zN1uTm5oabbroJa9euxfr165GVlYXz58/jrrvugo+PD/7v//7PJrezY8cOVFRUmLwGqlQqky8ZgNY9x/v06YMdO3YgPDwcXl5e8PPzwwsvvGC2NO7AgQNwd3eHp6cnoqOjrf77VlVVoaqqql3P8dbcz/a8FtnD0qVLkZ+fbxRE2LBhAyZNmmT2S4ITJ07g6NGjWLJkCT766CP84x//wP79+zFhwgTU1NSY7P/ggw/i0qVL+Pe//41nnnkGgL6H7T//+U+Eh4fjP//5D8aOHYt58+ZZ/VrEt2vw8/PDu+++i/Hjx+O9994z6UH07LPPIj4+Hrm5uc0e78yZMwCAoUOHGm0PDQ1FeHi44fLmru/h4YH4+Hij7XwZHH/93NxcFBUVmdwOv2/j2+ksx+woWq3W5HW+8fNGo9Fg6tSpCAwMxLvvvouFCxcCAO6//348+eSTGD16ND788EMsX74c69evx9SpU42CxuvWrcPMmTPh6emJt99+Gy+88AIuXbqEMWPGWN18393dHXPnzjXq4Xju3DlcvHjRpE0H77PPPkNUVBSee+45vPfee4iIiMCDDz6I//3vfyb7XrlyBbfeeiumTJmCDz/8EImJiaiursbEiROxb98+/Otf/8LKlStx9OhRPP3001atGdA/39955x3cf//9eO2115CRkYEFCxYY/X7oHGWKzlEdoyufo9rKmterRYsWGQJvTW3atAnJycnw8fEBoH9sjhs3DpWVlXjxxRfxxhtvoKKiAhMnTsTx48ebXcuWLVsQHx9v8rm1NVr6XP3BBx9g/vz5APR/m3Xr1mHBggVtvj1COg3HJi46Hz59uemPWCxma9euNdm/aYmFWq1m/fr1YxMnTjTa3rSsuLa21iSNPz09nYnFYvbKK68YtvGlI/Hx8UalmB9++CEDwC5cuMAYY0yj0bCYmBgWFRXFysvLjY7Ll+YyxtikSZNY//79jcp6dTodGzVqFOvZs6fJmltbsthSWXFVVRVbtGgR4zjO8Lt1d3dnv/zyS7PHbU1Z8ccff8wAsB07dhhtf++99xgAduTIEaPtzzzzDAPAZs2a1exx58yZwwAwPz8/tmzZMvbjjz+yF154gbm4uLBRo0YZ/Z6feeYZ9vTTT7ONGzey77//nt15550MABs9erRRCZk5hw8fZhzHsRdeeMHiPs2VFbfmfm7cuJHddddd7JtvvmFbtmxhzz//PHN3d2f+/v4sKyur2XUy1vqy4tWrVzMATCQSsaSkJPbCCy+wI0eOmDwXGLNcVsxbsWIFA8DOnTvX4joZ0z9HmpZwN1ZRUdHiMfi/o7mfqVOnGvZ75JFHGAD2999/G7YVFRUxmUxm8nez9Hxp+prBvxY0LpWyVNaze/duBoDt3LnTaPuAAQPY+PHjGWP61xsArW530FzJFmOMXbt2jQ0ePNjodxMbG2tUXtRUa0u2Fi5cyMRisclr3ezZs5m3t7eh/J7Hl6G/++67zR5XKpUyHx8fJhaL2QsvvMB+/PFHtnTpUgaAPfPMMya39fbbb7NffvmFrV69mo0dO5YBYE899VSL63/11VcZALZ//36L+zRXstWa+9me16LG6urqWHV1tcXLrXn+NC5dGjp0KLvnnnsYY4yVl5czkUjEvvnmG8PjvHHJlrlSxmPHjjEA7NtvvzVs48/fY8aMMSpXValUzM/Pjw0bNszoPq9du5YBMDwnGGt4XjR+LPK/s8bnZsYYGzRoEBsyZIjRNn7flkqg+Ndwc6+zw4YNYyNGjGj2+jNnzmSxsbEm26urq40er/xzq/Hviffkk08yAIb3A53lmC2x1WPV3Os8/3rJ/52bvi4cOXLEpKUJY4zt2rXLaLtCoWDe3t7svvvuM9qvoKCAyWQyk+1NNX6e/Pbbb4zjOMNj6cknnzT8zs2VC5p7Pk2dOtXk7xQVFcUAsF27dhlt599jNH7fplQqWZ8+fUzODXfeeafR6xj//PLz82NlZWWG7b/++isDwLZt22ayL52jGtA5yjI6R1l3jmrpfpvTmterkSNHmtzm8ePHjX4XOp2O9ezZk02dOtXos1NNTQ2LiYlhU6ZMMWwzV1bMb7Pm+Th+/Hij35+1n6sZY+zFF1+ksmLS7VDmoAX/+9//sHfvXuzduxffffcdkpKScO+99+Lnn3822q/xN2Pl5eWQy+UYO3YsTp8+3ezxxWKxIY1fq9WitLQUnp6e6N27t9nrLl++3CgTbOzYsQD0GYiA/tv39PR0PPLIIyaDJPjS3LKyMhw4cACLFi2CQqEwfBNeWlqKqVOn4tq1a0bZDhkZGW0eHW+JWCxGr169cPPNN+P777/Hd999h6FDh+K2227DX3/9ZZPb2LBhAwICAkwmxC1duhQymQx333039u7di4yMDHz55Zf49NNPAQBKpbLZ4/LfYg4bNgzfffcdFi5ciFdeeQWvvvoqjh49iv379xv2ffPNN/HWW29h0aJFWLJkCdauXYvXX38df/75Z7PlYkVFRVi6dCliYmLanEnZmvu5aNEirFmzBnfccQfmzZuHV199Fbt370ZpaaldSnbvvvtu7Nq1CxMmTMAff/yBV199FWPHjkXPnj1NJgW2hC/HVigUze53/fp1LFmyBF5eXvDy8kJwcDDuuece/PLLL0hPT8eZM2fw+OOPW50xIJFIDK8NjX/eeustwz47duzAiBEjjJpZBwQEmGQR2MvkyZMRGhqK9evXG7alpKTg/Pnzhuzn6OhoMMYsTl9sKy8vL/Tt2xcPPfQQfv75Z3z66afQaDSYN28eSkpK2n38yspKbN++HTNmzDB5rXvggQdQUVGBxYsX48yZM7h69SoeeeQRw/Rva57j5eXlePnll/HKK69g4cKFWL9+PaZNm4YPP/zQ6LG2detWPPXUU5g7dy7uvvtuHDp0CFOnTsX777/f7Df9hw8fxssvv4xFixZh4sSJbfodtOZ+tvW1iHf69GnMnDkT7u7u8PDwQHR0NB5++GHs2rULGRkZOHbsGO655x68/PLLrboPS5cuxc8//wy1Wo0ff/wRQqHQ8C19U43Ps3V1dSgtLUWPHj3g7e1t9nx53333GZVTnjx5EqWlpbjvvvuMSniXLVtmyGKwRtMpn2PHjjWcg3lr164FY6zFVhv836hxiw2eRCJp8bGqVCotXrfx8Vu6nab7doZjWmLrx2p0dLTJ63zT8/IDDzxg9P/NmzdDJpNhypQpRhmHfAsRflrr3r17UVFRgVtvvdVoP6FQiJtuuqlV02uTk5Ph6+uLH374AYwx/PDDD7j11lst7t/4+cRXyYwfPx43btwwKdOLiYnB1KlTjbbt2rULYWFhmDNnjmGbRCLBfffdZ/WaFy9ebPTca/qeFqBzlDl0jjJF56gG1pyj2qI1r1eLFy/GqVOnjNpSbdy4EWKx2NDq6ezZs7h27RqWLl2K0tJSw/Gqq6sxadIkHD58uNlBRnfddRcYY0atd1qrpc/VhHRXFBy0YPjw4Zg8eTImT56MZcuWYfv27UhISMA///lPqNVqw36//fYbRowYAYlEAl9fXwQEBOCzzz5rsQ+CTqfDf//7X/Ts2RNisRj+/v4ICAjA+fPnzV63cQ8eAIaTBd+7gX8Rbm4U/fXr18EYwwsvvICAgACjH76vQlFRkRW/nbb75z//iW3btuGHH37AkiVLsGzZMuzbtw8hISFme6S11o0bN3Ds2DEsXrzYpD9kcHAwtm7dCpVKheTkZMTExODJJ5/Exx9/DAAmvf+a4k/+Td9086U7LQW3Hn30UQgEAkN5clPV1dWYNWsWFAoFfv311xbXY0l77+eYMWNw0003WVxnazXtGzl16lTs3r0bFRUVOHz4MB566CFkZmZi1qxZrXr88cHalvow3nfffaiursaqVauwZcsW3HPPPTh+/Djmz5+P2NhYDB48GAcOHMDDDz9s1e0KhULDa0Pjn8TERMM+mZmZ6Nmzp8l1G/ffsSeBQIBly5bhl19+MZS08FP2brnlFrvdrkajweTJkyGTyfDJJ59g/vz5eOCBB7Bv3z6kpaXhnXfeafdt/PTTT6itrTUbaJ0+fTo+/vhjHD58GIMHD0bv3r2xfft2Q6C7rc/xW2+9FUqlstnSRo7j8Oijj0Kj0Vicapmamor58+ejX79+ZideW6u997Ol16LGFi1aBB8fH6xfvx4//vgj5s2bh507d2L69OmIiYnBqFGjkJaWhnvuuadV92HJkiWQy+XYuXMn1q9fj1mzZll8LiuVSvz73/9GRESE0fmyoqLC7Pmy6eR1vv9R02mDLi4uVvfLlUgkCAgIMNrm4+Njto+cNfjHmkqlMrmstrbWbEle0+tbum7j47d0O0337QzHtMTWj1UPDw+T1/mEhATD5S4uLkb9wgDg2rVrkMvlCAwMNHmfVVVVZTjH8a07Jk6caLLfnj17WnUudHV1xS233IINGzbg8OHDyM7OtlhSDAB//vknJk+eDA8PD3h7eyMgIADPPfccAJgNDjaVmZmJuLg4k3N7a6Z5tvSe1l7oHEXnKGt193NUY615vbrlllsgEAiwceNGAABjDJs3b8b06dMhlUqNjnfnnXeaHO+rr76CSqWyqp9gezjqNYgQZ+fS8i4E0H/YTkpKwocffohr166hb9++OHLkCObMmYNx48bh008/RUhICFxdXbFmzRps2LCh2eO98cYbeOGFF3D33Xfj1Vdfha+vLwQCAR555BGz35aYayoNoMVGxI3xx33iiSdMvgnm2XNUu1qtxurVq/HUU08ZNT92dXXF9OnT8cknn0CtVpsdVmEt/vduKUNr3LhxuHHjBi5cuIDq6moMHDjQ0OOxV69ezR47NDQUAMw2sgZaPqHwTYrN9SdUq9VYsGABzp8/j927dzcb5LVGe+4nAERERODKlSst7tdchgsflOKzPppyd3fH2LFjMXbsWPj7++Pll1/Gzp07ceedd7Z4u4A+E04oFJr98NLY//73P6MPdPPmzcPrr7+OnJwcpKenIygoyKrfSUdrbxPpO+64A++88w5++eUX3HrrrdiwYQNmzZoFmUxmoxWaOnz4MFJSUvD+++8bbe/Zsyfi4+OtajTdkvXr10Mmk2HWrFlmL//nP/+J5cuX4/z58xCJREhMTMTq1asBWPccv3btWpuf4xEREQBg9jmenZ2N5ORkyGQy7Nixw6rhQs1pz/1s7rWoqa1btxo9fxYuXIgPPvgAN27cQE5ODqKiohAVFdXq9YeEhGDChAl477338Oeff+Knn36yuO/DDz+MNWvW4JFHHsHIkSMhk8nAcRyWLFli9nzZUhCpLSydg9sqJCQEgH6ACf+44eXn5xtlHVu6/sGDB8EYMwrS8MMb+PNV49tpKj8/H76+voZsvc5yTEvs9Vi1pHEFCE+n0yEwMNAoa7sx/sM7/7hdt26d2aEXTb/cbMnSpUvx+eef46WXXsLAgQONfg+NpaWlYdKkSejTpw/ef/99REREQCQSYceOHfjvf/9r8nyyx3MJsM172ragcxSdo6zV3c9RjbXm9So0NBRjx47Fpk2b8Nxzz+Gvv/5CVlYW3n77bZPjvfPOO0ZfrDfW1gQJaznqNYgQZ0fBwVbQaDQAGjKWfvrpJ0gkEuzevdvoTeuaNWtaPNaPP/6IpKQkw4mSV1FR0aYGwHFxcQD0AZPJkyeb3Sc2NhaAPhhnaR97Ki0thUajMRv0qKurg06na3dAZMOGDYiLi8OIESMs7iMUCo1ORvw3ky39ToYMGYJVq1aZNJrng25Nv7Frii/lbrqfTqfDHXfcgf3792PTpk0YP358s8exVlvvJ6DPwGzp/gD6ASOXLl0yexkfXLTmTRnfhN6aqYQAkJWVhUOHDmHkyJEtvoG19CEpPDzcJOvDVqKioswOdTEXcPXx8UFFRYXRNrVabdXvorlp3v369cOgQYOwfv16hIeHIysry5A9ai+FhYUAzAc26+rqDK+hbZWfn4+DBw/irrvuajZQ4OHhgZEjRxr+v2/fPri5uWH06NHNHn/IkCGG9gr86yVg/XOcL0dpul9paSmSk5OhUqmwf/9+QyCkvdp6Py29Fplj6fkTGxtr9Dtqi6VLl+Lee++Ft7c3ZsyYYXG/H3/8EXfeeSfee+89w7ba2lqT540l/GvQ9evXkZSUZNiu0WiQkZGBAQMGtO0OtAP/2nzy5EmjQGBeXh5ycnJabHOQmJiIr776CpcvXzb6G/39999Gxw8LC0NAQIChnK+x48ePG50jOssxLbHnY9VacXFx2LdvH0aPHt1sAIB/zxYYGGiT92NjxoxBZGQkfv/9d6MP4U1t27YNKpUKW7duNcqcaU0ZM3/ebxrwbTzp01nROYrOUa3Rnc9RjbX29Wrx4sV48MEHceXKFWzcuBHu7u6YPXu2yfGkUqlDPo8SQiyjsmIr1dXVYc+ePRCJRIape0KhEBzHGb3JyMjIwC+//NLi8YRCocm3E5s3b25xwqElgwcPRkxMDD744AOTkxF/O4GBgZgwYQK++OILs4GH4uJio/+npaUZ9Yxor8DAQHh7e2PLli1GpdlVVVXYtm0b+vTp065v086cOYPLly83W07TVHFxMd5++20MGDDA6AQll8uRmppqlNY+d+5ciMVirFmzxuibQL70gu9xWFtba7YP3quvvgrGGKZNm2a0/eGHH8bGjRvx6aef2m0SlqX72fRvDuj75Z06dcpknebMmDEDOTk5Jo95lUqFr776CoGBgRg8eLBhe+O+jE1vE7Cu7LasrAy33nortFotVq5c2eL+jjBjxgz89ddfRhPXiouLzWaTxMXF4fDhw0bbvvzyS6sC5R4eHs2WXtx+++3Ys2cPPvjgA/j5+WH69OmGy+rq6pCammp1QNYafDbADz/8YLT99OnTuHLlCgYNGtSu4//www/Q6XSt6t149OhR/Pzzz7jnnnuMsibz8/ORmppqNB1z8eLFAGD0pY1Op8OaNWvg6+uLIUOGANA/Bpv+ferq6vDWW29BJBIZvbmvrq7GjBkzkJubix07dpgtN7cFc/ezta9FHe3mm2/Giy++iE8//bTZjHFz58uPP/7Y6i+Thg4dCj8/P6xatcrow//69ettXkJk7nFlTt++fdGnTx+T5/pnn30GjuNw8803G7ZZOh+5uroaeskC+nP9559/jrCwMIwaNcqwfeHChfjtt9+QnZ1t2LZ//35cvXrVqM1AZzmmM1u0aBG0Wi1effVVk8s0Go3h/dnUqVMhlUrxxhtvmH2smDs3N4fjOHz00Ud48cUXcfvtt1vcj8+Wafx8ksvlVn2pzZs6dSpyc3OxdetWw7ba2lqsWrWqVWtuCZ2j6BxF5yjbn6PaorWvVwsXLoRQKMT333+PzZs3Y9asWfDw8DBcPmTIEMTFxeHdd981O5W6pdc/c+dEQohtUOagBTt37kRqaioAfR++DRs24Nq1a3jmmWcMPRNmzpyJ999/H9OmTcPSpUtRVFSE//3vf+jRowfOnz/f7PFnzZqFV155BcuXL8eoUaNw4cIFrF+/vs3fcgkEAnz22WeYPXs2EhMTsXz5coSEhCA1NRUXL17E7t27AehLLMeMGYP+/fvjvvvuQ2xsLAoLC3Hs2DHk5OTg3LlzhmNOmjQJAKwaSrJu3TpkZmYaSkkPHz6M1157DYA+QBEVFQWhUIgnnngCzz//PEaMGIE77rgDWq0Wq1evRk5ODr777jujY27bts2wnrq6Opw/f95wzDlz5ph8k8YHXpp7UzZ+/HiMHDkSPXr0QEFBAb788ktUVVXht99+MyoP2rJlC5YvX441a9YYGt4GBwdj5cqV+Pe//41p06Zh3rx5OHfuHFatWoVbb70Vw4YNAwAUFBRg0KBBuPXWW9GnTx8AwO7du7Fjxw5MmzbN0JAXAD744AN8+umnGDlyJNzd3U1+B/PnzzecUOVyuSHziy99+eSTT+Dt7Q1vb2/885//bPX9HDVqFAYNGoShQ4dCJpPh9OnT+PrrrxEREWHoQdSc//u//8PXX3+NW265BXfffTcGDRqE0tJSbNy4ESkpKfj222+N3lDNnTsXMTExmD17NuLi4lBdXY19+/Zh27ZtGDZsmNE3iwBw9epVfPfdd2CMobKyEufOncPmzZtRVVVleO51NI1GY/J34vF/r6eeegrr1q3DtGnTsGLFCnh4eODLL79EVFSUyWvDvffei3/84x9YuHAhpkyZgnPnzmH37t1WZRAPGTIEGzduxGOPPYZhw4bB09PT6He4dOlSPPXUU9iyZQseeOABuLq6Gi7Lzc1FfHw87rzzTqsavvPPvYsXLwLQP+f/+OMPAMDzzz9vWM+UKVPwzTffoLKyEsnJycjPz8fHH38MNzc3PPLII0bH/OSTT1BRUWHIeti2bZuhUfrDDz9sUgK9fv16hIaGYsKECWbXmJmZiUWLFmHOnDkIDg7GxYsX8fnnn2PAgAF44403jPZ99tln8c033yA9Pd3Q02fu3LmYNGkS3nzzTZSUlGDgwIH45Zdf8Mcff+CLL74wZIJs3boVr732Gm6++WbExMSgrKwMGzZsQEpKCt544w2jsptly5bh+PHjuPvuu3H58mVcvnzZcJmnpyfmzZtn+P/58+cNH7ivX78OuVxu+L0PHDjQ8Le19n625rXIEWQyGV566aUW95s1axbWrVsHmUyGhIQEHDt2DPv27YOfn59VtyMSifDSSy/h4YcfxsSJE7Fo0SJkZGRg7dq1ZnuntYe5x5Ul77zzDubMmYPk5GQsWbIEKSkp+OSTT3DvvfcavoQEzJ+PwsPD8cgjj+Cdd95BXV0dhg0bhl9++QVHjhzB+vXrjUqmnnvuOWzevBlJSUlYsWIFqqqq8M4776B///5Yvny5Yb/OckxnNn78eNx///148803cfbsWSQnJ8PV1RXXrl3D5s2b8eGHH+Lmm2+GVCrFZ599httvvx2DBw/GkiVLEBAQgKysLGzfvh2jR4/GJ5980qrbnjt3bovP6eTkZIhEIsyePRv3338/qqqqsGrVKgQGBlodhLv//vvxySef4NZbb8WKFSsQEhJi6GkLNJ/R3hp0jqJzFJ2jbH+OsqS4uNjwt2wsJiYGy5Yta9XrVWBgIJKSkvD+++9DoVAYgto8gUCAr776CtOnT0ffvn2xfPlyhIWFITc3FwcPHoRUKsW2bdssrtXcOZEQYiMdNRa5s+DHozf+kUgkLDExkX322WdGI9cZY2z16tWsZ8+eTCwWsz59+rA1a9YYRp83FhUVxe68807D/2tra9njjz/OQkJCmJubGxs9ejQ7duyYxZHrmzdvNjqeuVH2jDH2xx9/sClTpjAvLy/m4eHBBgwYwD7++GOjfdLS0tgdd9zBgoODmaurKwsLC2OzZs1iP/74o8mao6KirPq9jR8/3uT3xv8cPHjQaN/169ez4cOHM29vb+bm5sZuuukmk9tmjLE777zT4jGb3m+tVsvCwsLY4MGDm13no48+ymJjY5lYLGYBAQFs6dKlLC0tzWQ//nHQ9HZ0Oh37+OOPWa9evZirqyuLiIhgzz//PFOr1YZ9ysvL2W233cZ69OjB3N3dmVgsZn379mVvvPGG0X4t3UcALD093bAv/zc399P072Tt/Vy5ciVLTExkMpmMubq6ssjISPbAAw+wgoKCZn+PjZWXl7NHH32UxcTEMFdXVyaVSllSUhLbuXOnyb7ff/89W7JkCYuLi2Nubm5MIpGwhIQEtnLlSlZZWWm0b+P7JxAImLe3Nxs0aBBbsWIFu3jxotXrs6XW/L3Onz/Pxo8fzyQSCQsLC2OvvvoqW716tcl+Wq2WPf3008zf35+5u7uzqVOnsuvXr5u8ZvCvBY2fT1VVVWzp0qXM29vb7OOAMcZmzJjBALCjR48abecfT41voznN3e/Gampq2CuvvMISEhKYm5sbk8lkbNasWezMmTMmx4yKirLqd8kYY6mpqQwAe+yxxyyusaysjM2dO5cFBwczkUjEYmJi2NNPP23y2GKs4W/Z9HYUCgVbsWKF4Rj9+/dn3333ndE+J0+eZLNnz2ZhYWFMJBIxT09PNmbMGLZp06ZW3cemfy9z5x/+p/Hfydr72ZrXoo4wfvx41rdv32b3MXfOKy8vZ8uXL2f+/v7M09OTTZ06laWmppo8R/jf34kTJ8we+6OPPmJRUVFMLBaz4cOHsz///JMNGTKETZs2zbCPuXPrnXfeyTw8PEyOZ+5cb+lxZcmWLVtYYmIiE4vFLDw83OR80vh+mTvvvfHGGywqKoqJRCLWt29fk8cqLyUlhSUnJzN3d3fm7e3Nli1bZvZ1vrMc095aeqxaekzwvvzySzZkyBDm5ubGvLy8WP/+/dlTTz3F8vLyjPY7ePAgmzp1KpPJZEwikbC4uDh21113sZMnTza7PkvvDa25H1u3bmUDBgxgEomERUdHs7fffpt9/fXXJo/bqKgoNnPmTLPHvXHjBps5cyZzc3NjAQEB7PHHH2c//fQTA8D++usvw3533nmn0esc//x65513TI4JgL344osm+9I5yvh26BxlP93hHGXpflv6u06aNMnovlv7erVq1SoGgHl5eTGlUmn2ds+cOcMWLFjA/Pz8mFgsZlFRUWzRokVs//79Jr+zxs8DS+dES/etrZ+r+d9fcXFxi7dDSFfBMUadNwkhpCOsXbsWy5cvtyqryFbmz5+PCxcudIp+UIR0JJ1Oh4CAACxYsMDmJZGEdDcffPABHn30UeTk5CAsLMzRyyGk06NzFCGko1HPQUII6aLy8/Oxffv2ZntQEdId1NbWmvSE+vbbb1FWVmaxBJAQYp5SqTT6f21tLb744gv07NmTAoOEtAGdowghzoB6DhJCSBeTnp6OP//8E1999RVcXV1x//33O3pJhDjUX3/9hUcffRS33HIL/Pz8cPr0aaxevRr9+vXrNMMuCHEWCxYsQGRkJBITEyGXy/Hdd98hNTXV7NAtQkjL6BxFCHEGFBwkhJAu5tChQ1i+fDkiIyPxzTffGDUfJ6Q7io6ORkREBD766COUlZXB19cXd9xxh2F6JyHEelOnTsVXX32F9evXQ6vVIiEhAT/88IPJ4AFCiHXoHEUIcQbUc5AQQgghhBBCCCGEkG6Keg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDfl4ugFdBS1Wo09e/YgOjoaQqHQ0cshhBBCCCGEEEIIsQmtVouMjAwkJydDJBI5ejmkk+k2wcE9e/Zg9uzZjl4GIYQQQgghhBBCiF1s27YNs2bNcvQySCfTbYKD0dHRAPRPlLi4OMcuhhBCCCGEEEIIIcRG0tLSMHv2bEPsg5DW6DbBQb6UOC4uDvHx8Q5eDSGEEEIIIYQQQohtURs10hY0kIQQQgghhBBCCCGEkG6KgoOEEEIIIYQQQgghhHRTFBwkhBBCCCGEEEIIIaSbouAgIYQQQgghhBBCCCHdFAUHCSGEEEIIIYQQQgjppig4SAghhBBCCCGEEEJIN+Vij4P+faMUXx6+gQu5chQpVPji9iGY2jfY4v6PbzqHn07nmGzvGeiJvY+NBwD8d+9VfLj/mtHlsQEeOPD4BJuunRBCCCGEEEIIIYSQ7sIuwcGaOi3iQ6S4ZWgE/vHdqRb3f3FOAp6e3tvwf62OYfqHRzCjf4jRfr2CPPHdvTcZ/u8ioMRHQgghhBBCCCGEEELayi7BwaTegUjqHWj1/lKJK6QSV8P/d18sgFxZh1uGhhvtJxQIEOglsdk6CSGEEEIIIYQQQgjpzuwSHGyvTSeyMaaHP8J93I22Z5RUY/jr+yB2FWBwpA+emtYHYd5uZo+hUqmgUqkM/6+qqrLrmgkhhBBCCCGEEEII6Wycri63sLIWv18txuJhEUbbEyO98e4tA/HN3cPx2rz+yC6rwaLPj6FKpTF7nDfffBMymczwM3z48I5YPiGEEEIIIYQQQgghnYbTBQd/PJUDqcQFyQnGA0ySegdi5oAQxIdIMb5XANYsH45KZR22n88ze5xnn30Wcrnc8HP8+PGOWD4hhBBCCCGEEEIIIZ2GU5UVM8aw+WQ25g8Kh8il+bilzM0VMQEeyCitMXu5WCyGWCw2/N/T09OmayWEEEIIIYQQQgghpLNzquDgXzfKkFFaY1JSbE61SoPM0hrMHyRucV9CCCGEEEIIIcQacrkcNTXmk1AAwMPDA1KptANXRAgh9mWX4GC1SoOM0mrD/7PLanAxTw5vdxHCvN3w9q5UFMpr8f7iRKPrbTqZjcQIb/QO9jI55uvbL2FSfBDCvN1QpKjFf/deg1DAYc7AUHvcBUIIIYQQQggh3YxGo8GqVatQXV1tcR9PT0+sWLECLi5OlWtDCCFtZpdXs/M5cty66i/D/1/bfhkAsHBwON5bNBBFlSrkViiNrlNZW4edKfl4cXZfs8fMl9fiX9+fQUVNHXw9RBga7YMtD46CnydlDhLiCIqySlQUlsE7yBdevvTNKSHEudXW5qNGmQF3t2hIJCGOXg4hhBAnJRQKIZPJmg0OSqVSCIXCDlwVIYTYF8cYY45eREe4fPkyEhIScOnSJcTHxzt6OYR0aimHzuDAmh1gjIHjOExcPgP9xg9y9LIIIcSsvLxNuJy6EoAOgADxfV5HaOgiRy+LEEKIk7p+/TrWr19v8fJly5ahR48eHbgiQlpGMQ/SHpQHTQhpFUVZpSEwCOgHCR1YuwNR/eMog5AQ4nRqa/MbBQYBQIfLqSvh6zuWMggJaQXqwUa6k7i4OAQEBaOwoAACrmG7jgFBwcGIi4tz3OIIIcQOWh0cLC8/jqysVahUpECtLsKA/p8hICDZcHlR0W7k5m5ApSIFGk0Fhg/bBi+vBKNj5OZ+j4LCbVAoLkKrrcK4sWfg6tr8m4kbNz5EesZHRtvc3WMxcsTe1t4FQkg7VBSWoWnCMdMxyAvLKDhICHE6NcoMNAQGeToolZkUHCTEStSDjXQ3HMchvO8wFBduM9ou4ICIvsPAcZyFaxJCSOckaO0VtLoaeHr2Qe/eL5m/XFsDmfdQ9OjxVDPHqIWf7zhERz3Qqtv28OiJMaP/MvwMGbyxVdcnhLSfd5CvyTZOwEFmZjshhDiau1s0TN/uCODmFuWA1RDSOfE92JpDPdhIVzO0fx+U6Nyhq/9OXMeAEp07hvTv49iFEUKIHbT6qz1/vwnw95tg8fKQkPkAAKUyx+I+kRHLAQDl5X9Z3MccjnOBWBxg1b4qlQoqlcrw/6qqqlbdFiHEPDdPNwhdhNBqtAD036xOvGsGZQ0SQpySRBKC+D6v43Lqs4Zt8X1ep6xBQlqB4zgkJSU124MtKSmJsqlIlxLq7Q5dcF8Iik4A0GcNsuB+CPV2d/DKCCHE9lqdOehINTUZOPLHSPx5dAJSLj6K2to8i/u++eabkMlkhp/hw4d34EoJ6bqyUtINgUEAGDhlKA0jIYQ4tcDAGYZ/SyRhNIyEkDbge7Dpmowy1DEgIIh6sJGuiZMGoVinDwYW69yxJ4chvcRyeT0hhHRWnSY4KJUNRELCf5CYuAZ9er+CWmU2Tp1aDI3GfEbgs88+C7lcbvg5fvx4B6+YkK7p+snLAACxhwQAUFFY7sjlEEJIi5S1DdUManWJSd9UQkjL+B5sgibJgdSDjXRl6aU1OFUXDjcvb6gDE6DWMDz/ywU6jxBCupxOExz095uAoMAZ8PLsAz+/cRg48GvUaSpRVLTD7P5isRhSqdTw4+np2cErJqTr0Wq0uHHmGgBg6MxRAIDizAJHLokQQlqkVGYa/q3TqVBXR19qENIW1IONdCeM6bME83VSLLz9HqxcMgFiFwH+vF6KX87mOnp5hBBiU50mONiUq6sU7u4xqGn0hp8QYl85qZlQ1dTCTeqB/hOHABxQXVGF6grq6UkIcV5KZbbR/1WqfAethJDOLdTbHYk3jTFkDwo4IPGmMdSDjXRJRQoVatRaCAUcInzcEeXngX9N6gkAeO23y6ioUTt4hYQQYjudNjio0VRDqcyCWGTdgBJCSPulnUwFAMQN7gWxmxg+wX4AKHuQEOLclMoso//X1lJwkJC2unv6CJQyDwD6rMHbk6mvN+mabhTrewtG+LhB5KL/2Hzf2Fj0DPREabUab+9KdeTyCCHEplodHNRoqqFQXIJCcQmAfiqxQnHJMBykrq4CCsUlVFfrSw9ram5AobgElarYcAyVqhgKxSVD1l9V9RUoFJdQV1dh2Of0mduQnfOt4f/Xrr2B8vK/oVTmoEJ+ChcuPACOEyIoaHbr7zUhpNV0Oh3STl8BAPQYqi8fCogKBgAUZVFwkBDivBqCg/p0p1rKHCSkzVQaHU6ow1Chk+BkXTiyy5WOXhIhdsEPHonx9zBsE7kI8Pr8/gCA749n40RGmUPWRgghtubS2isoFBdw+swyw/+vXX8dABASvAAJCe+guGQfLl9+2nB5ysUVAICY6H8hNlb/79zcDUjP+Miwz+nTSwAA8fFvIzTkZgD6N/J16oaeQLWqAqRcfAR1dRUQiXwhkw3B0CE/QiTya+1dIIS0Qf71HNTIqyFyFyM8PhoAEBgVjKt/XURxBgUHCSHOiw8Oenr2QVXVZagoc5CQNiurViNfJ8UWVT8AQFpRFeICqLc36XrSS/Rtc2L8jR/fw2N8sXhoBDaezMbKLRfw28NjDZmFhBDSWbU6OOjjMwKTJqZZvDw05GZDgM+S2NgVhkChJaNHHTb6f/9+H1nYkxDSEdJO6rMGYxN7QegiBAAERtdnDlJZMSHESTGmRW2tvnG8t/dwVFVdpsxBQtqhrNq4z1pafeklIV2NIXMwwMPksmdn9MG+y4W4WliF9/dewbheAYjx90CIzK2jl0kIITZBX3EQQlrEGMP1U/q+KnxJMQAEROqDg5XFFaitprIiQojzqa3NB2MacJwIMmkiAFDmICHt0DQ4eL2IhpKRrulGfXAw1t80OOjtLsLKmfEAgM8P3cDSVX9j9FsHsPFElsm+hBDSGbQ6c5AQYh9yuRw1NTUWL/fw8IBUKu3AFTUoziyAokQOF5ErIvvFGrZLPN0g9ZehskSO4qxCRNSXGxNCiLPgS4rd3MIhcQsDQD0HCWkP08xBCg6Srkej1SGrVP++PMZMcBAARsT6Gv1fx4Dnfk7BuF4BlEFICOl0KDhIiBPQaDRYtWoVqqstl+Z4enpixYoVcHHp+Kft9fopxdED4uAqdjW6LCA6RB8czCyg4CAhxOk0BAcjIBGHAABUqkIwpgPHUQEFIa1VWh8c7BXkiauFVUgrqgJjDBzHOXhlhNhOdrkSGh2DxFWAYKnE7D4ZpaZf6msZQ0ZJDQUHCSGdDr0rJsQJCIVCyGSyZveRSqUQCoUdtCJjaaf0/QbjGpUU8wIjgwAARTSUhBDihBqCg5EQiQIBCMBYHdTqEscujJBOqqxaBQAYEuUDAQcoVBoUK1QOXhUhtsUPI4n284BAYD7wHePvgaYXCTkO0f7u9l4eIYTYHAUHCXECHMchKSmp2X2SkpIc8q18WV4JyvJKIHQRIiaxp8nlAdH6TJziTjiURFFWiezLGVCUVTp6KYQQO1HWZgMA3CSREAhcIBYHAqDSYkLaii8rDpJKEOWnL7e8TqXFpIu5UT9oJ9bMMBJeiMwNby7oj8Zvz99Y0I+yBgkhnRKVFRPiJOLi4hAUGITCwkKgcQyQAUFBQYiLi3PIuviS4oi+MRC7iU0uD4zSZw6W55eiTqWGq1jUoetrq5RDZ3BgzQ5DKdTE5TPQb/wgRy+LEGJjSmUmAH3mIACIxSFQqQr0Q0mkAx25NEI6pdIqfXDQz0OEuAAPpJdUI62oCqPi/B28MkJsxzCp2EK/Qd7iYZGID5Fizid/AgCS+gTafW2EEGIPlDlIiJPgOA4D+/Q3DgwCAAck9unvsF4+afXBwbghvc1e7uHtBXeZJxhjKMku6siltZmirNIQGAT005gPrN1BGYSEdEFKZX3moFsEAEAi0Wc7U+YgIW3DZw76eogRF+gJAEgrttwzmZDOqCE46NnivgPCvTEwXN8eaP/lzvFemBBCmqLgICF20NZy1b4D+kGoAsDqNzBAqAISBvSz+RqtUVlcgaLMAnAch9hBvSzuFxgdDAAo6iSlxcVZhYbAII/pGOSFZQ5aESHEHurqKqDR6F+H+cxBw1CSWgoOEtIWZTV8cFCEuAB94OR6EZUVk67F2sxBXnJf/XvhvZcK7bYmQgixJyorJsTGUg6dwf412wGGVperSv1kiJSGIl2Vp9/AASOGjYDUr/lhJfZyvX4QSVifSLhLLb85CogMQsa56yjuBENJ6lR1OPHrEZPtHMdBFuTrgBURQuyFH0YiEgVAKNT3gBJT5iAh7cJnDvp5iiBy0ecZpFHPQdKF1Kg1yJfXAgDimuk52NiUhCC8s/sK/rhegmqVBh5i+phNCOlcKHOQEBtSlFVi/5odhsy/tpSrumlFEOrfj0Co4jB+5kQ7rNQ6aaf0JcU9hphOKW4ssH4oibNnDmo1Wmz/5EcU3MiD0NXFqFRbKHKBRlXnwNURQmyt8aRiHmUOEtJ2Gq0OFTX6c6WPuwg96jMH8+W1qFJpHLk0Qmwmo6QGAODj7gpvd+t6afcM9ESUnzvUGh2OXCu25/IIIcQuKDhIiA1VFJYB7ShX1Wl1KMoogKRcAIEakJRxDsvGq66oQt41fa+uWAv9BnkB9UNJSnOKoNVo7b62ttDpdNj9+S/IPJ8GF5EL5j+1FMvffxhzHlsC/4ggaFR12PLuBlSVKxy9VEKIjTTtNwhQ5iAh7VFe0/Almo+7K2TurvD31A8ru0HZg6SLaG1JMaCvQJkSr38/vIdKiwkhnRAFBwmxIW8zZamcwPpy1bK8EmjUdfBgYiQGxsNVySH3apatl2mVtNNXAAYEx4XBy1fa7L5Sf2+I3SXQaXUozXW+b0uZjmH/19tx7cRlCIQCzPrXLQjrFQkvXyliBvbA/KeWQhbkA0WJHL++/wNUNbWOXjIhxAYaMgejDNsMmYOqIuh0lOlESGvwJcXe7q5wEeo/RvBll1RaTLqK9BL9Y9maYSSNTUnQBwcPpBZBo9XZfF2EEGJPFBwkxIa8fKXwCW4UCOSAiXfNaDG4xitIywUABMaEIDw+GgCQe8UxwcErx1IAAOHxUS3sqf+2NKB+KEmxk5UWM8ZweMMeXDpyDhzHYfqDCxDVP85oH3epB+Y/sRTuMg+UZBXit482Q1NHQQNCOjtDcFDSkDkoEvmD41wB6KBW01RJQlqjtFoFQD+MhNcjkIaSkK7lRn3mYKyV/QZ5Q6J84OPuioqaOpzMLLfH0gghxG4oOEiIjamUKsO/g+PCrB5GAgCFN/SDSIJjwxDWS/9hNv9aDnS6jv328eye48i7qi/HO7X9GFIOnWnxOoGR9ROLnWwoyV9bDuHs3hMAgCn3zkaPoeb7J8oCfTD38VshkoiQczkTe77cisoSeZumThNCnIMhOOje0HOQ4wQQi/XZHVRaTEjrGIaRNAoO8hOL04qqHbImQmytLWXFAOAiFGBin/rS4otUWkwI6VwoOEiIDdVWK1Ejb3hzXJJV2KoefAXp+uBgUGwo/CODIJKIoFaqUJLdcdktlSVyHFq/x/B/a4eqOGPm4Kkdx3D81z8AABNun4b4MQOa3T8wKhgz/3UzBEIBrh2/hDWPf4yf3/oOax772KoAKSHEeeh0akPwz00SaXQZDSUhpG3K64OD5jIHqayYdBVtDQ4CDaXFey8XgDXpQ04IIc6MgoOE2FB5fikAwMPbExIPN2jUGquDZXUqNUrrg4DBsaEQCAQIqc8e7KjSYsYYfl+3y3S7FUNVAqPqg4NZhR2e6WjOhYOn8cfG/QCAUTcnYeDkoVZdL7JvLMbdOsVom6UAqaKskjILCXFStbW5ABgEAjeIRP5Gl4kl+tcryhwkpHVKDcFBsWFbXH1wMKO0utP3WZPL5cjPz7f4U1lJ5/uurrxabZjIHe3X+uDguF7+ELsIkF2mxJVCGnJHCOk8XBy9AEK6krK8EgCAb6g/XESuSD97DXnXshEcF9bidYsy9N8wevp4wbO+R2FYr0hknk9D3pUsDEoebte1M8ZweP0epJ+9ZnKZNUNVvIN94SJyhUZdh4qCMviG+je7vz2lHkvBgW92AACGzhyFYbNHt+r6vuEBJtuYjuGnN9chekAcQntFQFFaiT83HQBjDBzHYeLyGa0qISeE2FfDMJIIcBxndBmfOVhLmYOEtIq5suIQqQRurkIo67TIKqtBbEDrhjg4C41Gg1WrVqG62nJ5tKenJ1asWAEXF/oI1VXx/QZDZRK4iYStvr67yAVjevhjf2oR9l4sRJ9g6/qOE0KIo1HmICE2xGcO+ob6I6y3voyN793XEr7fYFBsqGEbf4zcK1l2LU1gjOHPTQcMvfnixwwAJ9B/mOYEnFVDVQQCAQIi9aUURQ4sLU47fQV7vvwVYMCASUMw6pakVh/DO8jXJJgAAPKicpzbdxI7P92CPzbuN/xNrC29JoR0nBpDcDDS5DKxhJ9YTMFBQlqDzxz0aRQcFAg4xAXyE4s7b99BoVAImUzW7D5SqRRCYesDRqTzMJQUt3IYSWMNpcXUd5AQ0nlQcJAQG+KDgz4h/gitLwnOu5ptVWCPn1TcODgYGBMCoasLlIoaw7Ht4a8th3BqxzEAwMS7piP5vjlY/t7DWPjMbVj+3sNWZ8QF8KXFDhpKknUxHTv/9zOYjqHPqP6YcNs0s0G+lnj5SjFx+QyjAOmYJZMw46EFSEweDm8zWZTWlF4TQjpOrVL/xYy54CBlDhLSNmVVppmDQMNQks48sZjjOCQlNf+FYlJSUpveV5DOI71E/xhuS79B3qT4IHAccD5HjgJ5ra2WRgghdkU58YTYUFm+vqzYJ8QPAVHBhsBeRWEZfIL9mr0uP4ykcQmyi6sLguNCkZuahbyrWXYp1T2+9Q/D0I7xy5LRP2kIAH2ArKVswaYC64eSFGV2/Afu/Os5+O3DTdBqtIgb0htT7p1tCO61Rb/xgxDVPw7ywjLIgnwNv4uewxMwePoIrHnsY6OgrzWl14SQjlOjzARAmYOE2FKZmYEkANAjoGsMJYmLi0NAUDAKCwrQ+C2EjgFBwcGIi4tz3OJIh7hRzA8jaXt5fICXGIMivHE6qwJ7Lxfi9hFRtloeIYTYDWUOEmIjWo0W8qJyAPU9B11dEFyfBdhSaXG1vAqKEjnAAYHRIUaXNS4ttrVTO47h2E+/AwDGLJ6ExHb2NTRkDmYWduiEtuLMAvz63g+oU9Uhsm8Mpj0wHwJh+1/evHylCI+PNgmS8pmFBpx1pdeEkI7TkDkYYXIZnzmoVpdAp1N16LoI6cxKLQQH+aEknTlzENBnD4b3HYam3y0KOCCi7zDKGuwG+LLi2HZkDgLAlAT9e+K9l6i0mBDSOVBwkBAbqSgsA9MxiCQieHjr3yQ3Li1uDt9v0DfEH2I3sdFlob3qg4NW9i601tm9JwzTfEcuGI8hM0a2+5h+YQEQCAVQ1dSisqSi3cezRnl+Kba8swGqmlqE9AzHrBW3wMXV/knR/cYPQp+R/QAAAycNoWEkhDgRxhiUtfrXTHc304wNV1dfCAT611qVij64EWINnY6hvKa+rNjTfFlxWnFVh345aA9D+/dBic4duvq7oWNAic4dQ/r3cezCiN3pdKyh52C7g4P6voPH0kqgqK1r99oIIcTe7PIJOjc1E6d2/oWijHxUV1Rh1r9uQdyQ3hb3v34yFecPnEJJViG0dRr4hgVgxPxxiOrfkLp/YtufuH4qFeX5pXBxdUFIz3CMWTQJPiHNl2oS0lEa9xvkv1kO7dm64KC5qcYhPcLBCTgoSuSoLKmA1N+73Wu9cPA0Dn23GwAwfM4YDJ87tt3HBAChixD+4YEoyixAcWYhZAE+NjmuJZUlFfj5P99BqahBYFQw5j62BK5iUctXtBH/yCDgWAqUVcoOu01CSMvUdaXQamsAcJBITF9XOY6DWBwMpTITtbX5ZkuPCSHGFLUaaOsjZk0zB6P93SHg9PsUV6kQ6CVxxBJtItTbHYnDxyDn5B4A+qzBuoB4hHq7O3hlxN7yK2uh0ujgIuAQ7uPWrmP1CPRErL8HbpRU49DVYswaENrylQghxIHskjlYp6qDf0QgJtw+zar9c69kIbJvDOY8tgRLXr4X4fFR2PrfjUYTT3OvZGLgpKFY/MJyzH9qGXRaHba8sx51KrU97gIhrVaW19BvkBfSIxzg9FmF1XLLpTYFZiYV80QSkaHUOO9K+7MHLx05hwNrdwAAhswYiRELxrf7mI3xpcVFGfbt5VVdocDPb69HVZkCPiF+mPvErRC7d+yHEWmANwCgsriiQ2+XENI8ZX2/QYk4BAKB+S8M+NJilcpx09UJ6UxKq/Ul+J5iF4hdjCf2il2EiPTVB886e2kxAMwbPxjFOv39Kda541iJK5RqrYNXRewtvb7fYKSfO1xs0J7GMLWYSosJIZ2AXYKD0QN7YNTNSegx1Lr0+/HLkjF05igEx4bCJ9gXo2+ZCO8gX6SfuWrYZ94TS5EwdiD8wgMQEBmEKffOhqK0EkXp1EycOIfy+mEkjYeGiD0k8A8PBADkX8sxez2mYw2Zg2aCgwAQZigtbl/fwdRjKdi7ehsAIHHKMIxeNNHm/XMCDENJ7PeBW1lVgy3vbIC8qBzSAG8seGoZ3KXtK/9oC1mgPjOS7zVJCHEOymYmFfP4oSQ0sZgQ6/DDSHw8XM1e3lBaXN1ha7KXjNIanKoLhwJuyJbEQq7UYOu5XEcvi9gZP6k4th3DSBrjg4MHU4tQp9XZ5JiEEGIvTtlzkOkY1LVqSDwsp3OrlfpvL8We5vdRqVSorKw0/FRVdf5vMYlzKzOUFRuXuvN9By0NFKkoKoOqphZCVxf41QcSm7LFUJJrJy5jz5e/AgzolzQY45Yl26WxdmCjoST2oFKq8Ou7P6A0pxge3p5Y8NQyeDpoEIisPnNQqagxvCYRQhxPqdS/VjYXHOQzB2tpYjEhVmkYRiI2e3mP+qEkaV0gczCjpBr5OilyQsZi5uhEAMA3RzM7fT9F0rwb/DCSANt84Two0gd+HiJU1mpwPL3MJsckhBB7ccrg4Kmdx1CnUqPnTQlmL2c6hkPr9yCkZ7ghK6upN998EzKZzPAzfHj7prAS0hzGmKHnYOPMQaBR38Fr5kuCC9P0WYOBUcEQNinTMRyjPsBYnl+KmsrWfyN/4/RV7PpsC5iOIWHsQEy8Y7rdJu75RwSB4zjUyKtQXaGw6bE16jps++9GFKbnQeLphvlPLTNk7zmC2F0CSf0XFHIqLSbEaVgTHOQzB1UUHCTEKnzmoJ+H+VL9xkNJOrvM0oahFIuGRkDiKsCl/EqczKRKga7MVsNIeEIBh0nx+s+qVFpMCHF2ThccTD2Wgr9/OYIZDy2wWCZ48NudKM0txvQHF1g8zrPPPgu5XG74OX78uL2WTAiqyhWoq1VDIBSYBKv4wF5xZgHUtaY9Mgtu6MtUzPUb5Ek83eAXHgCg5eEmTWWcT8OO//0EnVaH3iP7YdLdM8EJ7BMYBABXsSt8QvxwxS0NiasHYd+NfWb3U5RVIvtyBhRllVYdV6vRYvsnPyH3ShZEbmLMe2Ip/MICbLn0NuGHrlBpMSHOoyE4GGFxH0PmIJUVEyvI5XLk5+db/KmstO5c1pmVGTIHLQQHu1DmYHppDQAg2s8D3u4izEvUDzb65miGA1dF7M3WwUEASE7QV9TsvVRImaeEEKdml2nFbXXlr4vY//VvmPHQQkT2jTW7z8FvdyH93DXc/Nwd8GqmlFAsFkMsbih78PS0Te8IQszh+w3KAn1Msv+8/GTw8pNCUVqJgrRcRPaNMbq8oJlJxY2F9Y5EaU4xcq9kWd3PM+tiOn77aBO0Gi16DotH8n1zIBDY/zsB/8gg/Ia9yK7KxdO7n8LJf5wyylRMOXQGB9bsAGMMHMdh4vIZ6Dd+EORyOWpqakyOp9PpcHTzQeSkpEMkcsWcRxcjKCbE7vfDGrJAbxSm5znVUBJLv0eeh4cHpFLHlGIT0hGs6Tkokei/kKHMQdISjUaDVatWobracua+p6cnVqxYARcXp3prbVOlVS1lDuoDKnnyWlSrNPAQd97fRUZ9kCi6Pkh0x8ho/HAiG7tSClBYWYsgaeedxkzMU2t0yC7Tv3eKtWFwcExPf7i5CpFbocSl/Er0DZXZ7NiEEGJLTnPWvnIsBXtX/4bpD85HTGJPk8sZY/h93W6knbqChc/ebsjWIcQZlOeZ7zfIC+0VgSvHLiLvarZRcFBTp0FJlr7MwNIwEl5Y70ic338KeVb2HcxNzcS2DzZCW6dF7OBemPqPeRDYYPKaNU7Wnka2RJ8RebroDL7c8ilun3wXqsoVKM4swP4124H6L08ZYziwdgfCEqKw+puvDR++FAoFTp48iaFDh8LLywsAwIUBty1cYOjB6Az4icXyYufIHKQPsaS702qVUKuLALRQVizWZ3PU1ZVDq1VCKLTc55h0b0KhEDKZrNnXValUCqHQfGuQrqK8pvnMQW93Efw9RSipUuNGcTX6h3fOIAhjzBAc5DPIEkKlGB7ti+MZZVj/dxYem9LLkUskdpBVVgMdAzxEQgR4me+r2RYSVyHG9vTHnkuF2HupkIKDhBCnZZdIgbpWjeLMAhTXTyuVF1egOLMAlaVyAMCfmw5g9xe/GvZPPZaCPau2YuytkxEcG4bqiipUV1RBVVNr2Ofgt7uQeuwCpj0wDyKJyLCPRl1nj7tASKuU1WcO+oT4m708tKf+A2rTvoMlWYXQarRw83I3BJksCa2fWFycVWj03DAn/3oOfv3vRmjUGkQNiMP0BxdY7Gdoa5WlcqwqXgOO6TMFOcbh9RNv4suH38f3//4K+1b/ZggM8piO4fgvf8DDveGbWoVCgUOHDkGhqO9byAAfPx/EDDT98sCRGsqKKxy7kHr8h9jmdIcPsaT74rMGXVykcHX1trifi4sUQqE7AEClst90ddL5cRyHpKSkZvdJSkqyWy9fZ1HaQlkx0NB38HqxbXsOd6TSajUUKg04Doj0dTdsv2NUFABgw99ZUGvaPnmWStSdk6GkOMDD5s9lfmox9R0khDgzu6SNFKXn4ae3vjP8/8j3ewEA8WMGIPm+OaiWV0FRJjdcnvL7aei0Ovz+7S78/u0uw3Z+fwC4cOAUAOCnN9cZ3daUe2cjYexAe9wNQqxWZhhGYjlzEAAKrudAp9UZMvgK60uKg2JDW3wj4unjBVmgD+RF5ci/loPogT3M7leYnodf3v0edbVqRPSNwayHb4aLa8dliG09/wuyxbmG/zOOIVuSi1S36xgiGgQ3L3eU5hSZXC/1j/Ooc2OApWphDpg+a4bTffiSBdUHB50kc5D/ELt+/XqL+3SHD7Gk+7Km3yCgf66IxSGoqUlDbW0e3N1jmt2fdG9xcXEICApGYUEBGrft1TEgKDgYcXFxjltcBymrVgFoITgY6Im/08uQVtT64WnOgs8aDJW5QeLa8EXa1L7BCJKKUVipws6UfMxNbL4djDmU3e+80kv0vTJj/G3fimpSfBAEHHAxrxI55TUI93Fv+UqEENLB7HLWCY+Pxopvnrd4OR/w49387B0tHrO54xHiaHxZsa+FzEG/sACI3MVQ16hQnFVo6JfH9xsMimm+pJgX2isC8qJy5F7NMhscLM4swJZ3NkCtVCGsdyRmr1gEF5FrW+5SmzDG8N/UD8ExDoxrSA/kGIfjAy7gswfWguM4fc/BtTvAdAycgEP86AGorqhC5sU0CGsBbdNqDgYEBQU55YcvWX3Gp6JEDp1O1yE9HVsSFxeHoMAgFBYWAo1jgE78eyTEVhqCg1Et7ivhg4PUd5C0gOM4hPcdhuLCbUbbBRwQ0XdYt/jCpayq5czBHl1gYnG6od+gcQDHVSjAspui8P7eq1h7NKNNwUEqUXde9hhGwvP1EGFolL4sfd+lQtw1mr6MIoQ4H8d/iiWkk1MpVaiu0JfPWOo5yAk4hPbUZ7E0Li3mJxW31G+Qx/fayzXTd7Akpwhb3tkAVXUtQnqEY86ji+Eq7rjAIADsSduD00VnjAKDgD578EzxGexJ2wMA6Dd+EJa/9zAWPnMblr/3MKbcOxvznrgV//fRY+gbG28c0AIADkjs098pP3x5+kohEAqg1WhRVe4cZVQcxyHWL6JT/R4JsRVlbX1wUNJ85iAAiCX6L2pUNLGYWMHDPxTFOnfo6k9xOgaU6NwxpL91Q8I6M8aYoazYz8NyPzZ+YvH1TjyxOKO0PjjoZxokunV4JFyFHM5kVeB8TkWrj00l6s7rRrH+727LYSSNGUqLL1NpMSHEOVFwkJB2Ks/T9xv08PaE2N3y9Dq+tDjvqj44WFutREVBGQAgKK51wcGi9Hyjfpvl+aXY8p/1UCpqEBgTgrmPL4HIzXbNlK3BGMMLB1+AwMLLigACvHDwBTCm/1Tl5StFeHy00dRxNy93TFowFUKV8XWFKiBhQD+7rb09BAIBvPz1Pf4qixxfWqzVaPHn5gO4tP00hLVo6O/InPv3SIitNGQOtjy4SCLWBwcpc5C0pE6rwzu7r+J0XZihrFjAAYk3jUGod9cvEaxRa6Gq77Pn69lcz0F9YCWjtBoabdv78jlSRol+Yq25DLIALzFm9te/bnxzNLNNx+dL1HVN+i/rGOAbQNn9jmLPzEGgITj4940yyJXUM58Q4nwoOEhIO5XnNz+pmNc4OMgYQ2G6/sOoLNAHbp4tf7CQy+Wo0dbC1c8NKoEGKScvID8/H1dTUvH9O2tRVVWFgMggzH9iabNBSntRa9XIkmdBB/MfBnTQIbsyG2qtutnjSP1kGDFshNG2EcNGQOrnvNPdDENJiiscuo6SnCL88PLXOPnbUXDgEOoW0JA9yAE9gmOc+vdIiC3wA0la6jkIABLKHCRW+uJQGlILFFCK/aAS6V9HmZsP7p4+ooVrdg1l9VmDIhcBPESWS15DZW5wcxWiTsuQVVbTUcuzKUNZsZnMQQC4c1Q0AGDb+TyUVqnM7tMcjuOgCuhj1LsS0AebN+ZKccfXx/H98aw2HZu0TZVKgyKF/vcdbafgYLS/B3oGekKjY/j9imnvbUIIcTTqdEtIO7U0qZgXFB0KoYsQNfIqyIvKUZimLykOsqKk2KiBtQyADPh1b6O+RzJAKBVg9orFkHi6tfm+tIfYRYwT951AcU2xxX0CPQIhdmk5o3HSvGQcOH4IAODn64dJ85Jttk57kAXyE4sdkzmo0+lwZtffOPbT79BqtJB4umHiXTPQY2gffPH5FygsKoSwFii9mI/K4ooWJ2PL5XLU1Fj+UOfh4QGpVGrxckIchTEtlMocANb1HBRT5iCxwvUiBT7afx0A8OKcfrie5obcC8fgHty325R/lhlKikXN3meBgENsgAcu5lUirbgasQG2H+5gT4yxhrJif/Nf3CZGeGNAuAznc+RYdeQGxvUKQIy/B0Jk1r3/+u18Hj45qcB0kTv8uBoIOH3WYClzR45WipxrJThyrQQrt1zA8BhfzOgfUj8MpeO/+O0u+CE0/p4iyNzs15JnSkIQrhVVYc+lwjb1rCSEEHui4CAh7dQwjKT5zEEXkQsCY0KQfy0HedeyDcNIguNafnPQYgNrBvgHB8DT26t1i7exCFkEImQtZ+u0hOM4zJk7B2fPncWcuXOc/sMXP5TEEZmDlcUV2LNqq6EPZfTAHph89yx4eOs/kCVPTcbOnTvhXiZEZV4J9n79GxY8uQxc05SFejRJkXRmKlUhGFOD41wgFge3uL8hc1BVYO+lkU5Kq2N46sfzUGt1SOodgLmJoVhXW4dPTiowjfN29PI6DB8cbG4YCa9HoGd9cLAKUxBk76XZVLFChRq1Vj9oxtd8cJDjONw5MhqPbz6Hzw/dwOeHbkDAAW8u6I/Fw5pvZ7DpZDae+ek8dIyD3LsXAirPAtBnDQ4aPgaPDeuPnSkF2JVSgAu5cvx1owx/3SjDi1svYnCkD6b3C8a0fsE07dbG+AE69iop5k1JCMKnv6fh0JViqDRaiF1o8AwhxHnQJztC2smQORjafOYgAIT2itQHB69kozC9PjhoReYg38B6/fr1FnYAJk+e7PRBtNYYMWIEduzY4ehlWIXPHKzswOAgYwyXjpzD4fV7oK5Vw1XsinFLp6Dv+EFGj4PY2Fg89NBDqCgsw/rnv0TOpQxcOHgaAyYNMXtcmqRIOjO+36BEEgaBoOW3OHzmoEajgEZTBReXzpXlROxv3bEMnM6qgIdIiNfn6wc68QEyPmDWHZS2IjgYF9B5h5JklOqz5kO93ZoN3AyJ8jH6v44Bz/2cgnG9AuAOtdns+23n8vDFoTRImCvmDo/Dq3P74ctVBSguLEBAUDDunj4CHMfhoaQeeCipB7LLarArpQA7U/JxOqsCpzLLcSqzHK9tv4wB4TJM7xeC6f2C7VYG253Yu98gb2C4NwK9xChSqPDXjTKM7xVg19sjhJDWoOAgIe2g1WgNpaQtZQ4C+r6Dp7YDaaevoLZKCYFQgIBI675Vj4uLQ1BgEAoLC42n0DIgKIgaWDuSIXOwg8qKayqrsX/Ndtw4fRUAENIzHMn3zYF3kK/F63gH+WLULRNxeP0e/LFxH6IGxBp6JTbWYiAawPDhw1FQYDnTisqOiaM09BtseRgJALi4eMDFRQqNphK1qnx4uvS05/JIOzii3UFOeQ3+s/sKAOCZGfEI9daXjfq61wcHa7pPcLCsWt+PrTXBQT4bqzPJsDJIlCdXmmzTMoajV4uQfmizxS/Y5kgAuEjw3OxZcBEKMC15Cnbu3IlpyVNMvuCN8HXHfeNicd+4WOTLldidUoCdKQU4kVGG8zlynM+R4+1dqegT7IUZ/fWBwp5Bjq0g6Uwav6Zk5eTCj6tGuFiF/Hx9mwl7vKYIBBwmxQfh++NZ2HupgIKDhBCnQsFBQtqhsrgCOq0OrmJXePq2/AYitEc4AKC2Sv+m0j8iCC4i63qbcByHgX36Y09RYZMLgMQ+/btU1mBnw/fwUypqoFKqILbjpOi001ew/+vtUCpqIBAKMHLhBAyePgICQcvzpRInD8P1E5eRdzUb+1b/hgVP3Wa2vLi5QHRgYCD27t1LZcfEKSmV+umh1gYHAf3E4ipNJVS1+fD0oOCgM3JEuwPGGJ7bkoIatRbDo32xbHjDY4qf1kuZg+b1CGzIHGSMdar3J+mlzQ8j4cX4exh6BTb2+E8XsMRLiOa6D4YG+hoep3x2f0tCZG64a3QM7hodg2KFCnsu6UuPj6aVIrVAgdQCBd7fexVxAR6Y0T8E0/oFIyFEioLKWqSXVLeqJ2J30PQ1RQZ94Lb89GV8eVq/j73eyyQn6IOD+y4V4dW5nev5QQjp2uiTGyHtUJbXMIzEmpO7xNMNfmEBKM3VD+3wtaIUubG+A/ph/9590IqgD9owQKgGEgb0a+3SiQ2J3SWQeLqhtkqJyuIKq7NBW0OlVOHwhj24dPgcAMAvPBBT75/bqtviBBym3Dsb3774BTLSMnBk20H0HB5vsp8QQsiUEhQ2fUhzAHJVcPFuvqSYyo6Jo7RmUjFPLAlBVfUVGkrixBzR7uDn07k4fLUYIhcB3lzYH4JGX6TwmYMVNWpodQxCCz1cu5KyqoaBJC2J8nOHgAMUtRoUV6kQ6NV5BmnwmYMtleqGyNzw5oL+eO7nFGgZg4ADegZ64mpRFQ5XB2GquNLidZOSktoVEArwEmPZTVFYdlMUyqvV2Hu5ELtSCvDHtRKkFVfj4wPX8fGB6/D1EKG8Wg0GWN0TsbtwZAuVkXF+cBcJUVBZiwu5cgwI97b5bRBCSFtQcJCQdmiYVNxySTFP3GiacOqxCwjrE4l+4wdZdV2pnwwjho3An+f/0m/ggBHDRkDqJ7N+0cQuZIE+qK1SQl5UbvPgYG5qJvas2orKEjnAAUOmj8SIBePh4tr6l3BPPylqIgFVnQ4Hzx7BwbNHTPYRaAHPTA7CUEArRkMgWgWo8hTQlAIIsXwb7f3gQ0hb8T0HW5s5CACqWgoOOitr2h3Y8nWnWKHCK79dAgA8MrmnoUyW51MfINMxQK6ssyqbrrNrGEjScma8xFWICF93ZJbWYOvZPMwcENJpstYaes+1PPBj8bBIjOsVgIySGkT7uyNE5oa8CiU2n8xGxp/5kLIqNI4b6xgQFBxs0zYwPh4iLBoagUVDI1BZW4cDl4uwMyUfB1OLjDJbG/dE7Cx/C3vq6NeUxiSuQozvFYCdKQXYe6mQgoOEEKfRch0aIcSi8nzrJhXzFGWVyLua1bCBAQfW7oCizPI3zE1NmpeMoEB98CkoMAiT5iVbv2BiN3zfQVsOJdGoNTjywz78+NY6VJbIIfWX4eZnbseYxZPaFBgE9N+W+/k3k7HKAK4O8A8PQt+Y+IayYg4YOmAwJt4xAzHR0RCq9Ps2vW5QIPW/JI6jrK3PHJRYHxzkpxpT5qBzi4uLQ0BQsEkZp44BAUG2Dbi8tO0i5Mo6JIRIcd/YWJPLXYUCSCX61+DuUlrM91e0NhDq7qrPuHpt+2WMfusANp7IauEajscYQ2b9QJKWyop5ITI3jIzzMwTcQr3dsGJyLyRNSELThFIBB0T0HWa3L8+kElfMGxSGL24fis9vNx06pmUMGSWW+3Z2Nx35mtLUlAT9+/i9lwpb2JMQQjqOXTIH/75Rii8P38CFXDmKFCp8cfsQTO0bbHH/xzedw0+nc0y29wz0xN7Hxpts//T36/jPritYPjoaL87ua9O1E9IahrJiK8uDKwrLTAIqTMcgLyyDlxU9CwH9t53JU5Oxc+dOJE9NpgwtJ8FPLJYX22YoSXFWIXZ/8QtKc/Ql6H3HJWLs0int7mfIcRySJjY/+XrUTSMxYY5++nXh51+gsKgQQYFBmLpkFjiOw4BJQ3Bk50EcOH7Y5LrU/5I4ikajQF2d/vnXmrJiiYQyBzsDjuMQ3ncYigu3GW23dcBl98UCbD+fD6GAw39uHgBXofnv0X09RKis1XSf4GD9/fTzbDk4mC9XIrVAYfh/Z8laK6xUQVmnhVDAIcK35czB5gwd2Ad7D+yHL1dj6E1YxtwxpH8fG622efEhUpOeiEKOQ7QVGZGdTb5c2aa+ih31mmLOxD6BEAo4pBYokF1W0+7HGyGE2IJdMgdr6rSID5HilbnW9UF7cU4Cjq+cZPg59uxEeLu7YkZ/07q1c9kV2PB3FvoE0zQu4liMsUaZg9YFB72DfE3ebHACDrJmpsyawzewjo01zWggjiE1TCyuaNdxdDodTvz2J354aTVKc4rh5uWO2SsWYfI9s2w26IQfOGIu8y8wIBBJc6dAIBAYAtH+/v4mgeiBwwcbZw/Wlx1T/0viKHxJsaurL1xcPFvYu4G4vqyYMged39D+fVCsczcEPHQMKNHZLuAiV9bhhV9SAAD/Ny4W/cIst+zgM+i6TXCwyvrMwfSSapPTS2fIWuNLisN93CwGha0V6u2OxJvGGLIHBRyQeNMYhHp3TBCI74nY+C3nGwv6OXVwti02nsjC6LcOYOmqv9uUoWrv1xRLvN1FGBat/1J5D2UPEkKchF2Cg0m9A/HE1N6Y1s9ytmBjUokrAr0khp/zOXLIlXW4ZWi40X7VKg0e2XgWby0YAJmbdRNeCbGXGnkV1EoVOI6DLMjHqut4+UoxcfkMw4RYTsBh4l0zrM4aJM7LkDlY1PbMwYrCMvz4+rc4uvkgdFod4gb3xm1v3I/Ywb1stUwADZOv0fRLcQ4YFD/AKAhoKRDN979sXHZM/S+JI9UY+g1Gtep6fOZgbW0+GGsa0iDOJNTbHZdYhN0CLm/tvIwihQox/h5YMan5ydXdKTio0mihUGkANAxjaQ4/ybexzpC1lmHlpGJr3T19BAKC9J+FAoKCcff0ETY5rrUWD4vEqjuGAgD8PUVdbhhJvlyJZ3++YBTYe+7nFOTLlVYfI9TbHWkuUQ4J4k5J0D829l4qsPttEUKINZyy5+CmE9kY08Mf4T7GL8wv/JqCpN6BGNOz5SwtlUqFyspKw09VVZW9lku6qbL6rEFpoHer+r/1Gz8Iy997GAufuQ3L33vY6mEkxLkZeg6WVECn01l1HUVZJbIvZ6CyVI4LB09jwwurkH89ByKJCFPunY2Z/7oZ7lLbfEhpqu+Afu3O/Js0Lxl+3vqsV9c6AfW/JA5VpbgIABCJWjcFns8c1OmU0GjkNl8XsR15TR1uqD1RrNO/PyyHB+6aepNNjn30egm+P67vWfnWgv6QuDY/pZQPDpbXdP3gYHl1HQBAKOCs+nLekLVW/38OnSNrLcMwjMQ2512O4zAteQr8/f0xLXmKQ1puDI7Uf3FZUqVGbZ22w2/fntJLqk36BbY2Q7WiRo3L1e6G15SODOIm1/cdPJFRjvJu8CUDIcT5OV1wsLCyFr9fLcbiYcb9graey8PF3Eo8Na23Vcd58803IZPJDD/Dhw+3x3JJN8b3G7S2pLgxL18pwuOjKWOwC/H0lUIgFECn1aGqXNHi/imHzmDNYx/j57e+w5rHPsaBtTtQp6pDWJ9ILHvt/5AwdqBdP0jYIvOP4zhMSU6GQA2ISgB1jco+iyWkBXl5m5CR+RkAoKRkH/LyNll9XaFQAldXfZC7lvoOOrX00moAHK4Jo1HJJPhbFYbzue0P6CrVWjzz8wUAwG0jInFTbMtDxviJxaVVXf9DfWm1/rXdx90VgqYpgRYsHhaJd28ZCEAfSL1liPV9QB2FLyuO9rNd1pij28D4uLvCU6z/Ajun3LnLulsrrdg08UPIoVUZqmezKwBwyHPv0eFB3Ahfd/QJ9oJWx3AgtahDbpMQQprjdMHBH0/lQCpxQXJCQ0lyXoUSr2y7iA+WJLb4TS7v2WefhVwuN/wcP37cXksm3ZSh36CVw0hI1yYQCCD19wYAVLZQWqwoq8SBNTtMShiHzxmDhU/fbuhfaG+2mHzdO743Qqu94arkUJZfYuslEtKi2tp8XE5d2WgLw+XUla0K9EnqswdV1HfQqfGZXbKgcKh7JyNfJ7VJv673915BVlkNQmQSPD3Nul5jft0oc5AvnbZ2UjFv9sBQeElcUFqtxslM2wzrsie+rDjKRpmDzoDjGoarZJdZX27r7C7nV+KN7akAjDukPDG1d6syVPXBQSAqOsYhQdxkmlpMCHEiThUcZIxh88lszB8UDpFLw9Iu5MpRUqXGrI//QNxzOxD33A78nV6GtUczEPfcDmib5pQDEIvFkEqlhh9PT+ubkxNijXJ+UnFIyxkGpHuQBXoDAOTFFc3uV1FYZra3WURCtKEfZUdobuBIa/ABcj6blpCOVKPMANC0lF8HpTLT6mOIG/UdJM7rRn1wMNbfw/Ches/F9vXrOpddgdV/pAMAXp/fD14S63pa+9T33ivtBuWAbQ0OilwEmFL/d9pxwbmfWzodQ2apPrMuxkY9B51FpK8+WJZV1jUyB8ur1fi/dSehrNNibE9/HH5qAuLqA7qtLV3ng4OJEd42XqV1+L6Dh68Vd7myb0JI5+NUwcG/bpQho7TGpKR4dA9/7H5kHHb8a6zhZ0C4DPMSw7DjX2Mh7MAP050d3+NMUVbp6KV0enyWFAUHCU8aYN1QEltNrbYFW5Q8GYKDuRQcJB3P3S0apm9nBK0aTCKhicWdAp85GO3vgQm9A+Aq5JBWXI3rRW3rK63W6PD0T+ehY8DcxFBM7BNk9XX9PPmBJF2/nQIfHPTzELf6ujP7659bO1PyoTPzZb6zKKishUqjg4uAQ7iPc/dGbK3I+szBrhAc1Gh1+Of3p5FdpkSkrzs+vnUQInw9ML53IADgVCsyVBljOFcfHBzooOBgvzApQmQS1Ki1OJpG76EIIY5ll+BgtUqDi3lyXMzT94HJLqvBxTw5civ06exv70rFYxvPmlxv08lsJEZ4o3ewl9F2T7ELegd7Gf24uQrh7e5qsi+xLOXQGXzdqMdZyqEzjl5Sp6VWqlBVpu8r15aeg6Rr4oeStBQc9PKVou/4RMP/O/vUat+w+uAglRUTB5BIQtC714uNtggQ3+d1wxRia/CZg1RW7NwaT5P1krhiVJz+tWdPG6d9fn4oDakFCvh6iPDvWQmtui6fOcgP6+jK2po5CABjevrDS+yCwkoVTmc5b2kxH3iO8HWHi9CpcifaLaILBQff2pmKP6+Xws1ViC/vGALv+ufh0Gj9l7OtKV/PKqtBeU0dREIB4kMc83mS4zhMjqfSYkKIc7DL2e98jhwzP/oDMz/6AwDw2vbLmPnRH3h/z1UAQFGlyhAo5FXW1mFnSr5J1iCxDb7HGepLGRljOLB2B2UQtlF5QRkAwE3qAYln1/qGmbSdLLA+c7CFsmIA0Gr05SM9h8V3+qnVfIC8LLfYwSsh3ZWv71gAAMeJMGrkIYSGLmrV9Q2Zg1RW7LQYY4aBEfw02eS+fGlx6z9UXytU4OMD1wAAL85OgJ9n67Li+Cy60m6QOVjajuCg2EWIyfWlxduduLQ4vdT2w0icRUPPwc4dHNxyJgdf1bcAeG/RQPQJbvhCdWiU/v3XlYJKKGqtC9jzJcUJoVKIXazraW8PfOn9vstFTp1dSwjp+lzscdCRcX7IeGumxcvfWzTQZJtU4orUV6dbfRsb7x/ZprV1V+Z6nDEdg7ywrNNmKzlSeT4/qZhKikkDPjhY2UJwkDGGzAs3AAD9kgZ1+uegb1gAAKCyVI46VR1cxdb17CLEVlRq/aRHiSQEbm6hrb4+ZQ46v7JqNRS1GgBAVH0AZ0p8EJ7/JQVnsytQWFmLIKnEqmNpdQxP/3QedVqGiX0CMWdg6x8zPh7617naOh2Uai3cRI4LLthbWVXbg4MAMKN/CLacycWulAK8MDPB6onHHalxyXpXE9koOMgY67BpvLZ0IUeOZ37STxT/Z1IPzOhvnBkeKJUgwtcN2WVKnMmqwLheAS0e80xWBQDH9RvkjYj1g5fYBcUKFc7mVGBwpI9D10MI6b66Vt48scg7yBcw82Yg43yaA1bT+fGDF3xoUjFphJ8yrFTUQKW0nE1Skl2EGnkVXESuCO0Z2UGrsx83L3e4ebkDDCgvKHX0ckg3pFbpM8fEosA2Xb9hWnGB2WFBxPH4kuJQmQQSV30gLlAqwaD6D/atKcn79lgGTmdVwFPsgtfm9WtTsMRT7AJRfflpV88ebE9ZMQCM7ekPT7EL8uW1OFOfreVs0kvqh5F0weBgmLcbOA6oVmsNf8vOpKRKhfvXnYRKo8PEPoF4dEovs/sNjdL3bba2tJjPHBwU6W2LZbaZyEWA8b31wUwqLSaEOBIFB7sJL18pBk4e2rCh/n3wqR3HcHL7UccsqhMrz9cHQChzkDQmdhPrg2RoPnsw84I+KB8eHwUXkV0SuDtcw1ASKi0mHU+l1j/uROK2BQfF4kAAHHQ6NerqKMDtjPjgTdPMruS++mmfe6z8UJ1dVoP/7LoCAHh6eh+EeretNQjHcYZgWVfvO8gHP/3aGByUuAoxOV7/3HTWqcWN+1l2NRJXIYLrs2o7W9/BOq0OD64/jTx5LWL9PfDfxYkWB1EOri8tPpVZ1uJxVRotLuXpWys5OnMQaCgtpuAgIcSRKDjYjfAf3kN6hOPu9/+FkQsnAAD+3HSAAoStxAcHfWgYCWlCasVQksz6jN3o/nEdsaQOwWfR8lm1hHQkFZ85KLZ+2mxjAoEIIpH+MUx9B52TpbLP5PoP1cfSSlDZQq8xxhie23IByjothkf7Ytnw9mVu+9QHy7pN5qBn24KDADCdn1p8wfmmFmt1DFmlXTdzEAAifDrnUJJXf7uE4+ll8BS74Ms7hkDmZrltCd938ExWBTRaXbPHvZyvgFqrg4+7q6Hs2pEm9A6Ei4DD9aIqQ29VQgjpaBQc7EYUpfrp0QFRwfDylWL4nDEYuWA8AH2A8NSOY45cXqeh0+oMpZNit9Y1MCddHz+x2FLmoFqpQt61bABA1ICuExz0o+AgcSC1St9zUCxquc+UJXxpcWnp7xQgdEL8wIiYJpldsQGe6BHoiTotw+9Xms9c/ul0Lo5cK4HIRYC3FvZvd+87PpOuvKbzlWpaS6tjqFDqg65tLSsGgPG9AuAhEiJPXotzORU2Wp1t5FUoodbqIBIK2pxJ6uw641CSjSey8O2xTADAB4sT0SOw+YnCvYK84CV2QY1ai9QCRbP7nqsvKR4Y4e0UPRhlbq4YEauvRtrbxunrhBDSXhQc7Eaq6icTe/k1DD8YPncsRswfBwD4Y+N+nN75l0PW1pmc3H4UuvpvJDe//g1SDp1x8IqIM+GHklRYyBzMuZwJnVYHWaCPvhdoF0GZg8SR2ps5CAA6pp8gfiP9A/x5dBzy8jbZZG3ENpobGMFnD+6+aPlDdZGiFq/+dgkA8MjknogN8Gz3mgyZg1VdNzhYUaMG34bTx73twUGJqxCT4vV/J2crLeZLiiN83SyWrHZ2DUNJlA5eiXVOZ5XjhV8uAgAem9LLMPG6OUIBh0H12YMnM5ovLeb7DTpDSTGPSosJIY5GwcFuRMEHB5tMRr1p3jjcNE8fIDzywz6c3kUBQnM0ag1unLmKYz/9btjGGMOBtTsMv1tCGiYWmw8OZtT3G4zqH9tha+oIfOZgRWEZtBqtg1dDupv29hysrc1HVdWlRlt0uJy6kjIInQRjzFBqZ67sk+87+HtqEVQWXn9e2noRcmUd+oZKcd9Y27z+dofMQb6kWObmCldh+z428BNmd1xwrsE/Gc08trqKSD99RmRnKCsuqqzFP9adglqrw9S+QfhnUg+rr8uXFrc0lMQZg4N8APRUZjlKqzq+VUF+fj5eeukl5OfTeY+Q7qrVnfDLy48jK2sVKhUpUKuLMKD/ZwgISDZcXlS0G7m5G1CpSIFGU4Hhw7bByyvB6Bi5ud+joHAbFIqL0GqrMG7sGbi6SpvelInsnHXIyloFtboYnp7x6NXrRcikA1t7F7otRak+gOXpZ/q71mcPMvz9yxEc+X4fAA6Dp91kn3WUVaKisAzeQb4mgUpnodPpUJ5XisL0PBTcyEPhjTyUZBcaMgYbYzoGeWGZ094X0rFkhp6DFSaXMcaQef46ACCqC/UbBAAPHy+IJCKoa9WoKCyDX1jbyzsJaS1D5qCobZmDNcoMAE2DFTrk5m5AVNT9cHFpf5YZabtihQo1ai0EHMz2BxsQJkOQVIzCShWOppUiqbdxkHhXSgF2XCiAUMDh7YUD2h3k4vGZdJ1xAqy1Sts5qbixCb0D4C4SIrdCifM5cgx0ksCMYdhNFxxGwuOfN84eHFRptLj/u1MoUqjQK8gT7y1KbFX5/1DDUBLLwcGKGrXhywZnCg6Gebuhb6gUF/MqsT+1CIuGRnTo7Z+/mo6XX34ZI5OSERIS0qG3TQhxDq0ODmp1NfD07IOQ0Jtx4cKDppdrayDzHorAoBlITX3OwjFq4ec7Dn6+45B24x2rbrew8Ddcu/YG+vR+FVLZQGRnr8HZs3dh5Ii9hibixDKmYw1lxRaCWDfNGwfGGI7/+geOfL8XHAcMmmrbAGHKoTM4sGYHGGPgOA4Tl89Av/GDbHobrcUYg6JUjsL0fBTeyEPBjVwUZRSgrtb0zb7EQ4La6lqjbZyAg6wLlYeS9pHymYMlFdDpdBAIGj6EVhSWobJEDoFQgPD4aAet0D44joNPqD8Kb+ShLK+EgoOkw2g01dBqqwAAYnHbHnfubtHQF1MYfwGUkfkpsrJXw88vCUFBM+HvlwShsGv2JHNm/Af5MB83iFxMA3sCAYcpCUH47q8s7LlYaBQclNfU4YVfUwAA94+LRb8wmc3WxQ/o6MrBwTIbBgclrkJM7BOI387nY8eFfKcJDhomFXfhzEF+IEm+XAm1Rmf2eeRojDH8+5eLOJNVAanEBV/ePhSe4tZ9VE2M9IZQwCFfXovcCiXCzPSQ5LMGY/w94N2OUnl7mJIQhIt5ldh7qbBDg4MbT2ThsbUnAAB3rz2B993DsXhY+wY2EUI6n1YHB/39JsDfb4LFy0NC5gMAlMoci/tERiwHAJSXW1++mpX9NcJCFyM09GYAQJ/er6G05Hfk5f2I6Oh/mOyvUqmgUjWkZFdVVVl9W11RTWU1dFodOI6Dh7f5hr4cx2HE/PEAA45v/QOHN+wFOA6DkofbZA2KskpDYBBoKMmN6h/XoVl3SkUNCm/kNWQFpudDWWk6GcxV7IrA6BAExYYiODYUQTGh8PKX4eLhsziwdgeYjoETcJh41wzKGiQGnj5eEAgF0Gl1qCpXQOrX8EGUn1Ic2jsSIolzvSG1Bd9GwUFCOoparR9GIhS6QyhsW4afRBKC+D6v43LqSugDhAL4+U2AUpmOmpp0FBfvQnHxLgiF7vD3n4SgwJnw8xsHgYCGUnUEQ/Cmmcyu5IRgfPdXFvZeKsTr8/oZso3e2HEZxQoVYv098K9JPW26Ll/KHGy1mf1D8Nv5fGy/kI9npvdximEQ1jy+OrsALzHELgKoNDrkVSidMhD63d9Z2HgyGwIO+Hjp4Dat0V3kgoQQKS7kynEyowxhiWEm+/DBwYHhtvuiwFamJAThg33XcORaMZRqLdxEQrvfZr5ciWd/vgB+iLiOAc/9nIJxvQIQIqMvwwjpTlodHHQEnU4NhSIF0VENQUCOE8DHdxTkleaHQbz55pt4+eWXO2qJTo+fVOzh7Qmhi+UTDcdxGLFgPBhjOLHtTxxevwccgEQbBAgrCstMeszYoyS3cdmyxEOCoowCFKbrS4MLb+RBbmaKrEAogH94IIJiQw0/vqH+RllfvH7jByGqfxzkhWWQOXFpNHEMgUAAqb+3PkuwqNw4OJhyAwAQ3cVKinm+/FCS3OYnhhJiSypVfb9BUWC7Ag2hoYvg6zsWSmUm3NyiIJGEgDGGqqrLKCz8DYVF21Fbm4PCwm0oLNwGFxcvBPhPQVDQLPj4jIJA4Gqru0Sa4Ms+m+sJNyLWD14SF5RUqXAmuwJDonzw5/USbDypnw7/1sIBkLja9oM2HzDrysHBsvphK342Cg5O6B0IN1chcsqVuJArx4Bwb5sct600Wp1hgm+0v2nJelfBcRwifd1xragK2eU1ThccPJ5ehpe36geQPDWtD8b3anv1wZAoH1zIleNUZjnmmgkOnnPCfoO8hBApwrzdkFuhxB/XSwxDSuwpvaTaEBjkaRlDRklNpwsO5suVSC+pRoy/R6dbOyHOoFMEB+vqysGY1qR8WCTyR03NDbPXefbZZ/HYY48Z/n/lyhUMH26bDLjOiB+Y4WlFIIvjOIxcOAEAcGLbnzi0fg84jsPAKcPatQZmpl+frUtyUw6dwf41O4AWGl17B/sasgGDYkMREBkMF5H1TwcvXykFBYlFskB9cFBeXIHweP02jVqDnMsZALpev0Geb30pcVl+qYNXQroTlbr9k4p5EkkIJJKGXkscx8HLKwFeXgmIi3sSlYrzKCz8DUVFO6BSFSC/4GfkF/wMV1cfBAQkIyhwFnx8bgLH2T/bozsxTCpuJrNLWa3AlGgRDl2RY9eJy/DlIvDGj2fgx9ViRv8Q9PGz/Vve7hAc5Iet2Cpz0E2kLy3efiEfOy4UODw4mFdRizotg8hFgNAuHkzgg4PO1ncwr0KJB9efgkbHMGtACO4f176BQUOjfbD2aAZOZpj2HWSMNQwjifRp1+3YA8fpWySsPZqBPRcLOiQ4GOPvgaZfqwm4zhcs33giC8/8fAGM6df/5oL+VBpNSCt1iuBgW4jFYojFDeU+np7du5m4od+gn3Up9HyAkOkYTm4/it+/2w1wHAZOHtqm22eM4fi2P4xvw8YluXzZctPAoJvUA6E9whEYG6IPCEaHQuwhscltEmIOP7FYXtTwxjT3ahY0ag08vL3gF941+/H5hvgBAMrzS0z6LRJiL2qVvqxYLLLv84rjOMikAyGTDkTPHs+iQn4KRYXbUVi0A3V1pcjL24i8vI0QifwRGDgdQYGzIJMNBsfR86C9+LJPS5mDGo0Gq1atgqy6GnMkgObiZXx7ERgOABIA1y5j1arjWLFiBVxcbPfWlw+YVSjroNUxCFsxOKGzsHVZMaCfWrz9Qj62nsvFuJ7+iAlwXJZPev1jK8rXvVWDLzqjCCccSlJbp8X9606hpEqN+BAp/nPzgHaXmg+N0icdpBZUokqlMepbmFVWg/KaOoiEAsSHmG+z5Gh8cPBAalGHvK6EyNwQ5uOGtIKGbRN6BXaqzLt8udIQGASoNJqQtuoUwUFXVx9wnBBqtXEfK7W6BCI7fxjoKvhJxa0JxHEch1G3JIEBOLX9KH5ftwvggIGTWh8gvPr3JeSmZsFF5AJOIEBdrRqzVyxCTKLt+v+YK1sGgBkPzu9ywx+Ic5MFmAYHMy/o+w1G9Y91ih5L9iAN8IbQ1QXaOg0qiyvgTYN6SAcwTCq2QeagtThOAB/vYfDxHoaePZ9HRcXf+ozC4j1Qq0uQk7MOOTnrIBYHIyhwJgKDZkLqNQAqVQFqlBlwd4s2ylAklul0rMWBEUKhEDKZDNXVpv2DeVKpFEKhbTM6vd31peSM6Seg+nl2vR6UZdX6/t1+nrYLDib1CYCLkENeRS2WfvW3Q7N8DFmpTlZmaw/8xOJsJwkOMsbw3M8XcCFXDh93V3x5+xC4t6KKx5JgmcRQmns2qwJjejZUnvFZgwmhUoibabPkSMNjfCGVuKC0Wo3TWeUYFm3f91I1ag0K5MbDFv9OL0VZtdqmXwrY042iapOisc5aGk2II3WKr7MFAhG8vPqhrPyoYRtjOpSXH4NM6thJt52FoazYr3VZehzHYfQtSRgyYyQA4Pdvd+H8/lOtOoa6Vo0j3+8DAAybNRoBkfoPcGqlqrmrtZp3kC+a5sXTJGHiCNIAbwAw6m/JDyPpqiXFgL7fok999iCVFpOOolLX9xwUB7awp30IBC7w9R2N+Pg3MXbMMQwc8BWCg+dDKPSESlWArOzVOHlyAQ4fGYY/j47FmTO34c+j45CXt8kh6+1sChW1qK3TQSjgEO5j/kMex3FISkpq9jhJSUk2/2LGVSiAzE0fIOyqpcWlVXzmoO0Cn3JlHTTahk/yfJZPvlxps9uwFj8Ju7l+ll2Fs2UOfv1nBn4+kwuhgMP/lg42rM8Whkbrv6Q9mVlmtP1MVgUA5+w3yHMVCjCxj/58tvdSod1v72xWBTQ6htCQEPz73/9G3x6RqFZr8cWhNLvftq1cL1aY3V6j1nTwSgjp3FodHNRoqqFQXIJCcQmAfiqxQnEJtbV5AIC6ugooFJdQXX0NAFBTcwMKxSVDw3BA3zxcobiEGmUmAKCq+goUikuoq6sw7HP6zG3IzvnW8P/IiLuRl7cR+fk/obr6OlKvvACttgYh9dOLSfMMZcVtKOHlOA6jF03E4OkjAAAHv92JCwetDxCe2PoHqisUkAV4Y/D0kfAO1gfrKgrLWrhm63j5StF7RL+GddMkYeIgfFlxZX1wsLJUjrK8En1D8L4xDlyZ/dFQEudUW5uPsvJjqK3Nd/RSbM6QOShyTHCwMYFABH//JPRNeBdjxxzHgP6fIShwFjhOAo2mHAAfENHhcurKLvn3sDU+eBPh4wZXoeW3rXFxcQgICjZprK9jQEBQMOLi7PPFjF8X7zvI3y9+MrMt8H/Txvgsn47WHSYV8xoyBzs+CNvUn9dL8MaOywCAlTPiMaqHfwvXaJ2hUfr3YacyjfsOnnXiYSSNTUkIBqAPDpqrirKlE/W9GUcP6ImXX34Zz908CgDwzbEMFClqm7uqU1BrdFj9RwYAkxwRPLbpHC7lVXb4mgjprFqdu61QXMDpM8sM/792/XUAQEjwAiQkvIPikn24fPlpw+UpF1cAAGKi/4XYWP2/c3M3ID3jI8M+p08vAQDEx7+N0BB9sE+pzEKduuEFPShoFtR1Zbhx4wOo1CXw8opH4sA1EItsezLpqvhpxV6tzBzkcRyHMYsnAQw4vesvHFi7EwCH/kmDm71eeUEpTu/6CwAwblkyXEQuhlJDWwcHAUDsrv9mu9eIvhizeBIFBolD8JmDSkUNVEoVsupLioPjwiDx7NrlDYbgYF5JC3uSjpKXtwmXU1cC0AEQIL7P6wgNXeToZdmMWl3fc9BBmYOWCIViBAQkIyAgGSUlv+Pc+Xua7KGDUplJ5cUtSLey7JPjOIT3HYbiwm1G2wUcENF3mN3aOfh4iICS6i4ZHGSMNQwksWFZcYy/BwQcjAK5Qo5zyACEhrLizjV8oS0ifPXvP+TKOshr6iBzd8yE9eyyGvxzw2lodQwLB4dj+ehom9/GkPq+g2eyKgx9+9QanSFQ5OzBwfG9AyASCpBeUo204ir0CLRff8QTGfrPY8Pqsy2TegciMcIbZ7Mr8OnBNLw0p6/dbtsWNp7IQlZZDfw9xdh0/wgUVqoQ6CXGUz+dx6nMctz71WH8d0EfRFr4AsDDwwNSqf7zIk07Jt1dq4ODPj4jMGmi5TTj0JCbDQE+S2JjVxgChZaMHnXYZFtE+B2ICL/DuoUSA61Gi2p5FQDrphVbwnEcxiyZBAaGM7v+xoG1O8BxQL8J5gOEjDEc+m4PdFodogf2MPQX5IOD5QW2Dw6W5uizlWIG9KDAIHEYsZsYbl7uUCpqUFlcgcwL+qnqUf3bN4GvM6DgoHOprc1vFBgE+Iw1X9+xXSYopeIHknRgz8HW8vTsDX2xhq7RVgHc3KIctKLOI6MVZZ9D+/fB3n374cvVGIJPZcwdQ/r3sdv6DBOLa7pecLCyVoO6+vJfPxv2HguRueHNBf3xzE8XwKDP9nljQb8O/zBep9Uhu1yfRdcdyordRS7w9xSjpEqF7PIayNytG1JoSzVqDf5v3SmU19RhYLgMr8/vZ5fAfe9gL3iKXVCl0iC1oBJ9Q2W4nF8JtVYHH3dXRPk5dzDYU+yCkXF+OHS1GHsuFdotOKjR6nA6S5+MMyxG//mM4zg8ntwLt68+jg1/Z+H+8bFOGyirVmnw4f7rAIAVk3ogNsATsQH6IaRrlg/D7auOIb70CHb9ZLnizdPTEytWrMBPZ/Lw7M8XoKNpx6Qb6xQ9B0n7VJcrAAYIXYVw92rfmx+O4zB2yWQkJg8HAOxfswMpv58xu2/6mWvIvJAGoYsQ45YmG07+9socZIwZgoNddRos6Tz40uLy/FJkXUwH0LX7DfL44GB5XondS2FIy2qUGTAOSAF8xlpXoNFUQavVB4+ceUCZRBKC+D6vo6HoiUN8n9e7TIDWntLrS02tCd6Eersj8aYx4Id7Cjgg8aYxCPW2XyCAL7ctq+p6wcHy+mxId5EQElfbDm9YPCwSby7oDwAI8BLjliERNj2+JXK5HPn5+cjPz8e5qxnwZlUIcVVCV1WO/Px8VFZ27RLEyPrsQUf0HWSM4akfz+NyfiX8PUX4/PYhNn9c8YQCDoMivQE0lBbzJcUDI7w7xWC4KQn6L7zs2XfwUn4latRaSCUu6NUoADmmhz+GR/tCrdXhkwPX7Xb77bXmz3SUVKkQ6etuEsiTSlyx9u6boHVxMxlWYrSfVIrLBVV4pj4wCDi2DyohjkTBwW6ALyn29JGCE7T/ZMhxHMYtndIoQLgdKYeMA4QadR0ObdgDABg07Sb4BDcMBeGDg6rqWiirbPfmpEZehdpqJTiOg08IlZsTx+JLi6/8lQK1UgWJpxsCY7p+IMA7yBcCoQDqWjWqys03iCYdx90tGqZdeABX164xqEldP4xEKPSEi4ung1fTvNDQRYiNeQwA4O19U5cq7ban1vaEu3v6CAQE6ft1BQQF4+76fsn2wpfbdsXMwVK+36CdJpbOGxQGL7ELihQqQ/aSPWk0GqxatQpffvklvvzyS/yw+lN4HfsUo5V/4auv9NtXrVoFjabrDjFw5FCSzw/dwG/n8+Ei4PDZbUPsno02pL7v4MkM4+Cgs5cU8/jg4NnsCrv1/uP7DQ6N9oWg0WdEjuPwWHIvAMCmk9lOM+G6sfJqNb44pK/MeTy5F0QupmENHw8xbp03Hc3FgrcUeGP2J39anHZMSHdCwcFuQNGOYSSWmAsQXjx81nD5qR3HUFlcAU9fLwyfM8bouq5iV3j66r+dqrBhaXFJfdagd7AvXEStrpgnxKZk9cHB9DP64UyRfWMgEHT9l1yhi9CQNenI0uLG2SHmfrp6dghPIglBcNA8k+1pN97rEpmdhmEkYufNGmzM21vfhqO2NtfBK+kctDqGrFLrMwcB/fuTaclT4O/vj2nJU+yeIWTIHOyCPQf5+2TLkuLGJK5CTOmrD4BsO5dnl9toTCgUQiZrKKVVKBQ4dOgQFIqGL7KkUimEQvtkszmDhqEkHRf0yJcr8dnv1/H2rlQAwEtz+mJYtP2/oBpa33ewaeZgZwkOBkklGBguA2PA/stFdrmNE+n6z2H8dOfGRsT6YUwPf9RpGT4+cM0ut98enx1Kg0KlQXyIFLMHhFrcb1DfPvD2DzI7rKpY545L1eaD1I7qg0qII1EEpRtQlNYHB9s4jMQSPkDIGMO5vSew7+vf9Fl7wX44vvUPAMDYJVPgKjZ9U+kd5IuqMgUqCsoQ0iPcJusxlBSHdY4PiaRr4wNkfAAmakDXLynm+YYFoDy/FGV5JYjq1/F9FvnskOpq04mYPL7HjItL1z8NCl30b3yDAmchOGQ+zp9/ACUl+5CVvRpRkfc6eHXtw/cbFDnBpGJruHv0AADU1uZAq62FUChx8IqcW16FEmqtDiKhAKHe1mcZxcbG4qGHHrLjyhr4duFpxWXVKgD2yxwEgNkDQ/Hz6Vxsv1CAf8/uC6ENKlws4TgOSUlJWL9+vcV9kpKSOkXJaVt1dObgxhNZhj5uADA8xhe3jeiYXquJkd4QcEBuhRKX8ysNw40Ghnt3yO3bwpSEIJzLkWPvpULcOty2/e8YYziZqQ8ODrcQrH1gVAgup2Xi4JmrONXXy+R1uPEwj46UV6HE2qMZAICnpvU2ynpsiuM4xAwYjooDpsOqAnoOxk9jBiM+xAvbzuXhuZ9ToGUMQo5zSB9UQhyt638qIobMwfYMI7GE4ziMX5YMMIZz+05i71fGL7xqpcrs9byD/ZBzOdOmfQdLc/UfEn0pOEicAJ85yHNEkMxRfEP8kAbHZQ7y2SHNBQe7enZIYwrFRQBAQMAU+PtNQK+ez+PK1X8jLe0deMsGQyZrfuq8M1OpnX8YSWMiV7//Z++849uq7/X/PtqSZXnHsmNn2Ens7IRMIBACJATKaIHSUkoZt4tyC78uKKW0QFtoud3t7YCy2nIptNAWKCNAgLBCIHvv5XjEU9ae5/fH0ZGXvGLJGv6+Xy+/INLR0Vce0jnPeT7Pg06XRyjkwOM5RG7ujFQvKa1RR4orC81JFY1GQjaLg+pYcUESxcFlU4rJt+hpcfn54FArZ0xJbixMdXU1JaV2mhobe9wekaHUbqe6Orsv5I2mc7DB4e0hDAJ8dKSNBod3VEQXq1HH9DIbO+s7eeQdJft5UpElqb/PiWblDDs/XbOPdw604PaHyDEm7tT9cIubFlcAg07D7Iq+5TShUIj3X3yaS03K+/ALT+/qs02qLrT+6rX9BEIRlkwu5Jxpg5/39VdWdcfHTo9l0n5q0QTOnlbCkRYPk4otQhgUjEmyf8ZNgEsdKy5KTiuZJEks/+wF1J45p899ax9/MSZOdqcgCaUkqnOwWJSRCNKAxkM9R6QOb03fQOdEE2ssPtGckudX3SEDke3uEJVIJITLpYxy5ebOBGD8+M8wbtzH8PkMvPvedzh2bE/Gjl4H1KbiNC4j6Y4kSeTkKOKD2z123hNOleE0FacKVRxsz0JxUC1ZSdZYMYBeq+HCWUpG5PPbkj9a3OkLsS08nt5as0aCypmLsv5zQRUH69q9hHvPWSaYwy3uuKOco5Xj5nA4WFgCRZKbdVv3UyS5WVBCRn3GTSu1MqHQQiAU4e39iT2mUrMY51XkY9T1vVjaeww/HqNxobV3TMyGnQd5fdMeiiQ3X1pU2CMWoD+GWlZVlmfm9OoiIQwKxizCOTgGUAtJEpk52BtJkpi+bDZ73t3W43Y5IuNoauvz3GopSXuCMgfliBxzKRVVZMZ4mSB7cbZ18t7f3+hx29rHXmTi7Oqk/h2mC6p7t72hNWVrqK6upnRcKU1NTT37OGQoLS3NeneIisdzkEjEj1abg9msjHJJksTUKffywvP/QyBg4MMNT8V9bCaMXndlDmaGcxAgxzIFh2MTbs/BVC8l7VGbiodaRpIKVHGw1R1AluWsEpfaYoUkxqQ+zyVzynlyw3Fe2tHIvZfNQq9Njnfhjb0nueOZ7TR2wsVGC6puJQMtEQsLZtcm5XnTiVKbCb1WIhiWaXB4qShIXqba5OIcJKC7PjhaOW5qvIjG7eZSNb1BDxzdzYMPrgMy4zNOkiRWzijl4XcOs2ZXE6tnJa7YbsMR5Rxs0eS+eYPqc6d6DL+/mJhLom9Jbz+/m81D/DneeOFSfn9sG81NjaNSViUQZCLCOTgGiI0VJzhzsDcF9qI+HxCSRiKvtG+ORb69yzmYiFB8Z6uDoC/QowxBIEgV8X6vVaF8LFBgLwIJvE4Pns7+R3tHwmCFI06nkwm28r5FvRLMq52dVSfwA6GOFOdaZyBJXR/5RmMeBQWl9Dxt60kmjF77o23FBmPmXBTKieYOCufg4MSaijPAOegPRfAEwileTWJRG5iT6RwEWFJVRLHVSIcnyDsHEh9H0ekLcts/tnLDox/S2OljcrGV8tqFsY8HifguomxEq5FiguDxNm9Sn6ssz8yKmq735tHMcUsX11siUFuLX9nZyPG2xB1TfXRELSPpvxxGHcOP5wDNL07+hdZE/hxHu6xKIMhE0vdSiSAhBHwB/G4fkLyxYpXcQhvn3nARax97ETkiI2kkzr3+orhOKVtJPpIkEfQF8Djc5ORbR/TcLdHxxYKyIrRxrPECwWiSX1qIJEk9BML+hPJsRG/UYyvOp7O5g/b6Fiy2xJ7YD6VwRCdpsRyMoC2HsBFU+4I2ADPmzEroetKZmDgYHSlWkSSJ88+/KOOD+WPOQUPmOAct0bFij3AODkomjBVbDFqMOg3+UIQ2dyChmWCppss5mFxxUKuR+NhsO4+/f5Tnt9b3EJRGypt7T3LHs9tpcPiQJLjxzMl8c1UNJr2GO7a/BkBBUfGYchFVFlo43OLmeJuH06uLkvpcmug1qevPmMSXlleN2rhmOrjeEsWhZhcAbn+Ys//nTX58+Ww+tWhk5SQnnT6OtHqQJFgwsX9ThSRJVMxcRHNT3zKPv9fb2PGXjXxmyQTOnlqSlFzYRP8cR7OsSiDIRIRzMMtR8wYNZiNGc3LHQgBmLZ/PDT/7Kld8+7Pc8LOvMmv5/Ljb6fQ6cosVsbKjceSjh611Su5UkcgbFKQBqlAuRQ+UBhLKs5VY7mBD4l0gg15JlkH2htFqtUzIK6O7PWTpoqXYknyhJJ3oTxwExRFgtxcDkV73RLDbS9J+9FqWZQKxQpLMee/PsSjOQY/nCJFIKMWrSV9C4UisUTWdxUFJkrK2lKQ1mjlYaE1+gcMlc8sBWLOzCV9w5A5M1S14/aMf0uDwManIwtNfOp27Lp6B2aBFkiQ+fuklXHjhhXz80ksyQiRKFBMKFYFuNBqL9zQqeXCrZ9lHPcdtINdbSWlmlM80OLx89187Yv+WZfjOsztocIzM9fnhYSVvsNZuw2bSD7jtwtm1tEQsse9jRIbmiIW6sI1XdzVxw6MfcvYDb/Dr1/fT1Okb0brikQ0/R4EgUxDiYJYzGnmDvckttFExfdKgzxnLHUzAqKVaRlI0PnNGywTZzVCF8mylq5Qk8eLgoIUjEkwqrODa+77Mtbd/AaOsHPgW5OZz3sdXJXw96YosR3C6dgPxxUFJkli8ZAJ9DwU0LFkyIe1PlsNhF+GwcnJrMGTOe7/JVI5GY0aWg3i9x1K9nLSlrt1LKCJj1Gmw20yDPyCFxMRBT3aJg6rYmeyxYoDTJhRQlmfC5Q/x1r6RFS+8ta+ZC36xjqc/qou5BV+69WwW9RqfXLp0KS+++CJLl44d1yB0lZIkWxx0+UPUtSsiVq09N6nPFQ/V9ZbJ5TPxSl3CsjziUpcPoyPFiycNHsUUr8xj/pJlvPq15dx45mTyzHpOdHj5+av7OOPHa/nCnz/ijb0nE1p4c9Q4OaN/jgJBpiDEwSxntPIGT4WCWO5g+4j31RodKxbOQUE6MVShPBuJiYP1iRcHQbmSPK54XN/IPBkKbPlc880bYzmoFTl2NAGYObl2TB1Eer1HCYddaDRGLJb4V9ZraxZgtbbQ5R6MYLW2UFNz2qit81Tx+5X3fa3Wik6Xvs6y3kiShpycKgA8HpE72B+H1bzBohw0SRhXSyQxcdCVPeKgNxDGG3XwFYyCOKjRSFw8RylbeH7rqbUWd/qC3P6PbVz3yIaYW/CpL57O9y5R3IIChdESB/dGXYOlNiP5luT/DsUjnustk8pnJhfn9BHFElHq8uEQ8ga7c+OFSykpVVrF1TKPqaW5fO+SGXzwnfP4xafmsnhSIeGInFA3YSQic+8Lu3hqb4DmDP45CgSZghAHsxxnqyIOpqM4oToHO0boHIyEI7THmoqFOCgQpAPJFAebjzXxxuMv4d3dHrdwZPG8hT1EQHvhOGx1WnK1mSMgJQJ1pNhqrUWjiZ+DZjaXs2zZfLoOBzRMmXoMkyn9M/z8gcxrKlZRR4vdbpE72B9q3uBoNJuOFFUcbM8i52Cr2w+AXiuRO0o5ihfPUUaLX999Ek9geCP3qlvwqY+OI0lww5mTeOnWs1k8eWxk/Q4HtZCkrj254uCeRuUcpNaeunOQeK63TCqfKcszc//ls3sIhHdfOnNEI9pOX5DdDcrPprebtj8GKvMw6bV8Yn4FT3/5dF792tnDdhP2VzB3vO4Et/3lLZ56dx8gYaicnbE/R4EgU8ie1GRBXNTMwbQWB0eYOdjR1EY4FEZn0GMryk/AygQCwUhRxUFXuxO/1z/izNNQIMSBD3ezbe1GGg7UAaBBRps7eOGIOVc5ePQmqTk5XRkob7A7ixffwJYtv6exsRlrbhs5OTuor/8748d/ejSWecoE/NG8QUPmXRRSS0lEY3H/dImD6S/qF0RdUa1ZlDnYvYxktBzXcyrymFBo4Vibh9d3n4zlEA6E0xfkR//Zzd8+PA7AxCILD1wxhyVVyS3ayGQmFCmfiS2uAG5/KGklOqpzMBUjxd258cKl/P7YNpqbGmOut0ziU4smcPa0Ei74xTo6fSHmVeaPaH+bjnUQkaGy0Iw9b+iRDUMp81DdhLetruGlHQ08+cFxNhxp49VdTby6q4nx+WY+taiSTy2qpNRmGrRgLhe41KRn4ceu4YqFE/j9H49m7M9RIMgEhHMwy1HHipPdVHwq5HcbK5ZHkEsRGykeXxIrgBAIBKnFaDGRk6+cELSPwD3Y0dTGO0+9zsNf+xWvPPhvGg7UodFqmLJoOlfc/lmWLlo6aOGIOdqW7HEmP3w9nYiJg9aBxUFJkli5cjXFxcWceUYtkgQHD/2MYNAxGss8ZWJNxZnsHBRjxf1yuDVaRlKU/uKgmsnXnkXiYGtMHEx+mZ2KJElcMnfoo8Xrom5BVRi8/oxJvHTrWUIYHASbSU++RcniPZ5E96BaRlKTYnFwINdbplCWZ2Z6mWL02NfkHNG+PoqOFA/VNXgqDNVNuO5AKzZb/+eosgwlhflcsXBCVvwcBYJ0RzgHsxy1kCQdMwdtxflotBrCwRCu9s5TFjBjZSRipFggSCsKy4twdzhpq2/BXj1+yI+LhCMc3rqf7Ws3cnT7odjt1kIbs8+Zz8zl82LCY8X0SRxoOkzTySZKx5XGLRyxjEHnoCzLOF27AMjNnTHo9qojIBIJsuHDf+N27+fQ4V9QM+3uJK/01PEHlPd+gzFzykhUcqLOQY/nELIcQZLEtdreZJRzMCf7nIPto1hG0p2L55Tzv28c5M29zXT6gnGbVJ2+IPe9uJsnNyii4IRCC/9zpXALDocJhRY6PA6OtXqSMvYryzJ7GlI/VqwyFNdbujOtNJcPDrex7+TIxMENh5MvDnZnMDfhHFshC4h/MUCS4LKLVsWEwGz4OQoE6YwQB7MYWZbTeqxYo9VgK8mno7GN9sa2UxcHRRmJQJCWFI4v4fiuI0POHXS1O9m5bgs73tyEqy168CvBxFnVzDl3AZPmTkGj7SmiSJLEqgtW8dJLL7HqglVxrySbbVFxcAw5B/3+BoLBdiRJR05OzZAfp9HomTb1e2zeci11dU9QXv5pcq3pGfidyc5Bs3kikqQjHPbg9zdiMg0+PjmWCIQisTy0yRkgDmajc7D7WPFoUmvPZco4KwdOunh1ZxNXLKjocf/b+5u5/R/bqHcoJQfXnzGJ21bXYDGIU5rhUFloYVudI2mlJI2dPjp9IbQaiepx6f83nAlMK7UCsL/Jdcr7CIQibDneAYyeOKiiugk/Mb+C/U1OntxwnGc21bGtU2aC0UKR5OmRrRiRodRup7o6fqGaQCBIPOKTNIvxub2EooHO1oL0EwdByR3saGyjo6mNCTMnn9I+WuuU3Kmi8UIcFAjSAYfDgcfjQZOrJ2SQqTteR0NDQ+z+nJwcbDblPUmWZY7vOsL2tRs5tHkfkbDSmmvOtTDjrLnMXnEaeeMKBny+wa4kW9Sx4s6xIw46nTsAyMmZilY7vLHAwsIzGFdyISebX2Lfvns4bf7/peX4TiZnDmo0eszmSXg8B3C7DwhxsBfH2z1EZLAYtIzLHb2x1lNFdQ62ZZE42JoicVCSJC6ZU84vXtvHHzf8i7vW/45fX/hrlpQv574X9/DkhmOA4nx74Mo5LBVuwVOiMlZK4k3K/tWR4qriHIw60RSdCKaWKhMT+0fgHNx+woE/FKEwx0B1SepE295uwr+9FqTEs63HNhoJKmcuSsvjD4EgWxHiYBajNhWbbTno0vSKaoG9iCNbD5xyY3EoEIo9tqgi80bLBIJso0+4dAXsdR9h74MPxraxWq186fNfZN/7u9j+xkY6Grv+/sumVjDn3AVMWTQdnT4x71tqIYnP5UGOyGMim7RziGUk/TF16ndoaX2Djo4NNJ18AXvpJYlcXkJQ24oNGegcBGW0WBUHi4rOTvVy0gp1pHhiUU5GnBiqzsG2LGorros6ygza0f/+Xzy3jJ+/tpe3Gn9NQLOfm57/JiWen8XcgtedPpHbL6wVbsERMKFQ+VxMlnNwb5rkDWYT06Li4PE2L55A6JR+/9W8wYUTC9LivVV1Ey6ZXMj9vzhAYdQ9GJGhTbawYHZ6Ti4IBNmK+FTNYlyt6TtSrNLVWHxq4mB7YytyRMaYYyIn35rIpQkEglNAq9WSl5fXb/McgOwP8+g3fkskGAbAYDJQe+ZsZq9YQHFl4kV+tZAkEo7g9/gwWc0Jf450Y6hNxf1hMpUzaeKX2b3nQTZt+l9mz5qJTtf3+9bdBTqayLKM369EShgNmXlhKMdSTTOilCQeh6Pi4ORiS4pXMjRU52CHJ0goHEGnzewMyac+PMbz2xS390NvH6Z6nJVPLZowas9fXWLFkruDQGg/AAc6ttLpf5dphct44Iq5nF4t3IIjJdnioJo3qJZoCEZOYY6BYquBFleAAyddzKnIH/Y+PhyFMpJToTzfwrwly6j7cA2guAbnLV5GeX5mfAYIBNmCEAezmK6m4vT9YM63K+OCp+oc7D5SnA5XwASCsY4kSaxYsYInnnii/42O+YkEJYonlDLn3NOoWToLgzl5o4NanRaDxUjA48fT6R4T4qDLGS0jsQ5eRtIf5eU38re/NRIIGPhww1/ibmO1Wrn11lvR6Ub3cCIcdhGJKONwxgwsJAHIyYk2FrsPpngl6UeXOJgZWWUFFgOSpDRrtnuClGTAKHR/NDi83PHs9ti/ZeA7z+7g7GkllOWNzntnfYeHQ4FHQNKAFAFZQ4f+rzx63deYUiqcaIlAFQePt3mQZTnhx9CxpmLx80ooU8fl0uJqZV/T8MXBSETmo6PtACyanF7iIMCNFy7l98e20dzUSEmpnRsvXJrqJQkEY47MvrQpGBC1qTgTnIOOk+2xrLHhEGsqFnmDAkHaUF1dTem4UuWssjsyaP0wa95srrrrej5z7+eZvWJBUoVBFUuuIjKMhVISv785OnIrYbVOP+X9GAwW8vIK6PuD7MJms6HVjn6elFpGotPlotVmpthriTUWC3GwN0dao03FRZkhDmo1EvlmpVW3PcNHiw+3uIn0+pMPyzJHWkbvvfOp7S8Q0OxXhEEAKUJAs5/n9708amvIdsryTWg1Ev5QhGanP6H7DoYjHGxWSjPEWHFimRorJRla7qDD4aChoYGGhgY27DqI1ttBud5HkeSmoaGBzs7OZC53WEiSxOpVKykuLmb1qpXC9CEQpADhHMxiVOegNY3FwdzCPLR6LeFgGGerY9Digd50NRVnpnNEIMhGJElibu1s1pxs6nUHLD97OWetPmfU12TOtdDR1Ians/9x52zB6VJGii2WKnS6UxdXJEli5crL+L//+79+t1mxYkVKDuD90TISgyEz8wZBGSsGiWCwnUCgFYNBjEqqqEJUpjgHQRktbvcEaXUFIHN/LanI7yu2ayWJSaM04i3LMo/vfABkTZc4CCBreHznT/h/y64UokEC0Gs1lOWZqGv3cqzNwzibqd9tGxxeDre4mVycMyT36KFmN8GwjNWoo6IgMy/epCtqKcm+IYiDfTKggUujP+ZHHlZKy1Ll/u+PwQrmBAJBckn4O8GJPUfZ+NJ6Th5pwN3h4uJbPkn1gpp+tz/w0R62rd1Iy7EmwsEQheNLWPqJs5k4u/qU9ylQiDkHi/JSvJL+kTQS+eMKaT3RTHtj2wjEQeEcFAjSiZlzZvH6q68RNgASimswAHMXzU/JetTG4rHgHBxp3mB3pkyZwrhxNk6e7KDnsEEEu72U6urqfh6ZXPyBaFNxho4UA2i1Zkym8fh8dbjdB8e0OKg2nAP4Q2F8nS0USZATdtLQ4E9ZtuVwKMoxcKjZnfHOwZd2NPb4t1aSuO/yWaM2Urzm4Bq2Nm1UPje6I0XY2rSRNQfXcMGUC0ZlLdnOhEJLTBxc2E8G3ZMbjvGdf25HlpUcuPsvnz1o/uSeRsWcUGPPFUJugpk2TnEO7mtyDbrtUDKgU+X+FwgE6UnCxcGgP0hx5ThmnDWX//zmH4Nuf2LvMSbMnMwZV67AaDGx6+0tPPeLp/jU929k3ET7Ke1ToODKgMxBUEaLW080R3MHh36iGfAF6GzuAMRYsUCQbtiK8li6aCnvbluv3CDB0kVLsaXoYoXZprhevGPBOZhAcVCSJJaePoXn/r2p1z0aliyZkLITv0B0rDiTxUFQGot9vjrcngMUFCxO9XJSQlx3SzRp4Om/7gbSz90SjwKLUkrS6s5ccbDR4ePXryslIHdeVMus8flMKraMmjAoyzJ3vXEXGjRE6Bs1o0HDXW/cxarqVUJ0SgATCi28d7C131KS423uHvmTEXlo+ZOiqTh5qI3FJzq8uP0hcoz9vycOJQM6Ve5/gUCQniT8KGvS3ClMmjtlyNsvv2ZVj3+f+clzObRpH4c374uJg8PdpwAikQiuduXDOZ0zBwHy7dHG4mGWkrRFXYOWPCvmXNFmJRCkG+d9fBUHGg/TdLKJ0nGlnPfxVYM/KEmo7xGezrHgHIyWkSRAHASorVnAWusaXK5CFPdgBKu1jZqa0xKy/1NBHSvO1KZilRzLFFpb38LtHruNxdnibimyKuJgewaLg/e9uBt3IMz8Cfn817IqNJrRFQ0C4QDHHMfiCoMAESIc7zxOIBzAqMvc0pd0oXKAxuJAKMI3nt7a53Y1f3Io4uB0IQ4mnIIcA8VWIy0uPwdOuphbmT/g9tXV1ZSU2mlqbKT7n3NEhlK7PWXuf4FAkJ6k3SVYOSIT8AUw5YzsKqXf78fv7wrYdbkGt19nE+4OF3JERqPVYMm3pno5A6KWknQ0Dk8cFCPFAkF6I0kSqy5YxUsvvcSqC1Lr9BgrY8XBoAOf7zgwsqbi7pjN5SxbNp+XXz4evUXDxElb6OhYj9l8eUKeY7ioY8WGDHcOxkpJxnBjcba4W1TnYFuGioPvH2zlua31SBL84LJZoy4MAhh1Rj78woc0e5r73WZczjghDCYItbG4rs3b43ZfMMzNT2xiw5H2Po8ZSv5krKnYnt7mhExlWqmVFpeffU3OQcVBSZKomLmI5qbne9yukaBy5qK0f18VCASjS9qJgxtfep+gP8DUJSM7qbn//vu55557ErSqzEMdKc7Jt6LRpHcpdcw52Ng6rMeJpmKBIP1Jl3Bp1TmY7WPF6kixyVSJXp+4Ee7Fi29gy5bf09jYTEFBiPz8enbt/haRiJ/x469O2PMMlZhz0JjBzQ9ATo4yFeH2jF3nIGSHu6UwJ3PFwWA4wt3PKe8dn1k8gVnjU5dVXZlXSWVeZcqefywRzznoDYT54l8+4u39LRh1Gq5ZOpFH3zmMjBIDOVj+ZKcvyIkORWysKRXOwWQwdZyV9w62sv/k0IwvC2fXsua11ymSPGgk5X21TbawYHZtklcqEAgyjbRSjfa8v4MP/vU2F918eczlcarccccdOByO2NeGDRsStMrMwNmq5g2mbxmJiuoc7GxxEA6Fh/y41jrl5FA4BwUCwWCYx4hzUG0qTtRIsYrSXLya4uJiPvax66isvBaAPXu/y/HjjyX0uYZCIIvGigH8/kZCobE14dAd1d3S26yWSe6WTBYH//z+UfY2OSmw6PnWBaLwbyzgcDgwBTspktwEna0cOV7HoaPHuemh19h14ChFhhCP3rCI7108g99crRSJ5Zn1XLlgYOF2X9Q1WJZnIs+iT/rrGIsMp7EYoDzfwn7txNj7q0aCeUuWUZ4vIpkEAkFP0sY5uHf9Tl5/5AUuuvkKJsysGvH+jEYjRmPX2IHVmt6jtYlGbSq2pnneICjuRr1RT9AfpLO5g4KyoTU2xsaKhXNQIBAMgnrByZP1zkElb9CWYHEQerpAZfn7aDQmjh17iH37f0A44mfSxC8l/DnjIcsy/kB2FJLo9XkYDMUEAi14PIew2eakekkpY+HsWl597XUKM9Tdkqni4Emnj1++ug+A21bXkh8djxZkL91LgC41Kbc9/ohS/jMZmGwCo8nC4okfA2D1LDt5Zj0d3iAbj7azeHL8ZmOA3VFxsFbkDSYNtZRk/xAaiwGOt3nY67EwzWihWOOhpNTOjRcuTeYSBQJBhpIWzsG97+/g1T89z+qbPsHkeVNTvZysINZUnAHioCRJMfdg+xBHi30uL+4O5UOxUIiDAoFgEGJjxS4PkUj8sPtsIJFNxQMhSRJTqm9n8qSvAnDw4AMcOvxrZFlO6vMChEJOIhElU9iQ4c5BAItFGZl1u/eneCWppTzfgnXy3Ix1t2SqOPjjl/bg9IeYU5HHVQvFOO9YQC0BGoiiwvxYCZBOq+HcWuW99tVdjQM+bm+jcv4h8gaTx7RSxfByosOLyx8adPv3D7UCEh0FNRQXF7N61cqMcGMLBILRJ+HiYMAXoPloI81HlQ8PR3MHzUcb6Yw62d59ei2v/PHfse33vL+DNQ89x1lXn4+9ajzuDhfuDhd+j2/I+xT0xdmWOWPF0K2UZIiNxaprMLc4D6NZBFMLBIKBiTWay8rFhe74fA20tb+Pz9eQgpUljlDIjcdzCABrksVBUATCqqr/R3XVNwE4fPhXHDz4P0kXCFXXoE6Xh1ZrSupzjQax3MExXEqiEjCPozmi/K1mmrslJg56AqMikieCj4608eymE0gS3HvZLLQpKCERjD5qCdBA9C4BWjlDyXd9dVfTgL/fe4VzMOnkWwyU5CrnPgeGkDu4/qBivJgzfRo333wzVVUjn9ATCATZScLHik8erueZH/819u+3n3wVgOnL5rDqC5fidrhwtnWJejve3EQkHOHNP7/Mm39+OXa7uv1Q9inoSyxzMAOcg9C9lGSI4qAoIxEIBMNAo9VgyjHjc3vxdnpiY8b19U+ze8+dQATQML32R5SXX5XStZ4qLtduQMZoKMVoKB6155006SY0WhP79/+Qo8f+SDjiY9rUu5LmTIjlDWb4SLFKjuoc9IxtcVCWZd4/1IocrODykuaMc7cU5Sgn64FQBHcgjNWYNsk9cQlHZO76t+I0/tTCSuYN0noqyC6GWwJ09rQSDFoNR1o9HGx2MWVcX/FPluVYU3FtmRAHk8m0UivNTqWxeKC/XfV9FeD0qtE7LhAIBJlJwo9cKqZP4tbHv9vv/b3FvCvv+NyI9ynoi+octBZlmDg4ZOegWkaSHSeHAoEg+ZhtFkUcdLqBEny+hm7CIECE3XvupLDwLEymshSu9NQYrZHieEyovAGNZGDvvu9RV/c4kYif2pofIEmJTy/x+6N5g1kwUgzdnYNju7H4aKuHeocPvTaP/775KswGbaqXNCzMBi0mvQZfMEKbK5D24uATHxxld0MnNpNOlJCMQdQSoOam53vc3l8JkNWo4/TqIt7a18yaXU1xxcF6hw+nL4ROI1FVPLay3kebqeNyefdAK/sHKSU52uqhweFDr5VYMLFglFYnEAgylbTIHBQkllAghDcaup+bKeJgLHNweM7BYuEcFAgEQ6SrlERpLPZ4j9AlDKpE8HqPjuq6EoXTpZSRpEIcBKiouIbptT8BJOrr/8au3bcRiQyehzRc/AHl/d+QLc7BqDjo9R6LZSkmGofDQUNDQ79fnZ2dSXne4fBedPRt/oSCjBMGVVT3YJsnvXMHW11+fvrKXgC+dUENRVYRzzIWWTi7lpaIhUh0SjgiQ0uk/xKg7qPF8VDzBqtLrBh04hQzmUyN5g7uG6SURHUNzq/M3PdVgUAweqT3ZU3BKeFqVz6cdQYdphxzilczNFRx0NXWSSgQRGfQ97utLMtdY8UVQhwUCARDI1ZKEr14YjFPQrlG1l0g1GA2TxztpSWEVDoHVcrLr0SjMbBr9zdpbPwnkYifmTN+jkbT/3v6cIk5B42lCdtnKjEYxqHVWgmHXXg8R7BaE+vi6t5M2h9Wq5Vbb70VnS51h4XqSewZ1UUpW8NIKcjRc6LDS5s7OSJvonjg5b10+kLMKLPxmSWZ+X4nGDnl+RbmLVlG3YdrgGgJ0OL+S4DOn17Kd/+1gy3HOzjp9DEut2fmqzpSXCPyBpNOV2PxwM7B96MXXZZm8PuqQCAYPcRlnSwkNlJcaMuYvB5zrgWjRTnI6DjZPuC2HocLn9uLJEkUlIn8DIFAMDTMqnPQqTgHTaYypk79TrctJKbX/igjR4rDYX+s7TaV4iCA3X4ps2b+BknSc/Lki2zf8d8JdcTFMgcN2XFxSJKkpI4WD6WZ1GazxZpJU4Esy7x/sAWAM6oz93O9UHUOuoMpXkn/bD7WzlMfHQfgBx+fKUpIxjg3XriUklI7MHgJkD3PxJyKPGQZ1u4+2ef+PQ0ib3C0mBYd61ZGueO/3/TMGxTioEAgGBwhDmYhrtbMaioG5eQo1lg8yGhxS9Q1mFdagM4gzK8CgWBo9HYOAhQVnhX7f7v9ExlbRuJ270WWQ+j1BRiNqRc3x427gDmzf49GY6Cl5TW2bfsy4bAvIftW24oNWeIchOSWkpxKM+los/+kixZXAJNek9HFGIUWxSGbrs7BcETme9ESkitOq2DBxMIUr0iQaiRJYvWqlRQXFw+pBGjl9P5Hi0VT8eiRZ9EzbpDG4oPNbpqdfgw6DfMn5I/i6gQCQaYixMEsxNmqtEFnSlOxSr5dCcodrJSka6Q4O/KmBALB6KBmDnqjzkGAQKA19v+hkGPU15QoYiPF1plp4xgvLl7B3Dl/QqMx0dq2jq3bPk847Bn8gYPg9yufAdnSVgzJLyVRm0nVbDGViKy4hXo3k4427x1QXIOLJhVmdFZZujsHn/rwONtPOMg16vj2hfFz5QRjj6qqKm6++WaqqqoG3XblTEUcfOdAC55AV6ZsIBThYLMiUtXYM+v8I1PpGi2OLw6qbuyFEwsw6UXeoEAgGJzMPQIT9Ev3seJMIr9UsbwP5hxsOnQCyDzxUyAQpBaLTXEOero5BwPBLnHQ56sf9TUlig7HRwBpl5dYWHgm8+Y9hlabQ3v7+2zecj2h0MAZSQMhyzKBgNpWnEXOwag46EmCcxC6mkl7T5BqJKiY0beZdLRRy0gyeaQYoDAnfZ2D7e4AD7yyB4CvrZxGSa4oIREMn5rSXCoKzPhDEd7e3xK7/WCzi1BEJtekozzPNMAeBImiq5Qk/meqGCkWCATDJSkzmR8cauXBdYfYfsLBSaefP167gAtm2vvd/htPb+WZTXV9bp86zsqrX18OwF/WH+WJ9Uepa/cq95VaueW8qayoyR7nQKJQxcFMaSpWybdHx4oHcA7ueGsz+z5QGjm3vLqBoooSZi2fPyrrEwgEmU1srLiHc7Dr5CZTxcH6+qdpbPwXACfq/w+bbVZajUcX5C9i/rzH2bL1BhyOjWze/DnmzXsUvT5/2PsKhRxEIkoTrCFLMgcBLNGxYo/nELIcRpIS7/KYN2Maa16zUCR50EiKa7BVtvDodg9zZ7qZWJST8OccCuGIzPosKCOB9HYO/nTNXjo8QWpKc/nc6el1EUGQOUiSxMoZpTz67hFe3dUUO7/rPlKc6osNY4Wp0dzBfXHGiiMRmfWHlPOp0zP8fVUgEIweSXEOeoJhppfZuPeyWUPa/vuXzmDDnefFvt6/41zyLXoumt2Vm1RmM3H76lqe/+oynvvvMzmjuogv/vmjfq+WjGVimYMZ5qxTMwfb+3EOOts6Wfvoi103yLD2sRdjYqhAIBAMhFpI4u3sf6w4FOq/0TUd8fka2L3nzm63yOzecyc+X0PK1hSPvLz5zJ//V/T6Ajqd29i0+bM9vvdDxR8tI9Hp8tFqs8f5ZDZXoNEYiEQCeL19L5YmgnqHn03B8TH3oEaCbeEKNh93cMEv1/HwO4cJ9547HgV21XfS6QuRa9Ixszyzjlt6k67Owe11Dv5vwzEA7r1sJjqtGBwSnDorZyiu7bV7TsbeM0RT8egzLeocjNdYvO+kkzZ3ALNey5yK/FFemUAgyFSScnSwomYc37yghtWz+ncLdsdm0jMu1xT72lbnwOEN8smFFbFtzp9RyoracUwuzqGqxMq3LqjFYtCx+djAzbZjkS7nYOYUkgAURMVBj8NFwNv3wHrX21uR5Z4nLnJExjFIRqFAIBBAl3PQ5/YSDoUBCPYSqPz+9BLVBsPjPQJEet0awes9moLVDIwtdxanzX8Cvb4Il2s3mzZfExP7hoo/EG0qzqK8QQBJ0mKxKHlfbk9ycgdf3tFIfcRG0KgcG5SU2vnL/7uU06uK8AUj/OCFXXzyD+/1G26fLN6L5mItmVyU8aKV6hxs96SPczASkfneczuQZbhsXjlLxIihYIQsmlRInllPmzvApuh52N5G5dyjVuQNjhpTo5mDDQ4fnb0ai9+PRjUsnFSQ0TmuAoFgdEnLd4unPzzOsinFVBRY4t4fjsg8t7UebyDMaRMK4m7j9/vp7OyMfblco3uwmyr8Hl9MWMu0zEFjjil28t5xskv0jYQjvPP0WtY/+1afx0gaibxS0bYnEAgGx2Q1x8adfC4loqJ75iBk3mixxTwJ6D3CpUm77EEVq7WGBac9idFQitu9n3ffu54jR7bR0NAQ96uzs6czPOCP5g1mUVOxw+GgoaGBgL8Gl6uQ48d2D/g9OBVkWeaVnY2AxLwlZ8WaSScW5/DE55fwo0/MwmrUselYBxf9+m1+9+YBQuHeonNi8PkaaGt/P+Zu7cobzHzRSnUOtrrSxzn4j011bD7WQY5By3cump7q5QiyAL1Ww4oaJdZBbS3eI5qKR508s55Sm3JBoncpiSoOipFigUAwHJKSOTgSmjp9vLmvmV99el6f+/Y0dnL5797DH4pgMWj547ULYldNenP//fdzzz33JHm16YfqGjTmmDCYDClezfDJLy3E6/TQ0djKuIl23A4XL//un9TtUVwwlTMmU7fnCHJERtJInHv9RRk3Pi0QCFKDRqPBlGvB2+nG0+kmJ9/aLXNQA0QyThw0mcooKV5Fc8sr0Vs0TK/9ESZT2YCPSyU5OdWcdtqTbNx4LW+/PYe31/2z322tViu33norOp1yuKI6DY1ZkjcYCoV46KGHcLvdQB5wMVs2twIPxraxWCx8+tOfjn0PepOTk4PNNvDn4LY6Bw0OHxaDlouXzcO0YkHsPo1G4polEzmnZhzfeXY7b+1r5oGX9/LS9kb+55NzEuoEqq9/OjoGHwE0TJ36Qz48ojgZs+EkVnUOdvpCBMMR9Cl2Qjo8QX7yklJCcuv5Uym1iaIIQWJYOcPOv7bU8+quJm4+ZwoNDh8A04Q4OKpMK82lqdPPgZNOFkxUDDORiMwHh6N5g8IpLBAIhkHaiYP/2FiHzaRj1Yy+I8lVxVZevOUsnL4QL+5o4Bt/38pTX1waVyC84447+PrXvx779969e1m8eHFS154OxPIGM2ykWCXfXkjDgTqObj+IpNXw1l9ewd3hQm8ycP6NFzNtyQycbZ04mtrIKy0UwqBAIBgWlqg4qJaSqLl3OTnVuN378WXYWDGAVmcGoLzsKiZPviWthUEVi2UiCxc+yUcf/Zxg0ERf96OCzWZDq+0q51DHig1Z4hzUarXk5eVFxcH4+Hw+HnnkkX7v7y2gxuPlnY0ArKgdh0kfv+xkfL6Zx25YxDObTnDv8zvZfsLBJb95h5tXTOEr50wZ8WhaVz6m6kiMsH//dzFK38eUU0pNPxd7M4k8sz5W9tLuCTAuN7Vi3C9e20erO8CUcVZuOHNyStciyC6W15Rg0Go43OLmxR3K5+b4fDM2kz7FKxtbTB2Xy9v7W9jXzTm4q6EThzeI1ahj9vjMPB8UCASpIa3GimVZ5u8fHecT8yviHoQadBomFecwuyKP21fXMr0sl0fePRJ3X0ajEZvNFvuyWq1JXn164GxzAJlXRqLij45E73p7Gy/+5hncHS4Ky4v59PdvZNqSGYDy2iqmT8rY1ygQCFKH2RZtLO5UxBhVHLTlzgbAn2HOQQC3ez8AxcUrMkIYVDGbx7N69dX0JwwCrFixokfzZcw5mCWZg5IksWLFigG3yc/PH/D+3gJqb2RZ5uUdiji4eubAWdCSJHHlggpe+/pyVs4oJRiW+eVr+7n0t++wvc4x4GMHo798zHGWFk6vKkKjyfyGU61GIt+iTG20p7ixeFd9J39+/wgA91w6M+UuRkF2Efa5ObtSR5Hk5i9rt1AkuZldEEloHIJgcNRSku4FnepI8eLJhRmf4yoQCEaXtHrHWH+ojSOtHj61qHJI20ciEAglJxMnU3FGnYOZljcIykj0oU17+9z+sVs+SWF5cQpWJBAIsg1zrtJY7HF6CIf9hMPK1fZcmyIOZtpYsSxHcLsPApCTMzXFqxk+tbULKC0tIJ5oZLeXUF1d3ePWWOagITvEQYDq6mrs9hLifQ8KCyUWLBhYNOstoPZm/0kXh1vcGLQazqkZ2jj2OJuJB69dwG+unk9hjoE9jU4+/rt3+cnLe/AFw0PaR2+UfMyeh50RWcNJT3FWjBSrFOYo4mBrChuLZVnm+8/tICLDx2aXceYUcQwlSBxqHEJl03tcatrNEv9mLjXtpqzxXR588EEefPBBHnroIUKhUKqXmvVMjTUWdzkH3z8UzRsUI8UCgWCYJEUcdPtD7Kx3sLNeucp8vM3DznoHJzqUAPifvLyHrz+1pc/jnv7oOPMq86mJk1fxk5f38MGhVo63edjT2MlPXt7D+sOtfHx+eTJeQsbiijUVZ5442NHUBnLf2z0dzr43CgQCwSlg6eYcDEbLSCRJhzWnFgCfP7PEQZ/vBJGID0kyYDIN7cJaOiFJEkuWTqbv4YiGJUsm9BG9srGtWJIkFi+pJN73oKz8VTzeX2C1tjBUAbU3r0Rdg8umFpM7jJE/SZK4ZG45r37tbC6ZW044IvP7Nw9y0a/fZuPRtiHvR8VkKqNi/Ge6PwNP7P407f6CrCgjUSmMOgfb3IGUreFfW07w4ZF2zHotd35MlJAIEosahzAQgzmaBYlhyjjlnLmx04fDGyQUjrBBzRvMovdVgUAwOiQlc3BbnYOrH1of+/cP/7MbgCtOq+BnV83lZKc/JhSqdPqCvLSjge9fMjPuPltdfr7+9FaanX5yTTpqy3L5842LOWtqdoSSJwrVOZiJI7f5pYVIkoQsdymEoo1YIBAkErUR3dvpiZWRGPRFmEzjAfD5GpHlCJKUVsb6fnG7DwCQY5mMRpN2McJDorZmAWuta3C5ClGLYazWNmpqTuuxnSzL+P3NABgM2ZE5qNLv92DaaWg0iwjO6GDDht7ur/gCam/UvMHBRor7o8hq5DdXz+fiOWV89187ONTs5so/vM8NZ0zmmxdMw2IY+u+dTtd1bKIxr+TNuqXYbSYmF+ec0trSEdU52H4K4qDD4cDj8fR7/1DKZ5y+IPe9qJSQ/Pe5UyjPNw97HQLBQKhxCE888US/2wzmaBYkhjyzHrvNRGOnjwMnnWg1Glz+EDaTjullmXcuKBAIUktSziROry7iyI8/1u/9P7tqbp/bbCY9e35wYb+PeeDKvo8R9MXR3AGAVpd5V+tyC22ce8NFrH3sRdFGLBAIkoLZpogQXqcnljeoNxRFnWgSshwgEGzDaMiMMTw1b9CSMyXFKzl1zOZyli2bz8svH4/eomHipC14fUcxm7umA0KhDmRZEVyMxsz4+QyVeN+DZcvmM3v2jQBUVdWza9f9gwqovVEmNzrRSHD+jJEJqhfMtLN0chE/+M8u/rGxjkfePcxru5v48RWzmVmsH5Ko1encHrutza1MBZxRXZRVIkJBbKx4eOJgz+bq+AylfOZXr+2n2elncnEOnz9LlJAIkkN1dTUlpXaaGhvpHhcakaHUbh/U0SxIHFNLrTR2+tjX5KLDo2SdLqkqQpsFOa4CgWB0yUybgSAuO97cjLNVGeV+6Xf/xO/1M2v5/BSvanjMWj6fibOrRRuxQCBICpaoOOjpdBMIKgfOBkMRGo0eo7EUv78Rv68+g8RBxTlozcC8we4sXnwDW7b8nsbGZvILguTn17Nz59dYvPiF2M9CLSPR6wvQaIypXG5S6P49sNtLWLz4hth9/YmH3cXTeLwSdQ0umVwUc7SNhDyLnp9+ci4XzynjO89u51ibh88+9D6fy92JFOo/Y89qtXLLLbfgdO6I3ebxKc7dbBt9KzpF5+BQmqsHG9Xc1+Tk0feOAPD9S2ZgzMALxYLMQJIkKmYuornp+R63aySonLkoqwT/dGdaqdJYvL/JxYFmJXswm6IaBALB6JEZc1OCQXG2dbL2sRdj/5ZlmbWPvYizLfPawkQbsUAgSBbqWLHH6SYYdQ4aDMpBtMmoNP1mUimJ2xMdK85wcVCSJFauXE1xcTEXXfgZrNapBALN7Nr5DWRZydrzZ2EZSXe6fw9Wrlzd5+R68eIbKCpSDtvy8wM9xMP+iLUUzzq1keL+OKdmHK987WyuWTKBCBItAW28yOAYNpuNYLCRYLA9dptW7gCyTxw8VefgUJqrBxrVlGWZ7/17B+GIzKoZpZxTk51/J4L0YeHsWloiFiLRP/6IDC0RCwtm16Z2YWMMtbF4V4ODj46IvEGBQHDqCHEwS+hoauuR1QcgR2QcTcMPDRcIBIJsxRJnrNigVw6ijSbFhZUp4qAsy12Zgxk8VqxSVVXFzTffzNSpM5g189doNCba2t/h6NE/AF1lJIYsKiPpjfo9qKqq6nOfJEksWVKB2dzB9BntgzpzTnb62HhMEeNWzUx8RmOuSc+PPjGb//vCUupMVQy0mhUrVuB0Ka5BnU4J0LcaXEwsslBRYEn42lJJzDnoGX7moDqqGemltEZkKCm1U1xcTENDQ9yvp9dtZ9uhRow6DXddPCMRL0UwRvD5Gmhrfx+fr2FYjyvPtzBvybLYWLFGgnlLllGen11/0+nO1FLlPfWDw214AmEKcwxMG9e33FMgEAgGQ4wVZwn5cUo7RJmHQCAQ9ER1DgY8fnz+Xs5BU9Q56B/eCVKq8PsbCIfdSJIOs3liqpeTUKzWadRMu4ctW+9h67bH8Qem4XKewOUqxGSy09Cg/IyGUtCQTUycVM6ChT8kzzZ4ZMiaXU3IMsytzKcsL3mlFGdUF/PE1y/lJ7+sQ/J29Js/dvDgMwAUFizjZPNL5Oi9nFmdfT+7mHPQNXxxcKBRzfHTT+NPf/rTgGPHl5h0lJ1xBZWFQpwRDI26E//H3r3fA2RAw/TaH1FeftWQH3/jhUv5/bFtNDc1UlJq58YLlyZtrYL4TBmnOAc90hbaDX9kjv3baDQrU7wqgUCQiQhxMEvILbRhrx5P48ETAKLMQyAQCOJgtJjQaDVEwhH8XrX5Vsm0MxkzyzkYKyOxTEaj0ad4NYmnpOQytm3djt+vYcvmd6O3Xhz974PA0Aoasgm9Lg+AYGjwyJBXRthSPBxyjHoWnnEWm9f2FbXchcqIoVpGUlh4Jo0nX0EjRTh9cvb93o7EOQjKqOaa116nSPKgkRSBtVW2MKOmhpP7tvQrDsoyhDQmvnRO5ruIBaODz9fQTRgEiLB7z50UFp4Vu1g2GJIksXrVSl566SVWr1opsgZTgM2kx24zstn/OEHNcbZ2/gFZvkn8LAQCwbARY8VZRCigNFSdfsU53PCzr2ZcGYlAIBAkG0kjxdyDfr9SiKCPOQcVcdCfMeJgdKTYkp1igE6no7CwDAZIsxusoCHb0EXFwVDIMeB2Dk+Q9w8qztgLkjBSHI94+WPNEQv/u8nJx//3bdo7FHGwNTAFZ0AZ759bPlBSYWbhcDhoaGgg7G6jSHKDp536+vrY2G9n59AyoMvyzOyIVPQY1dwUHM+d/97JGWed3e/jJAlOP2s5ZsPYEMoFI8fjPULf99cIXu/RYe1noDgEwegQ0G8moFEuGB5zbefOl/6a4hUJBIJMRBxBZAnhUJi2euVEt/aMWcIxKBAIBP1gzrXg7nARDCmZrGrmoCoO+vwZJg5mQd5gPCRJ4txzz+eJJ57od5uBChqyEb0+6hwMdiLLcr+v/fU9TYQiMjWluVSVWEdlbWr+WN2HawBF1MI+k5x6DQ1tB0F2EYrouPzBBu5aaiXP6OSjQweZUDp3VNaXTEKhEA899FDM1XepSbn9oYd2xbYZqsu1weHjSDCXFo2FYo0Ha0EJztZCNhxu44fA8tJimppO0vP6foSgIZcrzlmQ2BcmyGrMpnhxFJqsi6nIduo7POx0PQSSBqQIyBp+9sEP+O8zrhD5jwKBYFgI52CW0FbfQiQcwWAxkluUl+rlCAQCQdpituUAMuFIB9CVOWiMthUHAi1EIv4UrW7oqGPF2SoOglLQYLeXAJFe90Sw20uorq5OxbJShk6nXPiT5QCRiK/f7dSW4gsS3FI8GDdeuJSSUuU5S0rt/OZLF/LWbSu4bqEXgKOd4wnJWpwBJSz/7xt20ODwjuoak4FWqyUvb+Bjr6G6XPc0dgISjdYpFBcX84mLV/P4fy3BatTx/uE2Dmug7+G7hvOWV40poVwwciRN39PA2pofDHmkWJAePLX9BcU1KEU/J6UIAc1+ntr+n9QuTCAQZBxCHMwSWo43AVBcMU4cHAoEAsEAmHMtaA0BIAx0iYN6fQEajWL58fkaU7W8ISHLMm6P6hycmuLVJA9Jkli8pJJ4YsiSJRPG3OedVpuDJCkCU6hb7qA60trQ0MDhY8fZtu8IRZKbJaXSsEZaR4qaP1ZcXBzLHyu2Glk1tQOAI52KI8kZUNyMOfpOjrR4RmVtyUSSJFasWDHgNkN1ue5ucAJQVjEpNqp52oQCHrthERaDljUnbFitLXQJ5hGs1hamTuhfLBYI4uFyKs5Wk6kcjUZxmBmzuA0+G5Flmcd3PgByr89IWcPjO3+CLGdPdINAIEg+Yqw4S2g5dhKAkgmjky0kEAgEmYrFloPWpLiVdLpcNBojoJzgm0zleDyH8PnrsVjSd7TKH2giFHIiSVoslkmpXk5Sqa1ZwFrrGlyuQhSRMILV2kZNzWmpXtqoI0kSOp2NYLCdYNCB0VjaZ6QV4EI9oIfX/rkbGN3iFjV/rDtqGcnRzkoAnEFFHMwzuJlUnB1jb9XV1ZSU2mlqbOy3sXko7G5QhNzpZT3jYRZOKuTR6xdx/aMfYh53DJerOHqPhomTtrBv/yvo9TZKSy9GIBgKnc6dAOTnL8ZgKObYsT9x/PjjFBefm+KVCYbKmoNr2Nq0EXpfd5AibG3ayJqDa7hgygUpWZtAIMg8hu0cbG/fwNatX+Dtd07n9bXVNDev6XH/yZOvsHnzdby1bgGvr63G6dzVZx/hsJ89e7/PW+sW8OZbs9m2/Sv4Ay0DPu+uXd/i9bXVPb42b7l+uMvPWppV52ClEAcFAoFgIMw2Czqz4rLRR/MGVdTG4nQvJVHzBs3miTFxM1sxm8tZtmw+XYcsGpYtm4/ZXJ7KZaUMdbRYdQ4mcqQ1GchyGKdzBwCfWHweWkmiM+ocPLdGT1meOSXrSjSSJFExc1EPYRCU7MXKmYuG7HLd06g4B2vLcvvct6SqiAeunI3V1hx1D0K7bGCXpwJZDrNj59doaPzXiF6HYOzgioqDudaZVIy/FtDQ1v5O7PNFkN7Issxdb9yFpp/TeQ0a7nrjLuEeFAgEQ2bY4mA44sFqraWm5u7494c95OUvZMqU2/rdx/4DP6Sl5XVmz/oNp83/P/z+k2zfftOgz11UeDbLzlwf+5o181fDXX5WIssyLcdUcVCMAwgEAsFAWHIt6KLOQXWkWMUYzVry+RpGfV3DYSzkDXZn8eIbotmDYLeXsHjxDSleUerQRxuLg9HG4kSOtCYDt+cQ4bAHjcbMFUuW8c63V3DV4tkAVOSlf7bncIjX2NwSsbBgdu2QHu8LhjnU7AJguj1+sVxhjo5xOS1MmrQZp6zng8AkHt35GbTWy4AIu3Z9k/r6fyTi5QiyHKcqDubOxGyuoKT4PACO1/0llcsSDJFAOMAxxzEifTJ5FSJEON55nEA4MMorEwgEmcqw50uKi86huOicfu8vK/sEAF5vXdz7QyEn9fV/Z+bMX1BYeAYAM6b/hPUfrMLh2Exe3vx+9y1pDBiNJUNap9/vx+/vOuh0uVxDelwm4nG48To9SJJEUYUQBwUCgWAgzLYcdCbFOWgwFPe4L1Mai2NNxZaxIQ5KksTKlat56aWXWLly9ZjLGuyOLtpYHAo6YrclaqQ1GTg7lZHi3NyZSJKWsjwz2vKJbG+DYLAtZetKBvEam+ctXjbkxtD9TS4iMhRY9JTa4juCK2xODmjC5OSd5BnfbGQ0aCWJadN+QGeTlRMnnmD3ntuR5SDjx1+dsNcmyC6CwfbY51xu7gwAKiqvo7nlVRobn6W66hvo9fEFakF6YNQZ+fALH9Lsae53m3E54zDqsnu6QCAQJI5Rzxzs7NyOLAcpLDgzdltOTjUmY/mg4mBHxwese3sRen0eBQWnU131dfT6grjb3n///dxzzz0JX386opaR5NsL0Rv1KV6NQCAQpDfmXEs3cTD+WLEvQ8aKs7mMpDfxsuzGIupYseochK6R1uam53tsO9yR1mSg5g3abLNjt+kNhQAEAq0pWVMyufHCpfz2yFbamptojlj46tlDz8bc3aiMitfabf3+zHJ1yjFfi6c4Jgzed/ksyvNzKMu7B42k53jdY+zZ+10icojKimtH/qIEWYca+2Q2T0CnU0bYC/KXkpMzDbd7Hw0N/2DChBtTuUTBEKjMq6QyrzLVyxAIBFnCqLcVBwItSJKhz9Uog6GYQKD/Kx+FRWczY/pPOW3+X5lSfRvt7RvYsuVGZDkcd/s77rgDh8MR+9qwYUNCX0c60XxM5A0KBALBULHYctCao2PFvTMHM2CsWJblMTdWLOhCH3MO9mwgXji7luYRjLQmC9U5aMvtEgcNekUczDbnIChC7cdWr8ItWdgYrGDrCcfgD4qyp6H/vEEVj+cIAFPHT+fJLyzlnW+v4FOLJsSee+rU7zJhwucB2Lfvbo4de+QUX4kgm3F2yxtUkSSJyorPAVBX95d+z7EEAoFAkJ2Mujh4qthLL6Gk5Hys1hpKSlYxb+5DdDq30d6+Pu72RqMRm80W+7JaraO84tGj5bjIGxQIBIKh0n2sWKvJ73GfOlbs9zekbYh3INhKKOQANFgsValejmCU6V1IomIzG9gcHB8bK9ZIMG/J0Edak0EkEsLpUhxKNtuc2O2qYzcUchKJZFfuICgu13DtKhoiNjYf6xjy4/prKu6O13sUgAJbFadXF/UpdJEkiSnV32bSRCXLe/+BH3H06B+H+QoE2Y76d5mbO7PH7Xb7Zeh0eXh9x2hpfTMFKxMIBAJBqhh1cdBgKEaWAwR7XfEOBFowGIaWJwiKDV6vL8QTPUgay7QcPwlA8QThHBQIBILBMJgM6KNtxXK454Ujo1FxDobD7j7iS7rgdu0DwGyuRKs1pXg1gtFGH2esGGDLsQ5ORGx0oPxOl5TaufHCpaO+vu64PQeIRPxotVbM5omx23U6G5KktCcHgu2pWl5SmTchH4DNx4b2+mRZZk90rLi/MhIAj/cIAJZu38/eSJJEVdU3mDz5VgAOHHyAw4d/O6R1CMYGXWUkM3rcrtVaKC+/CoC644+P+roEAoFAkDpGXRy02WYjSXra29+L3eZ2H8Lnrx8wb7A3Pl8DwWA7RsPYdsuFgiHaG5TMnhLhHBQIBIJBkSQJvUVxK0X8PV1VWq0JfXTkMV1zB92esZc3KOhCF20r7i1ef3S0DZDQVMymuLiY1atWpry4pWukeBaS1HXIKUma2N9ZMJB9o8UA8yvzAdhyvINIZHAX8kmnn3ZPEI0EU0v7n3bxeJSL4mbLpAH3J0kSVZNvoarq6wAcOvwLDh76Rdo6ogWjRyjkxuM5DIC1l3MQoGL8ZwENbe3v4opGWAgEAoEg+xm2OBgKuXE6d8WCbL3eOpzOXbGTqGCwA6dzVywPyeM5hNO5C79fyRPU6XIpL/8k+/f/iLb29+ns3M7u3beRZ5vfQxx8f/1KTja/EnvO/Qfux+HYjNdbR1vbu2zb/iXM5okUFZ01su9AhtNW30IkHMGYY8JaKFrFBAKBYChoTUrmYNDX13mX7o3FXWUkIm9wLKK2FQeDPZ2DG48qDrV5M6Zx8803U1WV+pHzTuc2AHK7lZGoqLmD2VhKAlBrz8Wk1+D0hTjU4h50e3WkuKrEikmvjbuNLIfxeo8BAzsHuzN50s1Mqb4dgCNHfsvBQz8VAuEYx+XaDcgYDaUYDcV97jebKygpOR9QsgcFAoFAMDYYdlux07mdTZuvif17/4EfAVBmv5wZM/6H5pbX2L379tj9O3YqIw2TJ91CVZXy/1OnfBfQsH37zUQiAYqKzqJm2r09nsfjOUQopAQzS5IWl2svDQ3PEgo5MRrHUVi4jKqqr6PRjO169pZjXXmDqXYICAQCQSYQifjR6BTnYNBt6HO/yViG07kjfZ2DqjhoEeLgWEQfyxzsEgfDETmWbbdgYmEqlhWXzjhlJCp6QyG4s7OUBECn1TCnIp8Nh9vYfKydKeMGzr7erZaR2PsvI/H5GpHlAJKkj13EGAoTJ34RSaNn//4fcvToH5AjQaZMuUMcN45R+ssb7E5Fxedobl5DQ8OzVFd9s0+RpEAgEAiyj2GLgwUFSznv3IP93l9ediXlZVcOuA+t1khtzT3U1tzT7zbdn0OrNTF/3mPDXeqYQM0bLBFNxQKBQDAkVKeSHJHwOfueHBvVUpI0bSwWTcVjG12ctuI9jZ24/CFyjTpqBhCXRpNIxI/LtQdQImV6ozaFZ6tzEJTR4g2H29h8vINPLqwccNtY3uCAZSRHACVvVM1sHCoTKm9AI+nZu+/7HDv+MBE5wLSp3xcC4RhEzRu09sob7E5B/lJycqbhdu+joeHvTJjwX6O1PIFAIBCkiIxpKxbEp1ltKhZlJAKBQDAkVDEi5DPjc/r63J/OY8WBQGvMaZWTU53i1QhSgT6aOdi9kCQ2UjwhH60mPcQel2sfshxEp8vHZOorjOkN0bHiLHUOAsyPlZJ0DLrtnqhzcHpZ/+KuWsJnMU86pfVUVHyW2tr7AIm6ur+wd+9dyHLklPYlyFzUaKjeZSTdkSSJyorrADh2/FHa2t7Fl6YXzAQCgUCQGIQ4mMHIstxtrFiIgwKBQDAUAsGoOOg14ensmwUWEwfTcKzY7VZc9SZTBVqtZZCtBdmILjpWHIn4iESU8fiPjiji4MJ0Gil2RkeKbbPjutNU52Awm52DEwoA2NvYiScQ6nc7fyjMwWYXALUDNBV7PUcAMFuGljcYj/Hln2LG9J8AEifqn2T3njuQ5fAp70+QWUQiftxupfE+1zprwG3t9svQaMz4/Q1s3vI53n3vbOrrnx6NZQoEAoEgBQhxMINxtzvxubxIkkTR+JJUL0cgEAgygmDMOdiPOGhMZ3FQjBSPdXS6XEAR24LRbGbVObhgYkGqltWH7k3F8RgLzsFSm4myPBMRGbbVOfrd7sBJF6GIjM2koyyvb0mSiuocNA+xjKQ/ysquYOaMnwMaGhr+wa5dtxGJ9C9eCrIHl3s/shxCp8sbNLcyGOwgEunuro+we8+dwkEoEAgEWcqwMwcF6UNzNG+woKwInUH8KAUCgWAoqGPFYZ+ZgNPT536TqSy63UkikRAaTfq8v7o9qjg4NcUrEaQKSdKg0+USCnUSCjpo8+ZwosOLRlLGitOFTucOIH5TMYwN5yAoo8UN2xvZfKyDpVVFcbfpGim2DZgB6B3hWHF37PZLkTQ6du78fzQ2/QtZDjFjxk/RaPQj3rcgfVHzBnNzZw6aN+nxHgF6N1tHcLsPxj4nBQKBAJSJxlAoRDgsnOjpjFarRafT9fv+nz5nPIJh03K8q6lYIBAIBEMjEGgBFOegN45z0GAoQZL0yHKQQODksFpBk02sqVg4B8c0Ol2eIg6GHHx0xAwowpLVmB6HdeGwD7d7LxC/qRjAYIgWkgSzXBysLODF7Y1sPtbe7za7GwYvI5HlSJc4OIKx4u6UjrsISdKyY8etNJ18AZc7QmXFt/oVCHNycrDZRGttJjOUvEEVRYTWAD1zKQ8c/AkWyyTM5orEL1AgEGQcgUCAhoYGPJ6+F9wF6YfFYqGsrAyDwdDnvvQ4ihScErG8QVFGIhAIBEOmK3PQjNfpQZblHlfQJEmD0WjH5zuOz1efpuKgcA6OZfR6Gz4fBIMONh41ArAwjUaKXa7dyHIYvb4IozG+w0ivj44VB7J3rBi6lZIc7+jzXqOyp1FxDtYO0DTt9zcSiQSQJD1GY+Lek8aVXMCc2b9jy9avsvb1HILBR/vd1mq1cuutt6LTidOHTCXmHLTOHHRbk6mM6bU/YveeO1EEQg0ajQGXaxcbPryE6bU/Zty4C5K7YIFAkNZEIhEOHz6MVqulvLwcg8EwqCtZkBpkWSYQCNDc3Mzhw4eZOnUqGk3PlEHx6Z7BtETHiktEGYlAIBAMmUC3zMFQIETQH8Rg6nn1zGQqj4mD6UIw2EEg0AxAjkU0FY9ldNHG4lCok4+OKodyCyZlThkJdDkHw2EXkYgfjcY4ausbTWaNz0OnkWh2+ql3+Bifb+6zzZ7GwZ2DHrWMxFyR8KiD4uJzmTf3f9m69VmCQRNqpmVvbDYbWq02oc8tGD1kOYzLtRtQxoqHQnn5VRQWnoXXexSzeSKyHGbHzlvp7NzC9h1foaLiWioqbsDvr8diniTGjQWCMUYgECASiVBZWYnFIory0h2z2Yxer+fo0aMEAgFMpp45x6KQJEMJBYK0NygnuGKsWCAQCIZOMOpUkkM5AHid8UpJlBMcvz99gtdV16DRWIZOZ03xagSpRB8VB92+DnZH8+rSyTnYVUYSf6QYlNZlSVJErmx2D5r02pjoF2+0uNnpp8UVQJJgWmn/zkEl/23kZST9UVx8DueuOJ/+hEGAFStWCEdIBuP2HCIS8aHVWrBYJg35cSZTGQUFSzGZyjCbK1hw2t+YMOELANTV/YX1689l8+bPijZjgWAM09uBJkhfBvpZiZ9ihtJ6ogVZljFZzeQU9H8wKRAIBIKeqJmDOq3itPJ29l9Kkk6tjCJvUKCiNBZDXWsT4YhMeZ6J8jiOtFShOgf7KyMBkCQJvV4RNINZ3FgM3UaLj3X0uU/NG5xclIPZ0L8rL5FlJP0xb94llJRY6J0xBxHs9hKqq4VjOZNxRfMGrdZaJOnUHaAajZ6pU77N9On/0+se0WYsEAgEmYwQBzOUWBnJhFJxFVcgEAiGiCzLscxBfXSs0ROnlMQYzRn0+dNnrNjtFk3FAgWdXnEONnYoY+bpNFIcCrlxuw8CAzsHoVspyRhoLIb4zsGhjBRDt7HiBJWRxEOSJE4/o5a+pwcaliyZII43M5zuTcWJIP4IcVdxjkAgEAgyCyEOZihqGYnIGxQIBIKhEwp1IsshAEymYgC8znjOwag4mEaZg8I5KFBRx4rbXYqolk4jxS/seowbPzrKdpcJo3Hg2JNYKUmWOwfnVSo/nx31nQRCPV15exoGLyOB0XEOAtTWLMBqbaHLPRjBam2hpua0pD6vIPkMp4xkKHS1GXdHk7TRd4FAIBAkFyEOZijNqnNQ5A0KBALBkFEdSlqtFbNVEVjiOQfVzMF0Go9yexRx0Cqcg2Me1Tno9XcAsCBNxEFZlvneup9wzBvkocNNyLI84PaqczCY5c7BSUUW8i16AqFIbIxYZVf037UDOAdlOYLXewxIXuagitlczrJl8+k6RdCwbNl8zOb0aW0XDB9ZlnG6lLHiRDoHa6bd3e0WDdNrfyRKSQQCQcbQ2NjIrbfeypQpUzCZTJSWlnLmmWfy+9//Ho9HMQ9MmjQJSZKQJCnWyvxf//VftLd3TQO8+eabsW0kSaK0tJQrrriCQ4cO9Xi+zZs388lPfpLS0lJMJhNTp07lC1/4Avv27euztgsuuACtVsuHH37Y577rr78+9lx6vZ7S0lJWrlzJI488QiTSOxpk6AhxMAORZTnWVFw8QTgHBQKBYKioI8UGQxEWm1pI0r9zMBTqIBTqKx6ONqGQE7+/EQCLRTgHxzp6nSIkGTRucgzaQV1no8WTG+5ke+txAHZ1tPLkhjsH3H6sOAclSWJ+ZT7Qc7Q4EIpwsNkFwPSy/n+Gfn8jkYgfSdJhMo1P6loBFi++gYJCRdgtKAizePENSX9OQXLx+eoIhTqRJH1C3ecVFdcgSUrT+ILT/kZ5+VUJ27dAIBhbNDi8vHewhQaHd1Se79ChQ8yfP581a9Zw3333sXnzZt5//31uu+02XnjhBV577bXYtvfeey8NDQ0cO3aMJ554gnXr1nHLLbf02efevXupr6/n73//Ozt37uSSSy4hHA4D8MILL7B06VL8fj9PPPEEu3fv5q9//St5eXncddddPfZz7Ngx3nvvPf77v/+bRx55JO76V69eTUNDA0eOHOGll15ixYoV3HrrrVx88cWEQqFT+p7oTulRgpTiauvE7/ah0WooLC9O9XIEAoEgY1DLSAyGYqRcCwDeOM5BnS4XnS43Kso1oNOlVpCLNRUbStHrB84mE2Q/uuhYcY7ew7wJ+ei0qb/W6/XWc+87P0eDMpCqAe595+d8Ys5/9+s663IOZrc4CMpo8Rt7m9l8vIPro7cdanERDMvkGnWMH6BQxhMdKTaZKtBokn/oLkkSixeVsm7dPmbOlETWYBbgVMtIcqah0RgSum+DoQC/vxGNRp/Q/QoEgsxDlmW8wfCwH/fMxjq+/9xOIjJoJLjn0plcsaBiWPsw67XD+rz6yle+gk6n46OPPiInJyd2e1VVFZdddlmP6Yfc3FzsdjsA48eP57rrruPJJ5/ss89x48aRn59PWVkZ3/ve97jmmms4cOAAlZWV3HDDDVx00UX885//jG0/efJklixZQkdHR4/9PProo1x88cXcdNNNLF26lJ///OeYzT2PE4xGY481nXbaaSxdupTzzjuPxx57jM9//vND/l6oCHEwA2mOugYLyorQ6cWPUCAQCIaKOr5oMBShsynioCdOWzGAyViOK7QXn68+JTl/DocjNtLQ3Lwdl6sQTe4MGhqUUeecnBxsNiEUjkX00bFii87LgonpUUbyn71Psdflj/07Aux1+fnP3qe5ct7/i/sYQ8w5mN1jxdBVSrLleEfstljeYFnugCc03mgZiSWJZSS9mTy5Erfnp+TnLx615xQkD6dzB5C4keLu6HV5+P2NBIOOhO9bIBBkFt5gmBnfe2VE+4jIcNe/d3LXv3cO63G77r0Ai2Fo2khra2vMMdhdGOxOf5/LJ06c4Pnnn2fJkiUDPocq5gUCAV555RVaWlq47bbb4m6bn58f+39Zlnn00Uf53//9X2pra5kyZQr/+Mc/uPbaawd9Xeeeey5z587l2WefPSVxMPWXmgXDRi0jEXmDAoFAMDzUzEGDvghLbv9jxQDGaG6Szz/6uYOhUIiHHnqIBx98kAcffJB//vMwWzZfzLp1lbHbHnrooVMeGxBkNjqdMoJq0XvSooxElmXue/+PcaoJ4McfPNZv9qDeEBUHx4BzcG50rPhoq4fWqIiq5g8O2lQcdQ6ak1xG0h2DoQSAQKB51J5TkDzUvEFr7oyE71unzwcgGOpI+L4FAoEgGRw4cABZlqmpqelxe3FxMVarFavVyu233x67/fbbb8dqtWI2m6moqECSJH7+85/3u/+GhgZ++tOfMn78eGpqati/fz8AtbW1g67ttddew+PxcMEFFwDw2c9+locffnjIr622tpYjR44MefvuCNtZBhLLGxRNxQKBQDAsVIeS3lCE2RgVB+OMFUNqG4u1Wi15eXm43f3nHdpsNrRa7SiuSpAutHtNAJh1fuZVWlO8Gnhp/3/YfHJvn9sjwMbGraw5uIYLplzQ536DfmwUkgDkmfVMGWflwEkXW453cN70UnY3qk3FA4uDMefgKLbAquKg3y/EwWxAbSq2JcM5GBUHQ8I5KBCMecx6Lbvu7ft5PxCNDh/n//wtIt2uI2okeO3ry7HnmYb13CNlw4YNRCIRrrnmGvz+rmmIb33rW1x//fXIsszx48f5zne+w8c+9jHWrVvX41i8oqICWZbxeDzMnTuXZ555BoPBMGhBW3ceeeQRPvWpT6HTKVLd1Vdfzbe+9S0OHjxIdXX1oI+XZfmU40CEczADaYk2FZeIMhKBQCAYFt0zB83RsWKv0xP3Q9tkVMRBfwrEQUmSWLFixYDbrFixQmSBjVG21HU5Rk3a0Qnu7g9Zlvn2K1+mv99EDRrueuOuuH9jauZgtheSqMyLlZJ0ALAn1lQ8cKGM6hy0WCYla2l9MBoVcTAcdhEOp/Z3TDAy/P6TUQeohNU6uGtluOijGajBYPsgWwoEgmxHkiQsBt2wvqpKrNx/+Wy00WNarSRx/+WzqSqxDms/wzkmnjJlCpIksXdvzwubVVVVTJkypU++X3FxMVOmTGHq1Kmce+65/PKXv+S9997jjTfe6LHd22+/zbZt2+js7GTLli2x0eNp06YBsGfPngHX1dbWxj//+U9+97vfodPp0Ol0jB8/nlAo1G8xSW92797N5MmTh7Rtb4Q4mGEE/UE6GpWDaOEcFAgEguER6JY5aIkWkoRDYQJef59tU+kcBKiursZuL0HxX3Ungt1eMqSrh4Ls5KNjnXhDSkNoKJRat05Ty7vUORvp75p4hAjHO48TCAf63KePOgcVAarv32A24XA4mJ4Xpkhys/vgUXYfPErY1UaRxk2+7KKzszPu42Q5gjc2Vjx6zkGt1opGo/yOqRdVBJmJ6hq0WKrRai0J378+NlYsnIMCgeDU+NSiCbzz7RU8+YWlvPPtFXxq0YSkPl9RURErV67kt7/97YBTOv2hugW93p4XzyZPnkx1dTW5uT0v+q1atYri4mIeeOCBuPtTC0meeOIJKioq2Lp1K1u2bIl9/exnP+Oxxx6LNR/3x9q1a9m+fTtXXHHFsF8TiLHijKO17iSyLGPOtWDJix+eKRAIBIL4BINdmYM6gx69yUDQF8DT6cFo6Tm6YDSqmYOpEQd9vhNUTviQxsZJve7RsGTJBOEaHMNsOtrO9MkWzDo/wVB8UWk0CIVcHNx/J/87fzyGvHOZPPmrcbcblzMOo87Y53adLhdJ0iPLQYLBVrTa+K3GmY6aIep2u7nUBDTD0399X/l/4C+P7cZqtXLrrbfGxohU/P4mIhE/kqTDZBpec+NIkCQJg6EEn6+OQKAZs7ly1J5bkFjUvMHcJOQNQjdxMNiRlP0LBIKxQVmembI88+AbJojf/e53nHnmmSxcuJC7776bOXPmoNFo+PDDD9mzZw8LFiyIbet0OmlsbIyNFd92222UlJRwxhlnDOm5cnJy+NOf/sQnP/lJLr30Um655RamTJlCS0sLTz/9NMeOHeNvf/sbDz/8MFdeeSWzZs3q8fjKykruuOMOXn75ZT72sY8B4Pf7aWxsJBwO09TUxMsvv8z999/PxRdfzOc+97lT+p4IcTDDiOUNTigVJ4YCQRrSvWE2HqJhNrV0dw4CWHItOHwBvE43Bfaera+qc9Dvb0SWI0jS6JjtIxE/x449zOEj/4vB4MNqteJyFaKY/SNYrW3U1Jw2KmsRpB/eQJid9Z24KywUmdtTmvO1f/+P8PnqmJA3iSWLfx0rShkqkiSh1xcQCJwkEGyL/c1lGyPJEFVdgybTeDSa0T1s7xIHhXMwk1Gdg8loKoauQhKROSgQCDKJ6upqNm/ezH333ccdd9xBXV0dRqORGTNm8M1vfpOvfOUrsW2/973v8b3vfQ+AkpISFi1axJo1aygqKhry81122WW899573H///XzmM5+hs7OTyspKzj33XH74wx+yceNGtm7dykMPPdTnsXl5eZx33nk8/PDDMXHw5ZdfpqysDJ1OR0FBAXPnzuXXv/411113HRrNqZ2zCHEww4jlDYqRYoEg7ejuDumP/twhguQTifgJRV1WBkMxAGZbDo7mDrydfQVdo7EUkIhEAgSCbRijj0kmbW3vsnff9/F4DgNQULCYJUsm8frrrugWGpYtm4/ZnJ0iimBwthzvIBSRCcnK9EAoRc7B5pbXqW94GpCYMf2BYQuDKgZDEYHAyawuJVEzRJ944ol+t+kvQ9STgjISFfUiil+IgxmN0xl1DlqT5BzU5QMic1AgEGQeZWVl/OY3v+E3v/lNv9sMpfn3nHPOGVLpyMKFC3nmmWf6vX+gfbz44oux/3/sscd47LHHBn2+4SLOTjOMxoMnALAWntpBuEAgSB6iYTa9CQSUvFZJ0qHTKe5Nc65aStL3Z6bR6DEaS/H7G/H76pMqDvr8jezffx8nT/4HUMTL8eW3YjKdA8CWLX+ntbWDoqJ8KitX09DQIFyoY5SNR5XfY5MxWgKQAnEwEGhl9+47AJhQeSMFBUtOeV8GfWF0n9ldSlJcXExRUT6trW30jPyOUFRUSElJSdzHxfIGR7GMRMUYbSwOiMbijCUYdODzHQeS5xzU69X3IuEcFAgEgkxGiIMZxI43N9N0uAGAdU++ht5kYNby+SlelUAgUBmJO0SQfALRvEG9vjA2ImyxKe4rTxznICi5g35/Iz5fPTbbnISvKRIJUlf3Zw4d/hXhsBvQUFHxWSZO+Cq//e0juN09RwtaWzti4wbChTo2+eio4s6xWQohMvqjfLIss2fvXQSDreTkTKWq6hsj2p8+6k4LZnFjcSgU4k9/+hOyfBwo7HWvBq/3EH/605/i/j17vEeAVDkHo+JgQIiDmUpr29sAGI32mIiXaPT6AkBkDgoEAkGmk5QzihN7jrLxpfWcPNKAu8PFxbd8kuoFNf1uf+CjPWxbu5GWY02EgyEKx5ew9BNnM3F2zybGra99xMaX3sfjcFFcWco5n70Ae/X4ZLyEtMPZ1snax7qspMgyax97kYmzq8ktFM4RgSBdUBtmGxub6O0OsdtLRcNsCgn2yhuEbs7BzvhuT5OpjM7Ozfj8DQlfT0fHR+zd+z1c7r0A2GzzqK25l9zcmciyLFyogj5EIjKbouJgSV4x3vbRd+s0Nv2b5uZXkCQdM2b8FK22b9HIcOhyDmbvWLHqKm9uPonV2tInQ9TvN1NS0k/moCd1zkGDUREH/UIczEjq659m957vAEp2bn3905SXX5Xw59FFRcdQyIEsy+ICqEAgEGQoSUlXD/qDFFeO45xrVw9p+xN7jzFh5mQu/fqn+fQ9n6di+kSe+8VTnDzaGNtm3wc7efvJV1ly2Vlcfc/nKaks5V8/fRJPPyd02UZHU1ufGXQ5IuNoyt4r7QJBJiJJEouXVNL37VU0zKaaWBmJvps4qDoHnfGdg2pBgs+XuMbiQKCFXbu+xcZNn8Ll3otOl09t7X0sXPD32NiX6kIdCOFCHXu8d7CVTl8Ik07DuDxFuBlN56DPV8++fXcDMHnSV7Hlzhr4AUNAb4iKg1nsHFT/noPBHHQ6P12fDxqKio8QDObE/XuW5Qie6FhxKpyDapSCKCTJLLzeExw+/L/s3nMH0HXusHvPnfh8ib/QpWYOynKYcNg18MYCgUAgSFuS4hycNHcKk+ZOGfL2y69Z1ePfZ37yXA5t2sfhzfsYN9EOwKaXP2Dm8vnMPHseAOdefxGHtx5g57otLLr4zIStPV3JLy1EkqQeAqGkkcgr7T2eIhAIUk1tzQLWWteIhtk0Qz3BNXTLDrQM5hw0Jk4clOUwJ048ycFDP4uVSJSXXUV19bcwGPq+l1dXV1NSaqepsRFNN80gIkOp3S5cqGOMpz48xref2Q6ALxRhZ0MEK6OXOSjLEXbtvp1QyInNNpeJE7+ckP2qYn02F5JA19/zyaYwudYWXK5irNYWysr24fOvjPv37A+cJBLxIUlaTKaKUV+zGCvODCKREI7OzbS2vEFL61rc7v39bYnXexSTqSyhz6/VmtBojEQifoLBjlMuJxIIBAJBaknLoCI5IhPwBTDlmAEIh8KcPNLQQwSUNBITZk6i8cCJuPvw+/34/f7Yv12uzL6SlVto49wbLmLtYy8iR2QkjcS5118kRooFgjTEbC7njDNqWbNGdVuIhtl0QM0cNBiKcDgceDwePGEvIYNMu9NBQ0OXoyISiaDRaHA6c3G5CpEj7TQUd90/3DKQzs5t7Nl7F07nDgByrTOpqbmHvLz+c2N3NzjZHq7ALjX2uF0jQeXMRcI1OIZocHi549ntdJ8f+NtHDj4/e/TaiutO/JX29vfQaEzMmP5TNJrEHEIaxoBzEBT3YMXMRTgd+5g0aTMHDy7GXrYPnS7ExGnOuH/P6kixyTQejUY/2kvuIQ6KcdH0Ihhsp7V1HS2tb9Dauo5Qj3gBDbbc2XQ6t0GPdw0N5iQ5UPX6Avz+RoLBDszmyqQ8h0AgEAiSS1qKgxtfep+gP8DUJTMA8Do9yBEZS15Oj+0seVbaGuJfab7//vu55557kr7W0WTW8vlMnF2No6mNvNJCIQwKBGnMrNkree+93+ByFVNQILN48Q2pXtKYRx0r1uryeeihh7ry/CrARQsPPvhgbNvuTm2nczkfffQRCxf+jNxcxREx1DKQYLCDgwd/yon6vwEyOl0uVVVfp2L8NUhS33yxUDjCa7ubePTdI3xwuA2QudhooUjyoJEU12CbbGHB7NqRf0MEGcPhFjeRnskiuIImgF6iQHJwuw9x4MBPAJgy5XZycqoStm+1kCSbMwdVFs6uZcvGIPkFDUyf8Sb19Uoet9XwFrL8nT7im1pGkixBZzBUl3UkEiAcdglHWIJQL071R7yLT7Is43LvjboD38Dh2AxEYvfrdPkUFy2nqOgciorORq/Pj2YO3hndTsP02h8l3DWootflKeKgaCwWCASCjCXtxME97+/gg3+9zSX/75OxFslT4Y477uDrX/967N979+5l8eLFiVhiSskttAlRUCDIAELBjqg7ZBFz5liE4yINUMcWjcYS8vI6Biz70Ol0BINBAJxOJ2+99RY1NTUxcXCwMhBZjtDQ8CwHDv4k1sJqt3+cKVPuiOV4dafDE+BvHx7nL+8f5USHFwCtRmL1rDLKpRyC+9YBimtw3uJllOdbTuE7IMhUJhfnINHTA+QLKcdIwWBynYORSIhdu79JJOKjsOBMKsZ/NqH7VwtJsrmtWKU830LN9FIAfD4rzSerqKreSsB3kI6ODRQULOmxveoctKSgjASUcVGdLpdQyInf3yzEwQQQCoV6XpyKg3rxSZKCtLe/T0vrG7S0vIG/VzGWNaeGouIVFBetwGab18fNW15+FYWFZ+H1HsVsnpg0YRBAp88HFEejQCAQCDKTtBIH967fyeuPvMBFN1/BhJldV6XNuRYkjYTH0fOD1ONwkZNnjbsvo9GI0djVoGe1xt9OIBAIkkEw2E5+QQMLFj5HYeHKVC9HQJczyWgoZsWK+TzxxBP9brts2TLeeOONfu8fqAzE6dzN3n3fw+HYBEBOzlRqpt3T58QfYG+jk8feO8I/N9fhCyoukAKLns8smcBnl06kLM+MLMvc8z/bkbzthIx53Hjh0iG/ZkF2MC7XRL5FT7tHEay1ksSXzpkLnuQ7B48e/QOdnVvR6XKZPv3HSFJiu+z00czBcNhNOOxDqzUldP/pxoJqA0ePKeJgYfEEKsZfTn39k9Sd+Guf94hUOwdBcQ+GQk4CgeaEOkbHKmpz9UDioMkUZPuOL9HR8T6RSFdEkkZjpKDgDIqLVlBcvCJWmDUQJlNZUkVBFb3aWDyKBUkCgUAgSCxpIw7ufX8Hrz78Ahd+5RNMnje1x31anZZxk8o4vusw1QuUEQw5InN81xHmnL8wFcsVCASCAenuggmIK+lpQffMwerqakrHldLU1ATdNT4ZSktLWbZsGbt376CxsanXXiKUlpb0KA/w+RrweI9gNJRwov5v1NX9GVkOo9VamDz5Fiorru+RFxaOyLy+u4nH3jvCewe7Rimnl9m44YxJXDqvHJO+y5UoSRLTF5zO+nVradRPFi7UMcibe0/S7gmSa9Lx26vnM82eS6HZzTvvQCjkRJYjCRftADqdOzh85DcATJt295DEiOGi0+UiSXpkOUgw2IZWm93ZrD5fHQA6bSmrV62kpMRPff2TNDevwe8/idE4LratN9ZUPCkVSwWU3EGP57AoJUkQanP1QBenSu3/oa1NKcEyGssoLj6X4qIVFBQsRas1j9ZSh4XaWBwMdqR0HQKBQCA4dRJ/JAkEfAGajzbSfFQJUXc0d9B8tJHOVuVq0rtPr+WVP/47tv2e93ew5qHnOOvq87FXjcfd4cLd4cLv8cW2OW31Ena8tZld72ylrb6FtY+/SNAfZMZZc5PxEgQCgWBEdD9AFgfLqUeW5Zhz0GAoRpIk5tbO7ikMAkgwr3Y2Go2GxUsq6fsxqaG45Cnee38FW7d9iS1bP8+7753F5s2fZf0HF3D8+KPIcphx4y5i6ZI1TJzwhZgw6PAG+dPbhzjnp2/wxb9s5L2DrWgkuHCWnae+uJQXb1nGVYsqewiDKssWzOKf/ll82KrHFwwn/hskSGv+/L4iEn16USXLa8ZRlmdGr1MjRmRCIWfCnzMc9rNr1zeR5RAlJauxl16W8OcARSxRR4vHQu6gNyoOnnfep6iqqiI3dzp5eachyyHq65+KbSfLMp4UjxVDV+6gX4iDCaO6uhq7vYTumYEKEazWFiZOLKO66pssWfwiZ57xNrU191JcvCJthUEAvTpWLDIHBQJBhnD99dcjSVKfr9WrVwPK8cm//vWvuI/7+Mc/Hvv3OeecE3usyWRi2rRp3H///bHscoA333wTSZLo6Ojos79Jkybxy1/+Mvbvt956i3PPPZfCwkIsFgtTp07luuuuIxAI9NiXJEloNBry8vKYP38+t912W49yxVMhKc7Bk4freebHf439++0nXwVg+rI5rPrCpbgdLpxtXR8eO97cRCQc4c0/v8ybf345dru6PcC0JTPxdnpY/+xbeBxuiieU8vFvXt3vWLFAIBCkku65OyKDJ/Uo7iplJFMdY5w5Zxavv/oaYQOogW7aAMyYMwuA2poFrLWuoSvpTcZqbSE/vx6fD3y+43Gfq7zse4wf/wlMJkW8OXBSGR1+ZuMJvFFhL9+i59OLJvDZpROoKBg8P7A8z0RRjoFWd4DdDZ3Mn1Bwyt8LQWZxuMXNW/uakST47NKu8VKNxoBGYyYS8RIKOWJjfYni0KGf4Xbvx2Aoprbm3qQ6VvWGIvyBppi7N5tRnYMmc0Xstorxn8Xh2MSJ+r8xceJNaDQ6AoGTRCJeQIPJND5Fq+3eWNySsjVkG5IksXhJJc/9u7fgquGcc85iwYKrUrKukSAyBwUCwUhxtnXS0dRG/igWr65evZpHH320x23do+mGyhe+8AXuvfde/H4/a9eu5Ytf/CL5+fncdNNNw9rPrl27WL16NV/96lf59a9/jdlsZv/+/TzzzDOEwz3NAXv37sVms9HZ2cmmTZt44IEHePjhh3nzzTeZPXv2sF8DJEkcrJg+iVsf/26/96uCn8qVd3xuSPudu3IRc1cuGtHaBAKBYDQIdBsrDoU6kGVZjIOmkGBUdNBqrWi1yoe+rSiPpYuW8u629cpGEixdtBRbkSKymM3lLFs2n337PkDdYNmy+cyZcxePP34/lpy9jB+/t89zvfLKekKhZuZd+BkeX3+ct/d3nVTXlOZyw5mTuGzeeMyG/gtNeiNJErMr8nhzbzPbTziEODiG+Ot6xT12zrQSJhb1LGrT6/Pw+70EQ50k0lPU3v4Bx44/AkBt7X0Yoo3CySJWShLI7lKScNgbE9nMpsrY7ePGrWbf/h/i9zfS2rqWkpJVMdeg2VSBRmNIyXoBjKo46BfOwUSiXnxyuQpRHOoRrNY2ZsxYluqlnRJ6ncgcFAgEius9FAgO+3G73tnGW395JXa+tPzaC5ixbM6w9qEz6Id9rmU0GrHb7cN6TDwsFktsPzfccAO//e1vefXVV4ctDq5Zswa73c4DDzwQu626ujrmZuzOuHHjyM/Px263M23aNC677DLmz5/PTTfdxDvvvHNKryMp4uAHh1p5cN0htp9wcNLp54/XLuCCmf1/07/x9Fae2VTX5/ap46y8+vXlAPzvGwd4ZWcjB0+6MOm1nDaxgG9fWEt1iXAOCgSC9KP71XNZDhMKOdHrRdN4qvBHT8h7ixznfXwV2/ftoNPnwqI1cd7HV/W4f/HiG3juuX0AFBcXsHjxDQBotTM4UaenvHwfktQ1NiDLEl5vLi1Bid/+ZRMgoZHg/OmlXH/mJE6vKjplkXhORT5v7m1mW504+RoreAIhnv5Icah+7oxJfe7X6XLx+xsTekIeCjnZtfs2QKa87CpKis9L2L77Q2+IjhVneWOxOlKs1VrR6bo+DzQaI+XlV3H06B+oq3uCkpJVeNUyEkvqykigShP0uwABAABJREFUu3NQiIOJxGwuZ+5cHe++q0ZXaFi2bD5mc2Zmbur1ygWrYKgjtQsRCAQpJRQI8rsvPjD4hgMgy3KfidKh8JUHb0NvTN3FNFDW/s4777Bnzx6mTp06+AN6YbfbaWhoYN26dZx99tnDeqzZbObLX/4yX/va1zh58iTjxo0b/EG9SErmoCcYZnqZjXsvmzWk7b9/6Qw23Hle7Ov9O84l36Lnotld7VofHG7j2qUT+efNZ/KX/1pCKBzhcw9vwBMIJeMlCAQCwYjoPVojRm1SSzDQVUbSHUmSWDj7NDQBKI7Y+gh3kiRxySUf58ILL+SSSz4ey/hYsWIFgUAOB/YvRZaVx8iyxIH9SwkEcnjfV4bNpOeLZ1fx1rdW8ODnFnJGdfGI3KNzxivOjO1CHBwz/HtLPU5fiIlFFpZPLelzvy7q1gmGOhP2nPv334fPV4fJVMHUqd9J2H4HQv27DGZ55qDPq4iDZnNln/eC8eVXAxJt7e/g8RzGkwZlJAAGo5o5KMaKE01FRR5Wq/J9tdtLYhefMhE11iAonIMCgSCDeOGFF7BarT2+7rvvvmHv53e/+x1WqxWj0cjZZ59NJBLhlltuGfZ+PvnJT3L11VezfPlyysrK+MQnPsFvf/tbOjuHdpxXW1sLwJEjR4b93JAk5+CKmnGsqBm6Umkz6bGZupocX9nZiMMb5JMLu/JY/nzj4h6P+ekn57Lgh6+xvc7BkqrkjrsIBALBcAkGeomDoQ4gtQ6QsUysjETf9/Ni2vQaNj31LuF8f9zHLl26lBdffLHHbdXV1ZSU2mlohPb2csxmJ15vLj5/Di6Nla9cegaXn1aBxZC4j9nZFcrJ1/6TTjyBUEL3LUg/ZFmOFZF8dslENJq+wrJ6Qp4o52Bzy+vUNzwNSMyY/gA6XW5C9jsYsUKSMeIcNJsq+txnNldQVHQOra1vUHfi//D5lLbaVDsHjSJzMGn4/HVMmrSHurqPsXLl6oyOHhGZgwKBAJTR3q88eNuwHuNqd/KXb/+hR4GHpJG49v4vYy0Y+nGIzqAffKNerFixgt///vc9bissLBz2fq655hruvPNO2tvb+f73v88ZZ5zBGWecMez9aLVaHn30UX74wx+ydu1aPvjgA+677z5+8pOfsGHDBsrKygZ8vPo9PNXPk7Q8s3j6w+Msm1I8YEi706c4BvMt8a2jfr8fv7/rRM/lciV2kQKBQDAA6kmuVmshHPaIA+YUoxYdqM2b3bGV5APg7nARCgTRGfQ4HA48Hk//O9QZOaSfRK7USCCQQyCgZMFpJDhnxQouWTop0S+BUpuJUpuRpk4/O+s7WTRp+Acvgszho6Pt7G7oxKTX9LhY2h11NDWUgIbQQKCV3bvvAGBC5Y0UFCwZ8T6Hij7qHMz2tmKfVxkR715G0p082xUcPbqVffteRa/Pw+crxO0qirUP5uTkYLONbjyF+p4ZDLYiy2EkaehZqYKB8fnqyC9o4JxzllFUVJXq5YwIta04FHKIjGWBYAwjSdKwR3sL7EWce8NFrH3sReSIjKSROPf6iyiwJ98AlpOTw5QpU+Lel5ubi8PR9/iqo6ODvLyeJXB5eXmx/Tz99NNMmTKFpUuXcv755wPEPrsdDgf5+fmD7m/8+PFce+21XHvttfzgBz9g2rRp/OEPf+Cee+4Z8PXs3r0bUBqQT4W0EwebOn28ua+ZX316Xr/bRCIy976wi4UTC6ixx1eT77///kG/eQKBQJAMIpEA4bByQcJinozTtbOPk1AwuqiuF32cYgVTjhm9yUDQF8DZ2kluSR4PPfQQbre73/350POsdxYXGS0USR40EkRkaJMtLJhdm7TXMacin1d3NbGtziHEwSxHdQ1eNnd8vxdC9QkaK5ZlmT177yIYbCUnZypVVd8Y0f6GS6yQZAw7B0OhEM88sxO3++Jut57Gls2bgc0AWK1Wbr31VnS60Tt81+sLAQlZDhMMtse9wCIYPrIsx9yhqWyjThR6XT6gZCyHw65Rcx0LBILsYNby+UycXY2jqY28UWwrHoiamho2btzIddddF7stHA6zdetWPv/5z/f7OPWz+pvf/CabN29GkiSmTp2KRqNh48aNTJzYNRFw6NAhHA4H06ZN63d/BQUFlJWVDXheAuD1ennwwQc5++yzKSnpG0UzFJKSOTgS/rGxDptJx6oZ/ReY3PXvHextdPKbz8zvd5s77rgDh8MR+9qwYUMylisQCAR9CAY7ov+niY2EiZDu1BLoJ3MQlKuctuJ8ABzNHWi12j5X8Lojy+CM6JlYlEvhlPmo054aCeYtWUZ5fv+u95HSlTvYkbTnEKSek50+XtquuMWuPb3/sVJdgsaKG5v+TXPzK0iSjhkzfhpr9B4tYoUkWd5W7IuKgyZzZZ/7BnvfAcV5oNWOrnNPo9HHyiZE7mDiCIU6CIeVEz2TKTNLSLqj1ZrQaJT3DZE7KBAIToXcQhsV0yeNqjDo9/tpbGzs8dXSonzWff3rX+dPf/oTv/vd79i/fz9btmzhi1/8Iu3t7QOKgwBf+tKX2LdvH8888wyguBA///nP841vfIPnnnuOw4cPs27dOq655hqWLl0aG0H+4x//yE033cSaNWs4ePAgO3fu5Pbbb2fnzp1ccsklPZ7j5MmTNDY2sn//fv72t79x5pln0tLS0mdMejiklTgoyzJ//+g4n5hfgUEXf2nf+/cO1u45yd++uJSyPHO/+zIajdhsttiX1SpajQUCweigjhDr9fmxjDsxVpxaggNkDgLkRUeLO5s7YoUj/SFJMP2003nla8u557PnUVKqXMwqKbVz44VLE7vwXqi5g6KxOLt5csNxQhGZBRMLmDW+f8FIHx0rHolz0OerZ9++uwGYPOmr2HKHViaXSLreJ7N7rNjr7d85ONj7DijZSKkY14zlDvpFY3GiUH8XDIYStFpTileTGFT3oDjeEQgEmcLLL79MWVlZj69ly5YBcPXVV/OnP/2JRx55hAULFrB69WoaGxtZt24dpaWlA+63sLCQz33uc9x9991EIhEAfvWrX3Hddddx++23M3PmTK6//nrmzJnD888/H/tsX7x4MS6Xiy9/+cvMnDmT5cuXs379ev71r3+xfPnyHs9RU1NDeXk5CxYs4Mc//jHnn38+O3bsYMaMGaf8/UirseL1h9o40urhU4v6XlGVZZnvP7eTV3Y28rcvnk5lYfKcGQKBQDASusTBglgOjzhYTi1dmYPxxUFbsSLAdLZ0AF2FI02NjXTvgYjIUDyulK9cembsg3z1qpW89NJLrF61Mukn7nMq8gE41OKm0xfsUeYlyEx651uGwhGeX7+TIinAldMr6Ozs7Ddnritz8NTEQVmOsGv37YRCTmy2uUyc+OVT2s9IUf8uw2EP4bAXrbb/i7+ZSijkjGVDmuKIg6C879jtJTQ2NtHz+n0Eu72U6urq5C80DgZDCbj3EggIcTBR+HwngP5/FzIRvT4ff6CJYAIyUAUCgSDZPPbYYzz22GMDbvOZz3yGz3zmMwNu8+abb8a9/Q9/+EOPf5tMJu6++27uvvvufvc1f/58/vKXvwz4fOecc06P8pZEkhRx0O0PcaS1ayb6eJuHnfUO8i0Gxueb+cnLe2hy+Pj5p+b1eNzTHx1nXmV+3BzBu/69g39vqeehzy0kx6jlpNMHKE3HJr0IRxYIBOlDIK442JG6BQm6jRXHz8uydXMOguLiqZi5iOam53tsp5Fg0uzFPUTAqqoqbr755sQvOg6FOQYqCszUtXvZccLBGdUi/yuTCYVCcfMtzwIwwb63dlO/sf+cuZGOFded+Cvt7e+h0ZiYMf2naDSpuWas1VqRJAOyHCAQaMNszvwMtt54o2Uken0hOl1O3G0kSWLxkkqe+3dvEU7DkiUTUlbyYDAq7zNCHEwcqjhozoK8QRW1sTgkjncEAoEgI0nKUeC2OgdXP7Q+9u8f/kdpTbnitAp+dtVcTnb6OdHh7fGYTl+Ql3Y08P1LZsbd51/XHwPg0w+u73H7/1w5h08u7Os0FAgEglShugQN+oJomLtwDqaSSCQQc+z07xzMB8ARdQ4CLJxdy6uvvU7hKBaODIU5FXnUtXvZXifEwUxHzZkbKGR6oJy5rkKS4YuDbvchDhz4CQBTptxOTk7q2lIlScJgKMTvbyQYbM1KcdA3QBlJd2prFrDWugaXqxDFPRjBam2jpua05C+yHwzRsWKROZg41HKabCgjUdFHL1aIzEGBQCDITJIiDp5eXcSRH3+s3/t/dtXcPrfZTHr2/ODCfh8z0P4EAoEgnQhGQ/WFczA9CEQbUCVJi04XP79NdQ46W7pOaoqtJnbKlSzX7AWihSOLk1s4MhRmj8/nxe2NIncwC1Bz5p544ol+txkoZ26oY8W9R5cjkRC799yF223Blns6ttxLT2H1iUWvV8RB1eWbbagZcybzwOKg2VzOsmXzefnl49FbNCxbNh+zOXWlFbHMQSEOJozYWPEgvw+ZhMgcFAgEgswmrTIHBQKBIBsQmYPphVpGotcXIknxy67UzEGv00PAF8BgMvD67iYOBazMMedQgHtUCkeGwhy1lORER2oXIkgIA+VbltrtA+bMqU6dUKgTWZbjioj9jS7DtOgXbNr0cL+jy6OF6uoNBrOzsdjrU8S+wZyDAIsX38CWLb+nsbEZu72ExYtvSPbyBsQQEwfFWHGi8MXKabLJOZgPnJqTWSAQCASpJ63aigUCgSAbiImDhgL0+oIetwlGn8HyBgGMFhPGHKUxUi0leeqj44DEuNqFFBcXj0rhyFBQ22uPt3lpdwdSvBrBSFHzLTW9frU0ElTOXDTg75zqhJXlMOFw/NFkdXR5IAYaXR4tDNEIhkCWioNdTrHBo3AkSWLlytUUFxezcuXqlL/vqMKtcA4mBlmW8WZhIYnIHBQIBILMRoiDAoFAkGDUk1vFOaiIg5GIn3DYO9DDBElCPaE16OPnDarkRXMHO5s7qO/w8tY+xSVz9XmLuPnmm6mqSl0mW3fyzHomFyuFBttPCIdGNrBwdi0tEQuRaPlcRIaWyOD5llqtCY3GAPQ/WqyOLg/EQKPLo4U+JkBl61jx0J2D0FV0lA7vO7HMQb9wDiaCUKiTcNgFgMmUunHxRDOSDFSBQCAQpB4hDgoEAkGCUfMFDfpCtNocJEkfvV24B1NBIKg6BwcWB7s3Fv9jYx2yDEsmF8aEuHRidtQ9uK2uI7ULESSE8nwLtaedHnMPaiSYt2Ro+ZZq7uBAJQDV1dXY7SVApNc9Eez2kgFHl0cL1TmoZraOhIaGBu6++24aGhpGvK9EIMtyrJAkE51iRqMiDoZCHUQi/hSvJvNRfxf0+iK0WnOKV5M4RIyKQCAQZDZCHBQIBIIE0z1zUJIkccCcYlQnkn4wcVBtLG7u4OmPFJfPpxYNPgKYCmK5gwOUkjgcDhoaGvr96uwcuMRCMLqsWDSb5ogiBg4n31IdLQ4N4NaRJInFSyrpe9inYcmSCSl3DQLoDepY8cidg0eObOOee+7hyJFtI95XIggG2wmHlUKYTGyn1enyYhe5stXZOZqoTcXmLCojge7ioHAOZiI+XwNt7e/j86XHRRWBQDD6iEISgUAgSDDdxUHlv/kEAs2isThJ+HwNeLxHsJgnYTKVAT3bWU82teNyFeJ05sWcRDk5Odhsth77UZ2DR46epK6zgFyTjgtnlY3eCxkGcyrygf7HivsvoejCarWmvIRC0EWT08/GYAVnm+uGlW+pV52Dg4zy1dYsYK11DS5XIYpIGMFqbaOm5rQRrjwxqGP/I3UO1tc/zdat3wBg69bPM3Hizygvv2rE6xsJqlPMaChFqzWmdC2ngiRpMBiKom3SLVk1CpsKfF41bzDzhOKB0MXEwY6UrkMwfOrrn2b3nu8AMqBheu2PUv6+KRAIRh9xRiAQCAQJJBz2x4oB9NExOfW/wjmYeJQD2jtRxiWVA9px4y7vJYxZgIvZsrkVeBCIL4ypjcVN9W1gLeCyeeWYDaktaeiPmeU2JAkaHD5OOn2MyzX1uF8toRhIHEyHEgpBF00OHw0RGycrlg8rZ06nNhYHB3aCms3lVFUdYNs21ZGoYdmy+ZjN6SH0GAwjLyTx+Rq6neACyOzecyeFhWfFLhykAjVv0JTBTjGDoQS/vxG/aCweMTHnYAaOmA+EvpuLub/2dEH60fd9M5IW75sCgWD0EWPFAoFAkECCIUUAlCQtOl0u0DVqExDiYEJRDmhVYRDUA1qvd/8ptbOqzkFciqD26UUTErvgBJJj1DGlxArA9jijxZlSQiHooqlTyXKz55kG2bInQy0BCIe95Nr2Y7UqBT12ewmLF99wCitNDnr9yAtJPN4jdJ3gqkTweo+e8j4TQTaIQcZoKYloLB45sebqLHMOqsc6shyKFa4I0p9jxx8lHd83BYJkc8455/D//t//63P7Y489Rn5+PgAej4c77riD6upqTCYTJSUlLF++nH//+9899iNJEpIkYTQaGT9+PJdccgnPPvtsn31LksS//vWvHv9Wv/Ly8jjzzDNZu3YtLS0t2O127rvvvj77uOqqq1i6dCnhcHjE34PeCHFQIBAIEkgw0DNvUPn/fOU+MWqTUBQhoG/BwoYPL6Z8/FsDPjaeMKZmDhrlMHNKzMwaP7DAmGpmD5I7WF1dTUmpPdaAqxKRlUy7dCihEHTR2OkD6OMCHQydXhkr7q+tWMXjOYQkyVRV76O4uJiVK1enlTisOgcjEW8sn2+4WMyT4tyqwWyeeOoLSwCxMpKMdg4WAxAQjcUjJlvFQa3WjEajjM2L3MHMoKHhGY4ffzjOPal/3xSMPdIx9/LLX/4yzz77LL/5zW/Ys2cPL7/8MldeeSWtrT0vZH7hC1+goaGBgwcP8swzzzBjxgw+/elP88UvfnHQ53j00UdpaGjg3Xffpbi4mIsvvpjOzk4efPBB7rnnHrZv3x7b9u9//zsvvPACjz/+eFKmf8RYsUAgECSQYHQkTs0bVP5fjBUnA5Ox/xNto/F9rNaCbvlqKhHs9tK4wpjOoMOv02MMBfn41PQWBgHmVuTz7KYT/eYOSpJExcxFNDc93+N2jQSVMxellTAkgJNRcXC4zsFYIckgY8Vu90EAKivz+MTHbz6FFSYXrdaKJBmQ5QCBQBtm8+BNzb1R3mu7HyxLTK/9UcpH49SxYrMpPQuOhkJMHBTOwRGTDWJxf+h1+fgDTQRDHZjJvteXTTQ2Pseu3d8GoKBgKe3tH6A6CNPhfVOQmciyTCTiHfbjGhqeZe++e1BjgmqmfZ+yssuHtQ+NxpzwY9vnnnuOX/3qV1x00UUATJo0iQULFvTZzmKxYLfbAaioqGDp0qXU1tZy4403ctVVV3H++ef3+xz5+fnY7Xbsdju///3vGT9+PK+++ipf+tKX+MxnPsN1113HBx98QEdHBzfffDM//vGPqampSejrVBHioEAgECSQ3mUkyv/nAxASzsGE0tm5udctSuZgUdE5tLW/Rzj0CuvXD72ddVudgzZJTxlBFhalf2lAd+dgf/lO1uLxNEcsFEkeNJLiGmyTLSyYXTvayxUMguocLLUN73dvqIUkbs8BAHIs6ekYlSQJg6EQv7+RYLDtlJpcnc7tQNeYjcFYlhah+jExKIOdYgajMlYsMgdHRjDYSSjkBMCcwb8P/aHT5+EPNBESzsG0oHs5W3da297l0MH/Qac3MXnypdTW/JC2tnfYsvV6NBozdvvwRJlU0t9rVIlXQCdIHpGIlzffmj3SvbB33/fZu+/7w3rUOcu3o9UO/8LiQNjtdl588UUuv/xycnNzh/XY6667jm984xs8++yzA4qD3TGbzQAEAgEAfvWrXzF79mx+8IMfsHv3bmbNmsVXv/rV4b2IYSDEQYFAIEgg6uhwPHFwJEH7mUqDw8vhFjeTi3MoyzMndN/H6x4HYELlf1FcfC5m88TYle4y+8fJz1vMjh33D7md9W8fHsehNVAW9BDqTP+8pBllNrQaiRaXnwaHj/L8nt/fYDjCT9fsoyM4nguM+wHFNegqrKU8P7EHT4KR0xQTB0/ROTiYOBh1DubkTDmF1Y0OBr3aiHtquYMOxyYAJk9exLWf82C1NuHzN2Iy2hO5zGEhy5HYGKnZnMnOQTVzUIiDI0EVivX6woSfxKYDXTEqYlIi1YRCoV7lbL25CJMpwsrz70SSJAoLz0SnyyMUcuB07STPNndU13sqDP4a4xfQCQRD5cEHH+Saa66hqKiIuXPnsmzZMq688krOPPPMQR+r0WiYNm0aR44cGdJzeTwevvvd76LValm+fDmgZKQ/+uijrFq1ipycHLZt25bUyR/xVyIQCAQJJBDXOaj8/1jLHHzqw2Pc8ex2IrIiSt1/+Ww+laCSD4djM52dW5AkAxMnfjE28tYds7mcZcvm8/LLx6O39N/O6gmEeH5rPXO1imvL0dyRkHUmE5Ney7TSXHY3dLKtztFHHHz4ncPsaugkz1xEQXEn7S1NNEcsvHdSS7s7QEGOIUUrF/QmGI7Q4lKuEtuHKQ7qo5mDwUHGij0eRRy05KSncxBAH2ssHpk4WDv9Y3z1v6HTuY32tncpK7siYWscLoFAM5FIAEnSYjRm7pieUYiDCSFb8wZVusRB4RxMNVqtlry8vAGEM5nCwvHodHoAJElDfv4iWlpeo6P9g4wQBwd/jfEL6ATJQ6Mxc87y7YNv2A2fv5H16y+gZ464hqVLXxnWxT2NJrEmBICzzz6bQ4cOsX79et577z1ef/11fvWrX3HPPfdw1113Dfr4oTS3X3311Wi1WrxeLyUlJTz88MPMmTMndv+5557L0qVLmTdvHhMnJjcLVBSSCAQCQQJRMwcN3cRBwxgUBxsc3pgwCMo463ee3UGDY/g5JPFQ2vXAbr80rjCosnjxDdjtJdFt+29n/c+2Blz+EDqb0gDc2dKRkHUmm7nR0eLtJzp63H6kxc0vXt0HwHc/NoOLL1xFcXExrbZp+EMyT354bLSXKhiAk06lqVivlSiwDE+0HYpzMBIJ4fEcASDHkt7OQYBgYPgua1mW6YiKg/l5p1FYqFzVb2t7N3ELPAXUvEGjsQyNJnOvyYvMwcSQDc3VA6HX5QMQDHWkdB0CJaphxYoVA23BihXn9hAu8vMXAdDR8WGSV5cYBn+N8QvoBMlDkiS0WsuwvnIsVUyv/RFd0pQSE5RjqRrWfob7c7bZbDgcfY+dOjo6yMvryh7X6/WcddZZ3H777axZs4Z7772XH/zgB7HR3/4Ih8Ps37+fyZMnD7jdL37xC7Zs2UJjYyONjY1cd911fbbR6XSj4n4dtjjY3r6BrVu/wNvvnM7ra6tpbl7T4/6TJ19h8+breGvdAl5fW43TuavPPsJhP3v2fp+31i3gzbdms237V/APcrAhyzIHD/2Ct99ZyhtvzmDT5mvxeA4Pd/kCgUCQVLoyBwtjt3U5B8fOmM3hFnefltywLHOk5dRaSLvj89XT3PwyAJUV1w+4rSRJrFy5etB21qc/Uk7gF85STtg6M8A5CPEbi2VZ5jv/3I4/FOHMKUVcuaCCqqoqbr75Zq48RwlR/vN7RwmGezc9C1JFU7emYo1meAe3Or3yOzCQU8fnO44sB9FoTJhMfZ2z6cJInINe7zGCwVYkyUBu7kwKVHGw/V1kWR7k0cnDmwV5g9A1VhwOewiF+nfpCAYm5hw0Z/bvQ3+o70ciczA9qK6ujl4g7f15H8FuL+lTzlaQvxiADseHyHKYdKN3m20w2ElOzg7y8/0M9TUK0pPy8qs484x1nDb/Cc48Y92o5AXX1NSwadOmPrdv2rSJadOm9fu4GTNmEAqF8Pl8A+7/8ccfp729nSuuGHh6wW63M2XKFEpKSoa28CQybHEwHPFgtdZSU3N3/PvDHvLyFzJlym397mP/gR/S0vI6s2f9htPm/x9+/0m2b79pwOc9euxB6uoep7bmByxc+CxarYXNW24gHPYP9yUIBAJB0ggG+i8kCYddRCIDX2XKFiYX5xBP4li3f+QjaXV1f0WWwxTkLyU3d/qg26vCWFVVVdz73z/YyodH2pGA1UsUV1VniyOlgsJQmTM+H4DtJ7rW+/eNdbx3sBWTXsN9n5jdQxC9eG4ZxVYjjZ0+XtrRmIolC+LQ5Di1MhLoKiQJhZz9/s663UoZicVShSSl79DISJyD6kixzTYLjcZIft5paDQmAoEW3O59CV3ncPB5o06xDM4bBNDpcmIZeWK0+NRRfx9M2eocHIMXQ9MZSZJYvKSSvqf88cvZrNYZaLVWQiEnLteeUVvnUKivf5p33zubzZs/y7vvncX6D1bz9juL2bX7G4yveJuhvkZB+mIylVFQsHTUmrJvuukm9u3bxy233MK2bdvYu3cvP//5z3nyySf5xje+AcA555zDH//4RzZu3MiRI0d48cUX+c53vsOKFSt6FN14PB4aGxupq6tj/fr13H777Xz5y1/mpptuGtTdmk4M+wixuOgcqqu/wbiSC+LeX1b2Caomf5XCgvghjaGQk/r6vzN16p0UFp6BzTabGdN/gsOxCYejd/OkgizLHD/+KJMm3UxJyUpyrbXMnPFTAoEmmlvWxH2MQCAQpIKYc9DQJQ7qdDaISmVjJYenMMdArqnL/q4emv3+zYP88rV9pyy8hcNeTtT/DYDKyutHuEolF/EzD60HQAY2tvpAglAgiNc5cpdjsqmx52LQaujwBDne5qXZ6edH/9kNwNfOn8bEopwe2xt1Wj67VMl9fPRd4b5PF9SmYnve8PIGQX1/AVkOEInEv4rdVUaS3g4Kwwicg45ORRzMy1MKhzQaY2xELpWjxdk0RipGi0eOz1cPZMfvQzz00ZiDwdrTBaNHbc0CrNYWupx1EazWlrjlbBqNjvzoe2h7x4bRW+Qg+HwN7N5zJ12vQcbt3o8sB8nJmcqsmecP+TUKBCpVVVWsW7eOPXv2cP7557NkyRKefvpp/v73v7N69WoALrjgAh5//HFWrVrF9OnT+epXv8oFF1zA008/3WNfDz30EGVlZVRXV3P55Zeza9cunnrqKX73u9/FtolElN/PdC7HGfWVdXZuR5aDPcTDnJxqTMZyHI7N5OXN7/MYn+84gUBzj8fodLnYbPNwODZjL72kz2P8fj9+f5er0OVK/+ZJgUCQ+QRimYNdY8WSpEWvzycYbCcYbMdoTL1tPNn8a/MJOn0hSqxGfnbVHKaW5vLsphP8zyt7+eVr+/EFI9y+umbYV3QbGv9JKOTAbJpAcfG5I1pjg8PLt5/dTneZ8s5/7+Z2mxWvw0VncwcWW06/j08HDDoN08ty2VrnYNuJDl7e0YjDG2RmuY3/WhY/4+T/s3fe8W3d9fp/H23ZsmTLezt2hrO3kyZp2rRNuksppYVSRoBL4RYoFO6lpXDvj1kuUC6X3RZoaemETjrTmTZ77x3HW97W3tL5/XEk2Y6XbMu27Jz36+VXG+no6CsP6ZznPJ/n+dSKUv7w3ln211nZX9fF4pKMfreTGT9a7NLxynCbigGUylQEQYkohggEbSiVfQO5XW7JOZiaktzioFojOQf9o3AORsVBALN5DZ2dH9LZtYWSks8nZpHDxBvJHJwKTjGNJguPp04WB0dB95h58o73j4buQhLrhK5Dphu9voBZlR3s3RPNZx64nA0gPX0FHZ0fYLXuoqS4/5zm8cbtqaHv2DDMnv1LCvI/CoDN9tdeBXTl5WfQaNLHa4kyk5Tly5ezadPAZrN7772Xe++9d9B9vP/++3E9V2trKyCNEUeJ1ywR73OMlnGfLfH72xEETaxdL4pGkzXgmIIvcvv5ofODPeb+++/HZDLFvqqqqhKwehkZGZnB6c4cTO91e/cB89QftQmFRR7cXA3AHZeUs3ZmDvkmPXeum873r5sDwJ82n+UH/zo2LAehKIapr38UgKLizyAIo2ufO1hv5fynD4kiyklWShLNHfzlppO8csiCUiHwPx9bgErZ/0d8dpqWGxZJJwWPbK0Zr2XKDEI0c3Ak4qAgCN2lJAM4k92uaFNx8paRQPdFlWixU7xII3AnATAZe4uDIOVlh8MTE0PjiWTMTfaxYujOHfTJY8UjIhh0xIqDJnsG5UDEk4EqM/5kZLREnHWDl7NJ20ZyB627EcXkyCb2+/q7IKHAnLEy9q+eBXRpaVbSjKeorv71+CxQRmYQRFGkpqaGH//4x+Tm5jJv3ryJXtKAJG/wzCi59957sdlssa9du5LHGi0jIzM1CYU8sbG+npmD0KPB7wK4mr7paDPV7S5MejWfqCrpdd8X1kzjRzdKH4qPbqvhvhePED6/uWQAOju34HafRak0UJB/86jW6AuG+OP7Z/vcrhQEMvMkgcI2SUpJvH7p4D1a9rKmIpN5habBHsLG1WUAvHbYkrAGaZmRExUH80YgDkL3aHEgaO9znyiKuNySWJ/0zsGIOOj3D2+s2GY/CIjodSW9nNmG1Jmo1ZmEwx5stgMJXGl8hMNBfD5pjFSnnwrOQel7K2cOjoyoUKxWZ6BSGSZ4NWODnDmYfIRCPrzeOsrK9pOZmTFoORtAWto8FAo9gUAXLtfpcVxp/4TDfs7V/Cbyr+i6pTbbntl0PQvo1q27GEGAuvpHsNsPjfuaZWR6YrPZmDVrFlu2bOHpp59GpxvZsd54MO5jxRpNFqLoJxCw93IP+v3tsYOO89HGDkba0Wpzej3GYOg/jF6r1aLVdgd7GwxT80NYRkYmeYgeDAuCGqWy93tOtIVzqh8wi6LIHzdLottnLyrFoO37MfPplaVoVQq+89whntxZhy8Q5uc3L0A5REtrfcOjABTk34xKlTaqNX7vhSMcbLChVSkIhMKERUkY/OlN88itr6aW5G8sttls1LV28t6Bk2T2+NYdPevi8OkcSnMze4Ul92RugYkV08zsPNfJ49tr+c+rKsdp1cPDZrPhdg+c/Ziamjrga5xMRDMHc0ZQSAKgVpvwePp3Dvp8zYRCTgRBSUpK2WiWOWZEf87BYBCnU3qvbGg4h1IpHUAP9XPub6QYQBAUmM2raWl5mc7OLWRkrBijV9A/Pl8zohhCEDRoNTlDPyDJ0UYzB32yODgSustIpqZrELozB4NBqSRLLoOYeNyec0CYrGw3N930tSF/JgqFBpNpMV1d27Bad2MwzBqfhQ5AXd1fcbur0WiyWLzo7wQCHej1pf2WVkQL6ACOHP2QlpaXOX7iXpYvexGFQj3eS5eRASA9Pb1X3F0yM+7ioNE4H0FQ09W1jZwcKejR5arG62vqN28QQKcrRqPJprNrG2lp0khaMOjAbj9AYeFt47Z2GRkZmcHoHinO6HPwdaE4B7ef7eBQgw2dWsFnV5UNuN0ty4rRqhTc/exBntvXgC8Y4n9vXYR6gFFYl+ssHR2bAYGios+Mao1/2XKOf+xtQCHAg59eyqy8NGra3ZRlpZBv0nPUI4002tuTdywqGAzy8MMP43K5uEELDoeDPXv2sGzZMtLS0nj+yeMYDAbuuuuuAYOPP79mGjvPdfLUrjq+dtkM9JrRjWknmp6vcSCGeo2ThWhb8Widg8F+nIMutyTW6/UlKBSaEa5w7Oj7c74OgAP7H4ttM9TPeSBxEMCcEREHu7ZRwbcSu/gh8PbIl0vmluh40fS4WC8zfLwR5+BUyJ8ciGiEiigGCYVcU9YhOZmIuv9SU6fHLdZmpFfR1bWNLutOiopuH8vlDYrX28S5mt8BML3iHgyGGcCMuB47c8b36Oz8EKfzBHV1D1NW9u9juFIZmanBsI9UgkEXDscxHI5jAHg8DTgcx2LtW4GAFYfjWOyNyO2uxuE4hi9ylVGlSqOg4OOcPv0TOru2Y7cf5vjx/8RkXNxLHNy+Yz2tbW8Ckk24uHgjNTW/p63tbZzOkxw99m00mlyyszaM7jsgIyMjkyD8EXFQo+5b8NCdOTj8oP3JRNQ1eOuyYjINg7ugPrKokN/ftgS1UuCVQxb+/Yl9+IKhfretb/gbAFlZl5OSUjri9b13spWfvia1+d537RwunSXlIV5UkUm+SSpyMGWnA8ntHFQqlZhM3aPDDoeDzZs343A4YrcZjUaUyoEFv+UFOuakh1B4rDy9+SAWi6XXl93eV2gaT85/jf0x1GucDDh9QVx+6fd+JJmDMHhDqNsllZGkJOlI8Wh/zqIYwmbbDwwgDpqlMju7/dC456B5Ik6xqZA3CKDRypmDoyEqDuqnsHNQodDFLkLIuYPJgSvyGZA6jMzZ9HTJZW217hpWNnSiOXX6J4TDHkymZeTl3Tisx2o0mcyY8T0AztX8FperegxWKBNlIn9PZIbHYD+rYV9qdzgOs2//p2L/Pn3mJwDk593EnDm/oK39bY4f/07s/iNH7wJgWtnXKS+X/n/G9O8BCg4fvpNw2E9m5sXMmvnDXs/jdlcTDHaf5JSWfIlQyM2Jk/cRDNoxmZaxeNEjKJUjG8GRkZGRSTSBSMPm+XmDPW+bys7Bww02PjzdjlIh8MWLy+N6zFXz8njo08u44+97eetYC196bC8PfnopOnW3EBAIWLFYngcYVXPemVYHX39yP2ERbllWxOcjuXvnY8xKB8DRYUMMiwhDjDtPBIIgsG7dOp544okBt1m3bt2ALoFgMMhf//JnVvhcoIO6bcd5aFvvbSbalTfa1zhZaI64BtO0KlL7GcOPB1UkpiUYGNg5OJwTw/FktD9nl+sMoZATpTIVg2Fmn/t1unxSUipwu8/S1bWDnJwrE7b2ofB4peZM/RRximnlzMFR0d1UPHXFQUEQUKsy8PlbCAS70DN1X+tkoVscjM9xB2A0LkSh0OD3t+Px1JCSMm2sljcgHR0f0Nb2BoKgpHLWD0f0WZ+X+xFaWl6mo2Mzx0/cy9IlT00JF3cyoVZL49putxu9Xj/Bq5GJh2hcT/Rn15NhH4VmZKzk8sv6hrhHKci/ecigeKVSS+WsH1A56wcDbnP+cwiCQEX5N6ko/+bwFiwjIyMzTsTGiiP5gj2JiYNB63guaVz5U8Q1eMPCAorNKXE/bl1lDn/97HK++NhuNp9q4/OP7ubPn11Gikb6iGpqeoZw2IPBMDt2NXs4WGwejjTY+MG/juLwBVlelsGPbpw34IGmwWxEUAiEgiFcVgcGc3Jm2lVUVJCbk0tLS0vvO0TIzc2lomJgp1jUrTXYyG4yuPIqKirIzs2jpbmZnhptWITcvLxBX+NkoTXaVGwaeUC1ahDnoCvSVJzMZSQVFRXk5WXT3NxC76GWMHl5g/8uW217AelkdqAGc7N5FW73WTq7to6rONidMTc1xEFNNHPQ3yHnyY2A2Jj5FCinGQyV2oTP3zJge7rM+BIbK06J/wKRUqnFaFyE1bqLrq6d4y4OhsM+Tp6SdIKios+OOPdQEARmzfwRO3ddhc22h5raBzGZFpGiL+s3s1Bm+CiVStLT02ltbQUgJSVF/mxIUkRRxO1209raSnp6er/H+JM7pEdGRkYmieiZOXg+U73B71y7i9eOWAC445L4XIM9WTMji8c+v4KNj+xi29kOPvOXXTyycTmpGoH6hscBKC763LAPOJ7ZXce9zx8mWoicrlfzx9uXolUNLHoplArSzEbs7TZs7dakFQcFQWBh5Xw2tZ4nDgqwqHL+oN+rkbi1HJ12rC2dpOeaSRun74kgCBTNXU5by7963a4QIKVs4ZQ4AI2WkeSOsIwEQB3LHOxPHBz+SNl4IwgCVSuKefml8x1pClasKBn05zxY3mAUc8YaGhoep7NzSyKWGzdRp5h+iohBGk0mAKIYIBi0xeIyZOLD44mOFU+N34eB6I5RsU7oOmSkpl+PpwaAVEP8zkGA9PQqrNZdWK27KCz8xBisbmDq6v6Cx1ODRpNN+bSvj2pfen0hFeXf4tTpH1Fd/cvIrVLbcUHBLaNfrAx5eXkAMYFQJrlJT0+P/czORxYHZWRkZBKEPyYOpve5r/tgeWqKgw99cBZRhMsrc6jMG5lwVDXNzONfXMFn/7qLPbVd3P6XXfz6hk58PgtqtZnc3OuHtT+LzdNLGASwewMEQuEhH2vMTsfebsPeZqVwZslwX8q4MWfuHN7Z9Hav25Q+mLNg3pCPHY4r78jm/bz7yGsxt9BlG69h3iX9l4glmqXzZrHp7XfIFNwoBGl9HWIKz27rorSslXWVk7sFtlscHIVzUB1pCD1vrDgQsBIIdACQkjJ80X48qZy1lHcNmyJtxQogjMHQyaxZA4t+0C0Opg8iDmZkrEAQlHg8tXg8DeMm1nU7xaZG5qBCoUWlMhEM2vD522RxcBgEg06CkckBna5gYhczxsQyUGVxcMJxu2sQxRBKpQGtJndYj81Ir6IG6LLuHFOncLStPorX28rhI08gimbKp30Dt1tkkLL6uMjKWs+p0z/qcUuY4yfuw2y+WHYQJgBBEMjPzycnJ4dAIDDRy5EZBLVaPehUkCwOysjIyCSIaNlI/87B9Mg21nFc0fjQYvfy3F7JEfGVS0c3urikJIOn/m0ln/7LTg7WW/nwwO8oTIWiwk8NO2P2XLurlzAIkrBU0+6OlY8MhDE7HY7XJnVjMYDldAO6rt75ObpOBY42K8bMwUseBnPlFc9dHjsRaDxZxzt/fTV2vyiKvPvoa5TOrxgXB2Gz3ce+QCFXak/H1tekK8dlDfP5v+3m2xtm8e+XVkxaF2Gr3QeMThwcqJAk6hrUavOSvjVUry9gzZrFvPFGfeQWBfPmh9DrBxZSpDysWgCMxoHFapUqDaNxITbbPjq7tlKovzWRS++XcNiHzye5eqeSU0yjySYYtOH3tcEwMswudKJlJCqVCZUqbYJXM7ZcCDEqkwWXuztvcLifkSbTYgRBhc/XjNfbMCbFSn3b6qNIhaMH9p/EYGgcdf6xx1vXz61hPJ5aWRxMIEqlcsLjaGRGh5zIKSMjI5MgosKfRt1f5qA5so0NURzauTZZsNg8/OiVY/hDYZaXZbCsrO9rHy7zCk08/aWLWJRnoTD1DKGwEq3pY8Pej9MX7HObUhAoyxo6DzFaSpLMjcXhcJhd/9qCygOpWuk16ZQ6VB5448GX8Lo8Q+5j2fxK2sMpMRE1LEJ7OIWl8yvpau5k08Mv88/7H+vzODEs8sGTb9HeMPYjJI9tr6UpbCSglQSw7Nw8nvrWjXxqRQmiCL948yRfe2o/1W1Otp1tx2Ib+nUnE9FCkrzROAdjY8W9nYOxMpJhZE1NJFVVG8nLk0ovDIZ2NJqtBPopWYkSbSlOTZ2BWj24UG3OWANAZ+fWBK12cLzeJkBEodDH3v+nAtpY7mD7kNt6vRY6u7bj9VrGellJT3dT8dQRigei28mc3BfXLgRGEyuhVKZgTJsPSO7BsWC0bfXxkqIvo6/soUCvLx3VfmVkphqyOCgjIyOTIAbPHIwe/IT7nMCPNzabDYvFMuCX3R7f+p7ZXcfqn73LK4ekE7+5BYlzkc3KS+OetQcB2Nm8hNsfOUuTNX7Rp9Xh5fsvHul1m1IQ+OlN84Z0DQKYJoE4eGb3CbosHehS9Xz05pu4+uqrufkTN5ORm4mz0847kTHgwShIT2HRijUoQ6DygDIEC2Yv5vAzm3j8nj9yfMshGGAXZ3Yf54n7HuLp//dXDr27F5/Lm/DX2O708dphCyCwbt3lZGVlcdWG9WjVSn7y0fn8+MZ5qBQCrxyycNkDm7nt4Z2s/tm7PLO7P5dActLiGP1YsXqAsWJ3pIwkJTV5y0h6IggC69dfRVZWFpWVrYTDThoaHx9w+3jyBqOYzasB6OraPi4XaDye7rzByepq7Q+NNr7G4qamZ9m6bS3799/O1m1raWp6djyWl7TEmor1U7+9V61KB6bmpMRkI1ZGMsLM2fQMqQTO2rUrYWvqSTT/eDAGa6uPF50un9mVPwGi+xGYXfkT2TUoI3Me8lixjIyMTIIYTBxUKDQolQZCISeBQNeEZTUNPMLRjcFgGHKEo788v8e313LHJRVxiW9D4fO14LZtAuBg55Wca3dxy4PbeerfVg7ZhOwPhvn3v++jxe5jeo6BP92+lDaHj7KslLjXZsxOB8Debh3NyxgzxLDIrpelcoVF66tYufZiLl57MQAziyt49kePcmb3cY59eJC5axcNuq8VKTrerlMiIOmA7rodnIjcN23RDKo+cjHt9S28++hriGERQSGw4PJlODvtnDtwmpZzTbSca+KDJ99i+rJK5q5dSFFlGYJi9ILIM7vrCYREFhanc/mK+Vy+Yn6v+29fWUpmqoavPLEvdltYhO8+f4S1M7MT8rs41rTYRl9IEnUO9hkrjjoHk7iM5HzKy8u58847aW4u5uixPdTXP0pJ8UaUyr5/99ZhiING40KUylQCgU4czmMY04bO5RwNHq80Hq3XTY28wSgajSQO+gYRB71eC8dP3AdERVg532uqNVcPRvRihTxWPPGMtpAqI72K2to/0WUdG3EQICfHT0ZGmK4uGG5b/XAoKLgFQVBz7Pi30Wrz5DISGZl+kMVBGRkZmQQgimKPzMH+R8jU6oyYOAjTxnF13URHOAYTB+MZ4egvzy8UZ55fPDQ0/B1RDJJuWs7/feYTfOrhHdR0uLnlwe088cUVlGcPnJ/2g38dZU9tF2k6FQ99einl2Qam5wwvb82YJZ3cODrthENhFMrkMtpX7z9FR0MrGp2GRRuW97ovd1oBF33sUj587h3efvp1VBna2Jh0T1JTUxGC8M6jr/W4li5ROq+cVR9fR06ZdCKfV15A6fwKbC2dmHq0FbvtLk5sO8yxDw7S0djGye1HOLn9CMYsE3MuXsjsixcOmX04EKGwyJM7JQfgZ1YOPPpjSlH3fawoJux3cSwJh0VaHVLmYJ5pNGPFpsj+vITDPhQKSWh0uaJjxZPDOdiTnJxrqK7+XzzeOhqbnqGkeGOv+8NhPw7HIQDSTUuH3J9CoSYjfQXtHe/S1bl1zMXBmBg0RZqKo3SPFQ8sDro9NXQLg1Eu7Hwvacx86peRQI/MQdk5OKGEwwHc7nMApKaMLB9UuvCiwOutx+ttStjvr9/fTnPzy1ian8fpPE5BYQFdXVect9XQbfXDJTt7A8IJJT6fBY+nEf0F4OSVkRkOsjgoIyOTNJzfWHY+qampGEdbWTZGhEJuwmE/ABpNX+cgSKUkXm/9hB4wR0c4nnjiiQG3iWeEY1pWaqw5Nkq8eX5DEQp5aWx6CoDi4o3kpOt55o6LuO3hHZxtc3HrQzt48osrmJHbN9T96V11PLGzDkGA//vEokFFxMFITU9DqVISCoZwdtpjTsJkQBRFdr70IQAL1y9Hl9pXAFu4fjlv7HmXEH6efr7/cb4UfQrTxHzoZ/R42XWrYsJglDSzsU8BSYoxlSVXrWTxlStoqW7i6IcHObXjKPZ2Gzte+IAdL35AyZxpzFm7iIols1Bpeh92DPY3v6O6gy6rjfSUVK5dMLCgMJa/i2NNh8tPMCwiCJBlGI1z0AAR72cgYEerzSYU8sbaclMnyVhxTxQKFaWlX+LEye9RV/dnigo/hUKhid3vcBwjHPajVmeg15fFtU+zeTXtHe/S2bmV0tI7xmjlEtEx0qmWMRd1Dvr9HQNuE3Wy9ubCzveaqr8P/RHNHAzImYMTisdThygGUCpTRizKq1RppKXNxeE4jNW6m7y8j4x4PeGwj7b2d2m2PE9H52ZEMQSAIKgpL59BbU37sNvqh4tKlUpa2gLs9v1YrTvQ64efZy0jM5WRxUEZGZmkIFHjrhNFdKRYodCiUPTvVoqOEvsjDsOJoqKiguzcPFqam+k5+RkWITcvL64RjnyTnk+tKOHxHZKzazh5fkPR3PISgUAXOl0R2dnSleRco45n7riI2/+8kxPNDm59aAePf6GKuQXdrrR9dV3810tHAbj7iplcVpk74jUICoG0TBPWlk5s7dakEgdrDp6hrbYZtVbN4itX9LuNSq0iKyeLlpaWbjvgefisbhoazyGcv4EgYModXoGCIAjkVRSSV1HI2k+u5+yeExz98AANx2upO3qOuqPn0KbomHXRPOauXUhOWX5cf/PX61SYlnwEnXpgJ2u+Sc/9N83vNeZ+94aZSe8aBKnpGyRhUD0Kd6ogKFCpjASDNoJBG1ptNm53NSCiUqWjVmcmaMXjS37+TVSf+w0+XzPNzS/2GgPrmTcYr7MkI5I7aLXtJhTyolSO3K05FF7v1HQOdouDAzsHO9rfO+8WxQWf7xUtJLkgxoojmYNBeax4QomNFKdMRxBG/vmSkV6Fw3GYLuvOYYuDoihitx/E0vw8LS2vEOwRfWE0LiQ/7yZyc69Frc4g4P9rr7b6NWsWD9pWP1IyMlZgt++nq2sn+fmyOCgj05PkmpOSkZG5YLDYPL2aRcersWys6B4pzhjwRDVZRm0EQaBg9jLOj4RTCFA8d3ncJ9rqyM/iitk5bLlnHbcuLxn12kRRpL7+UQCKij6NIHT/vLMMWp7+0koWFJnodPn55EM7OFBvBaQCkq/8fS/+UJgr5+Zy57rRZ6zFcgeTqJREFLuzBhdcvgx9Wv/uOEEQuGL9FQMKgwC6TgXTFs5g+Q1rYvmAYcC7dHEfh+BwUGvVVK6ez8fu+TSf+8WdVH1kDQazEZ/by6F39vDUf/+FJ77/MIff2Uuaoa/7s/u1glvU8KmVQ4/g37q8hK33XMa8SCmOKgF5h+NBVBwcTVNxFLUqmvMlnXx1Z01VTNpCDIVCS0nJFwCoqX0w5jSBHuKgMX5nSWrKdLSaXMJhPzbb3sQu9jw8nqmaOSiNFft8/YuD4XAw5vyWULLqovcv6HyvUMgdO0bQ6ab+GGMsczBgHbIUS2bsGG0ZSZRYKYl1d9yP8Xot1NT8kR07r2TP3o/R2PhE5MJVHqWlX2blijdZvux5iopujx0b92yrz8vLpqpq42BPMWIy0lcC0GXdMSb7l5GZzCSf/UZGRmbK88zuupjLRyHA/TfN56YlRSyqWk3Ti/8Y8HHLLroYUYRkPM8drIwkSrKIg6Io8la9iBBOIVNwx0YyO8UUls6vjHs/u2ukk53rFxYkzKXV1bUNl+sUSmUKBfl9TybTUzT8/Ysr2PjIbvbWdnH7n3dy/03z+O27Z2IFJA/csghFAsShZCwlqTt6juazjag0KhZf1b9rMEpFRQW5Obl93YMi6AQNt33rdgpmSMLF/HVL+Of7x3lgexNVadkJW68pJ4OLbrqUFTeupf7oOY59eJCze0/SXtfCB0++RcggQE7/jxUECObMoTQrNa7nyjfpubWqhCMvHuGNo83ccUnyj9I220dfRhJFpTaCt7uxOFZGMgnzBntSWPBJamr+gMdTQ2vrG+TmXosoisNqKo4iCAJm82oszc/T2bkl1mCcaHqLQVPLKRZtKw4EOgmHgygUvU8l2tvfwedrRq02Eww6EMXApBWnE4Un4hpUqYyo1ckZjZJIosc6ohgkFHJFYg9kxhuXe3RlJFHSTcsAAbe7Gp+vDa22/2OEUMhNa9smmi3P09m1DaniDBQKHTnZV5KXfxPmjIt6XfTtSbSt/vXXX2f9+qvG7H1Dcpur8Hob8Xga0E8xd7eMzGiQxUEZGZlx5fyW27AI33nuMN957jAgcqNOS4bg4fzGsi5Rz0f/fgaVohpzqoZMg5Ysg4asyH+lf/e8TYs5VYNGNbBB2mLzcK7dxbSs1FGLW1HBLz5xsGtUzzVa/u+d07x6pIVCRSEbtNKVZYUAi6rWUJAeX06b0xfkaJPkUKqaNrwR1MGIugbz8z824EmUUafmsc9X8YW/7WZHdSdfe+pA7L4bFxVg0Cbmoy1aSpIszkFRFNkVyRqcd+kSUk2Dn3AJgsDCyvlsam057w64ZO3amDAIUp7g7EXTce5q52ybM+FrVygUlM6voHR+BV6nh5Pbj3D0w4O01lpQGiGkpY+A2RnWc/O6oYsmerJhTi7ff/EI++usNNu8oyr5GA+6m4oT5xwMBiVx0O2afE3F/aFSpVJc/DnOnfs/amr/SE7ONXi9Tfj8LQiCCqNx/tA76UFGVBzs2prQdfbMz3S7a3E6zSiVqbS3uwBXUmfmDgeNOoNoJlgg0IlW21vdb2h4DIDCgltpaX0Nj6cWj6fugijiGIjupuKp7xoESQxSKDSEw34CAZssDk4Q3e7xkZWRRFGrTRgMlTidx7Fad5Gbe23sPlEMY7XuxtL8PK2trxMKdceEpKdXkZ93Ezk5V6FSDTwl0JNoW/1YolKlYjQuwGbbR1fXDvT6m8f0+WRkJhOyOCgjIzOu9NdyG0WpUGBPU5LhPF/QU9CeogavQDDS7hlt+BwKk15NZkQwzDZoY/9/rt3Ji/ubEOl2L45mLNbfY6x4IKKZgxMpDj67u55fvy0Jgl+5YRVNO7vwWNuxYuD7QzjRerKvtouwCMVmfcJcg273Odo73gWguOizg26bqlVx/0cXsO6B93vd/r9vneZjS4sSsiZTxDlomyhxsL4e2rpH91rPNRHYvpM8pYLlBTpoaICiwa94z10wj3feepuQhmhfBUo/zFnQt6m1IlLeUt/pxhsIDZrzNxp0Bj0L1y9n4frltNY289Y/X+eMs673RgJ0kcels4aXG5lr1LGkJJ19dVY2HWvmMxeVJW7hY0CLXXofS4Q4GC2BiI0VR1wjKZOwjOR8ios+Q13dwzidx+noeJ9g0AFAmmEOSuXw/tbNGZJb0OE4ht/fiUYz+osb/ednXgfA3j0PAcmdmTscBEGJRpOJ39+G39/WSxx0uk5HRvUUFBbeht1+OCIONpAx8EfjlKc7b/DCEAcFQUClSsfvb43kDl4YrzuZEMUQbnfiLhClp1fhdB6nueVlTKYlhMN+mptfwNL8QixfFUCvKyEv/6Pk592IXj/6qJmxIiN9hSQOWndQUCCLgzIyUSb3EYqMjMykY1pWalSjiKEQ4NWvX8zMnBR27n2S7R9m9GosSzV08pNPf5p8cxmdLj/tTh/tTh8dzt7/39bjtg6Xn1BYxOYJYPMEqG4buPQgLMJ3nz/C2pnZIxaVooKfRj3wiWa3OGgd0XOMlvdPtnLvC4cB+Oq66dy+sowT5g089MTz7AgUUNPhjrvdd9c5SQxdXpZA12DD3wDIzFxHSsrQOXMWu6fPbSFRpKbdnRBx0JiVDoCjfQIaF30+WL4cWrpdf7nAbdF/vPx7yMuDmhrQDjySasw0sXL5SrYeimTrCLBy+UqMmX3zPbMMGow6FXZvkJoOF5V5Y+9yyinN4/rP3cRvHvh1LwFT4YOVaxahHMF4+FXz8thXZ+XNo8kvDjYnMHNQFXHaBgM2wuEgbncNMPnHikF670w3fYLauhc5eOhRUlKm4XSaSU1ZjMViAeJvs9dqs0lNnYnLdYquru29XDAjJZqZO1i5TjJn5g4XjSYbv78Nn7+Nnn6gxoYnAMjOvgKdrkAqY+kCj7e+/x1dIFxITcVR1GpJHJzoGJULFY+njnDYj0KhS4goLYaDALS3v017+9u97lMqDeTmXENe/k2km5ZNihiB9IyVUPtHrF07EUVxUqxZRmY8kMVBGRmZcUWtVKBUSA5A6G65rcxL4+Sp/8bj3E5JWRHHjlwWeYSCkrJjFJpzUKkU5Jl0cY0KhiPCoCQe9hYRjzbZeO9k7zD10YpK8WQORoXDiXAOHmm0cecT+wiFRW5aXMi3NswEoHLmDJoK12Kp7mTr2Y74xcFI3mBVgsTBQMCOxfIcACXF8YVQT8tKjeUlRlEKAmVZ8Y1GD0U0c9BpdRAMBFGpx/EjU6OBkhLJORgO971foYDiYmm7Ibj8xg2caT5HS2sLuTm5XH7jhn63EwSBihwD++usnG0dH3HQZrPh9rtZMGc++88ejiwE6gJmPj47HbvdPuxRzCvn5vHT106wo7qTLpefjNShv0cTRbSQJDcB48/dhSR2vN56RDGQsBPDiSYYDPLWW2rc7ut63Hod0mWm4TvzzOY1uFyn6OzckhBxUBAE1q1bxxNPPDHgNuvWrZsyJ6BaTRZOwO9rj90WDDqwND8PQFHh7UB3GUt0rPZCJeYcvICyzSb6YuiFTndTccWAGX/x4vVazisZkkhPr6Kw4JNkZ68ftoN7okk3LUEQ1Hh9TXi99UntcpSRGU/ktmIZGZlx5ZGt5wiGRWbnpfHUv62ItdzW1j5IY+MTgMDaNfeQmZ0JQFqaHXN6DXV1fxnW8ygUAhmpGmbkpnFRRSbXLyxg4+ppfPvKWfz0pvl9mnpHKyoF/BFxUBPPWLF1xM8zXCw2Dy/tb+Qzf92Fyx9i9fRMfvaxBb1OUldXSO2T28+2D7SbXviCoVhL8PIE5Q1aLP8gFHKTmjqDjIxVcT0m36Tn/pvmo4y8lqjQnKgxZ31aCiqNGkRwdIyze1AQ4Ec/6l8YBOn2H/0ornYeQRDYcOUGsrKy2HDlhkEFiuho8VjkDp5PdBTzoYcekoTByEtVeqFM6OSZxx/h4YcfJhgMDmu/pZmpzM43EgqLvH28ZegHTCAtiSwkiWYOBmyxE8OUlHIEYfIf6imVStLTM+jtOe/NcJx50SKSzq6tCWtTraioiDRtnv83GyYvL5uKisnv4Iyi0UiFBH5/90U2S/OLhEIuUlIqYu/h0aD/C905GBUH9VNAqI+X89vTZcaX7rzB0Y8Uuz019H1fg/Jpd5GXd8OkEwYBlMoUjMYFAHR17Zzg1cjIJA+T/4hRRkZm0uDwBnhsey0Ad10xk4sqssg36bFYXuBs9S8AmDnje+TmXs01V11DVlYWl1y6HEGAuvo/4/PHJ14NRVRUiiIIjFpUii9zsLuQJFEnpIPxzO46Vv/sXe565gCdLj95Ri1/vH1pn5KWVdMlIXb72Q7CAwVC9uBwgw1/MEyWQUN5nE2ygxEOB2MjxcXFG4flrrl1eQlb7lnHU/+2MiY0JwpBECa2lGTDBkKLFxM+7/sRFgRCixfDhv4dgP0RDfkuLy8fdLvxFAejo5gxFCCEQNelQOuQfkdHOop51dw8AN482pyQtY4F3kCILncASPBYcdCOK1ZGMjUEqagzr3drTW+G48zLSK+SXCPeRjye2oStsWpFMX0PrRWsWFEyZVyD0N1Y7I98JouiSEPD3wEoKro99lp1etk5COC5wApJAFSRi6FB2Tk4ISSqjAQgRV9Gf+9ren3pqPc9kWRkrASgq2vHBK9ERiZ5kMVBGRmZceOJnXU4vEEqslPZMEcqGujs3MrxE/cAUFLyRYqLPwd0ixlLFt+K0biQUMhNzbnfJWwtty4v4VMrJSHpIwsLRi0qxZc5KImDohjo1eg2FpzfCg3Q6vDh8vV1YS0oSidVo6TLHeB4s33IfUdHipeVmhNywtve/g5ebyNqdQZ5uR8Z9uPzTXouqshMmGOwJ9HRYnu7NeH7HhJBoOPLd6E4T0hWiCKdX7krLtfgcKnIlsTe8RAHuwWfHreFQe0RUHlAERj5KOaV86T3lw9Ot+Ps53c+GWiLlCppVApMevWo99dzrDhaRjIV8gajJNKZp1SmYDItAaTPoERROWspBkN7jzWGMRjamTVrScKeIxnQaCS3uS/iHOzq2o7bfQalMpX8vI/Gtotm7Pn8LYRC8ZWITTVCIQ+BQAcAugsscxDkseKJwuWWiucS4RzU6fKZXfkTumUDBbMrf4JOlz/qfU8kGelSCV+Xdce4XLCXkZkMyOKgjMwEYLF52Ha2HYutb6HCVMUbCPGXLecA+PIlFfj9zTQ2PsPBQ19GFIPk5lzH9Irv9HmcIAhUVPwHAI1NT+F2J8blAbAmMk57unX0Qkh35mD6gNsolXoUCm1ke+uon3MwXjnU1KcVOixCTbu7z7ZqpYKqyHjwtjMdQ+57d7SMJEEjxfUNjwJQWPAJlMrRO6gSSXdj8cSMRjUUz6Q5szDmHgwLAs2ZhehuunFMnq8iJ+IcbHXF5SId9fNVVJCdmxf7XQ2rIaAXERBID6eNeBRzVm4aZZkp+INh3j/ZmsAVJ46eZSSJENlV6shYcdCGO+IcTEnAiWGykGhnnjky+trZlThxUK8v4KJVM+l5Er1mzWL0+oKEPUcyEBUHo87BhkbJNZiX91FUqu6KErXajFIpxXVER2svNKKvW6k0xBrFLwTUqnRAFgcnAlEM93CPJ+YzoKDgFlav+oAli59g9aoPKCi4JSH7nUhMpiUIggafrzlhDnIZmcmOLA7KyIwz0VHP2x7eyeqfvcszu+smeknjwj/3NtDm8FFg0rEidxtbt63lxMnvEg670eunMWfOzwfMxjJnXESmeS2iGKS6+lcJW9OiknQATjQ78PhDI96PKIpxFZL0vD8QGUNONL5giPtfO85PXj3R577BchVXT5dO9rYOkTsYCovsqZFeayLKSOyOI1ituxAEFYVFt496f4mmu7HYOu7P7ff62ffGTrYvujzmHlSIIt7v3EtaP23DiaDEnIJaKeAJhGLi1VgiCAJFc5f3ygD1p0mvVegKIY5QoBQEgSvnRUeLkzN3sNmWuLxBAHVEeAgErLjc1cDUcg5CYp15ZvMaQHK9ieLI3//7rnF5ZI2Ql5dNVVV8BUuTCW2PzEGvtynWXlpU+Kle2wmCEHPLeS/Q3MFYU7G+aEqNlg+FWn1hZQ56vRY6u7bj9Vomeil4vQ2Ew14UCg26SClQItDp8snIWDnpHYNRlEo9JuNCALqscu6gjAzI4qCMzLhy/qhnWITvPn9kyjsIg6EwD34gXcX88sVpnD79PXqOhnk8tfj9g4tlUfdgS+sr2B1HErKuPKOOnDQtobDI0aaRH8CGQk5EURpdHFocTAfG5mr6mVYHH/39Nh78QBIGqqZlxESXoco6LqqQcgd3neskEBqgBAM40WzH4QuSqlEyOz9twO3ipb7+UQBycq5Bp80b9f4Shc1mw2KxENSECWpEWtpasVgssS+7fejx69Gy99VtuKxObAuXEVy0GIDQ4sWUffvfx+w51UoFpZnjN1oMoEnPoy2cEntf9KWIhBQQcvuoOXRmxPuN5g6+e7wFbyBx4k+i6C4jSYxbNupK8vmaCYWcCIKSlJSyhOw7WdDrC1izZjGJcOYZjfNRqdIIBu0J+0wB8HhrKSvbj8HgZ/36q6akINSzkKSx8SlEMUR6+goMhpl9ttVHcgc9F2juoNfbBFxYI8XQnTl4ITgHm5qeZeu2tezffztbt62lqenZCV1Pz0IqhWLo9vYLmfQMabTYKpeSyMgAsjgoIzOuvH64uc+oZ0gU+x31nEq8ethCfacHc6qGDTMD9JcZNZSlPy1tTiyP7uyZXyRkXYIgsLA4HSDWvjsSoq5BhUI/ZGtbt3Nw5M93PqIo8tj2Gq79zRaOWexkpKh56NNLefaOVWy957K4yjpm5xkxp2pw+0McHOR7ER0pXlpmRqUc3UeIz9dGS8srALGsyWSgZ4vu61vewlkUppYWHnroodjXSFp0h4O9w8be16WQ7DWfXI/qFz+H2bNR/vznY5I12JNY7mACxu2HwukL8tPXT7IvUBgTshUK0M2QflePvL9/xPteWJROnlGHyx9iW5xN3ONJS4+x4kQQdepE0etLUCg0Cdl3MlFVtTGSPTg6Z54gKMnIuAiAzs4tCVufx11DeoaF667XDFkANFmJioPBoIPGpqcBKC76TL/bRkWxC7Wx2BsrI5lao+VDcaFkDnq9Fo6fuI+ebubjJ+6bUAehyxXJG0yZOrESY0XPUhI5d1BGRhYHZWQSRtRp1N9XTX0DP3lxLz985VifxykEBhz1nAqIosgf35dcgxtXlZFuLGekrWfl5d9EENR0dm1JWIj8ogSIg/5YGcngrkHo3VicCFodXjY+upv/eukovmCYtTOzefMba9kQcU3FW9ahUAhcVC65B7edHTh3cHdspHjo1zoUjY1PIIoBTMbFsdGOZKBPi24/jLRFN162PvsuoUCQwsoSKpbOgiuugGPHpP+OMd2NxWNbmgPw41eOUdfpRkjLxZwtlYhk5+Zx62evBqDm4BkcnSNzaSoUAlfOlfb5xpHkay1usUsFDYl2DkZJmWIjxVEEQWD9+qvIysoatTPPnCGNFieylMQdudCVMsmbPAdDpUqLCc+BQCdabR5ZWf2/N+kv8Mbi2FjxBeYcjGYOBoPWCV3HaBjsuN5isWCzWamr+zP9XfCOuvcmgu6mYlkcHAqTcbGUO+hvweOpmejlyMhMOLLXWEYmAUSdRi7XwCfTblGFggUsKc1kX11XzEGoVipweIPkj02E2ITz3slWTjQ7SNUo+cxFZeh0asrL76a6+peRLeJvPdPriyksvI2Ghr9x5uzPWZ7xwoA5hfESFQcPNlhHvI9AZCRarYlHHJSeLxHi4NvHWvjOc4focPnRqBR89+pKPnNRGQrFyE6WL6rI5NXDFraeaefrl8/oc78oirGm4uWjzBsMhXw0ND4JQHFxcmVyRVt0n3jiiQG3GWmLbjxYzjRwasdREGDtJ9eP+1hitzg4ts7Bt4+18PTuegQBfnnLInKFabz++utctWE9mYXZFM4qofFkHcc+PMiKj1w8oue4cm4ef9tey1vHWgiGwqN2uyaSaKZjrikx4qAgKFEqDYRC0s9tKp8YRtvsR4vZLJWS2Gz7CIXcsfKM0eBx1wCgn2Ij3T0RBAG12ozPJ4nuhQWfGHB8UX8BOgdtNhtutzQR0tLSictlxuHIwGKR3GSpqakYjVO7nCSWORiwIYripBuvj+e4XqsNsHTZMyj6+Vg5cfK/mTP7fjIiY6vjSbc42Pc4TqY3SqUOk2kxVutOurp2kJIybaKXJCMzocjioIxMAog6jQY6iBBF8Ala/vTp5WyYm4fF5uF0i4MHNp3iYIONjY/s5sU7V5Odlphg+mTiD+9JrsFPrSzFlKIGwJyxgmpArc6mavkLwwo3nlZ2JxbLczgcR2htfY3c3OtGtb75RSYEAeo7PXQ4fWQahv8z6C4jGVowS8RYsdsf5MevHufJnVKZTWVeGr/55GJm5o4uAzBaSrK/zorHH0Kv6e2Mq+1w0+bwoVEqYuPYI6Wl9V8EAh1otflkZ185qn2NBRUVFeTm5NLS0gI9z2lEyM3NHXGL7lCIYZEPnnwLgDkXLySnbPyDv2ONxWMoDnY4fdzz/CEAvrhmWiTzMrOX4DPvksU0nqzj6AcHqLp+DcIIRO+qaWbSU9R0uQPsqulkVaShPBmIZQ4m8H1frTZ1i4NT1DmYSPT6MnS6QrzeRrqsu8jKvHRU+xNF8YJwDjY1PRsTBgEUg4iqugssc7CvqDQDmMGB/YeBwwAYDAbuuusuVKqpexoWvRAqigFCITcqVerELmgIvF4Lbk8NKfoydLr8IY/rQUSttqFS6cnOvoyWlleRHIQCSmUqXm8t+/bfRn7eTUyffg8aTea4vA5RFHG5ZXFwOGSkr5DEQetOCgs/OdHLkZGZUJLnErrMBYPF5mHb2fYpVcIRdRoNfD985mPX9hr1XDszh0c3VlGWmUKj1cMXH9szqsbcZGTXuU721HahUSr4wpruq3F+vzS2qtcXDLv1TKPJpKTkiwCcrX6AcDgwqjUadeqYU2qk7sF4m4p7bjNS5+ChBivX/WZLTBj80tpyXvrq6lELgwBlmSnkm3T4Q2H21PYtiIm6BhcUmdCpRz5SK4pirIikuOjTSRmYLQgCCyvn9xYGAQRYVDl/zFwQJ3cepflsI2qtmlUfu3RMnmMoyiOZgy12Hw7v6P6++kMURe59/jDtTj+zctP41oZZ/W43fXkl2hQdjnYbdUerR/RcKqWC9bOl0eI3k2i0WBTF7szBBDgHo+NvLlceTqc58pU1rgU6kxFBEDBnrAagq3PbqPfn87cQDnsRBOWULaDozljr5syZnw2YsRZ1DgaDVoJBx5ivb6JJhliKZECh0PcYPbdO7GKGoL9CkaGO60Fg/gK4aOUbzJv7a1av+oAli59g9aoPWb3qQwoLPwUIWJqfZ/uO9TQ2PYMoDlz2lih8PguhkBtBUKPXD5wzLdNN1N0p5w7KyIyBc7DxRC17X99Ba40Fl9XJdV//uJSXNAAuq4MPnnqb1nMWrK2dLFpfxSWf2tBrm1AwxJ5XtnJ8yyGcVgcZeZmsvuVyyhbIV8UnG8/srou19SoEuP+m+YOWJEwmKioqyM7No6W5mZ4Gl7AIOXl5LJ5b2ecxGakaHtlYxUf/sJWD9VbufvYAv79tyYjHQpONP7wvXb382NKiXrla/oAkMmnUI7uSWlL8eRoaHsfjqaOp6RmKim4f1ToXFqVzptXJgXobl1XmDvvx/uGIg5EcnuEeLIfCIn/afJb/fesUwbBInlHHr25ZyKrpiXNCCYLAqoosntvXwLazHVw8I7vX/bsiZSTLp41upNhq3YnTeRyFQkdBwa2j2tdYMnfBPN55621CGiSRUASlH+YsmDcmzxfwBdj67DsALLt+Nanpoxd8R4JRpyYnTUurw8fZNlds9D5R/HNvA5uOtaBWCvzq1oUDCs0qjZrK1fM5+NZujry/n9L5I/vMv2peHv/Y28CbR1v47+vnJsX7q90TxBuQThRHmznY26k0N/IFB/a/B7wHXBhOpZFiNq+myfJsQkpJPG7JNajTFaFQqEe9v2TE7alhoFKx/i72qVQG1OoMAoEuPJ4G0tJmj8cyJ4yJjqVIFgRBQKVKx+9vjeQOFk70kvql/0KR79Le/h4KhZ70dD1Wq4refpowWVl6rrj8/1BEZop1uvxev/+Vs35Ift5NnDj5fZzOY5w48V0sln9SOevHGAwDnxePFqfrFAApKWVT9j0o0RiNi1EoNPj9bbjd50hNnZpFUjIy8ZBw52DAFyCrOIdLP31VXNuHAiFS0lKoumEN2cX9n5Rvf+59Dr+3n0s+fRWf/umXmb9uKa/85h+01iaPC0BmaCw2T0wYBEk0++7zR6aMg1AQBIrmLuf8806FACVzlw94IDgtK5UHb1+KWinw+pFmfv7myXFY7diz+WQr759sQwC+fEnvD9pAxDmoHuGYhUqVSvm0rwNQfe43BIOjK05YVCxd5R9pKUkgInbG5xxMjzwmfudgfaebTz60g1+8eZJgWOTa+fm88Y2LEyoMRllVESklOdO33XV3xDlYNcq8wahrMD//ptj3IxkxZppYuXxlt3tQgJVLV2DMHJuA0H1v7MDZ6SAt08iSK8c/p6gnsdzBBDcW13e6+cG/pGKmb66fydyCwb+X8y5ZDED1/lO4bCNby+rpWaRqlDTbvRxqtI1oH4mmxSG5Bk169ahcuCA7lUZLRoaUO+h0ncTnaxvVvtyRQPupPFKcoi9juKViURel9wLJHayoqIg0avcVUfPysscsliLZ6M4dtE7sQgahf7FbpK19Ey2tL1FY9AH9/b6vXj0vJgwOhMm0iOXLXmDG9PtQKlOw2faxa/cNnDnzP4RC7sS9iB7IeYPDR6nUYjRKxxpd1h0TvBoZmYkl4eJg2cLprLp5HdOX9XVJ9YcxO51Lbr+S2WsWoEnpP3fnxLbDLL9+NdMWTseUk8GCy5dStnA6+16X/4AnE+faXTFhMEpIFKlpH5sPyIlg2fxK2sIpvQTQ9nAKS+cP/vewojyTn9+8AIA/bT7Ln94/O6lHr5/ZXcdnH9kNgAjsqO7dfhsdK9bEkdE3EAUFt6LXlxAIdFBf/9cR7wdgUbEk6h2st45opCB64BtXW7HGHHlMfOLgi/sbueb/PmRXTSepGiW//PhCfnfbYtJTNMNeZzysmi6Jg4cbbdg83SOlrXYvtR1uBAGWlI68qdjjqaOt/W0Aios+O7rFjgOX37iB3BzpwpXSC/OXLBiT53F22tnzijTWuObWy1FpJvaKf0WONFqcyNzBUFjkW88exOkLsqw0gzvWDn2CnFWcQ15FIeFQmONbDo3oeXVqJesqc4DkaS1utkVGihPQVDz0+NuF4VQaKRqNmTSD5Lbs6hrdaPGFUEai0+Uzu/IndJ9CDF0qpr/AcgcFQaBqRTH9iUorVpRcMH+LsUmJYHJclOkPSew+H4Gysq8xY/p9LFp0EwZDOz2dhQZDO7NmLYlr/wqFipKSz7NyxZtkZ1+JKAaprXuIHTuupK39nQS9im5i4mDK1C2kGgsyMi4CpNFiGZkLmUmRORgKhFCed2VdpVbRdHrgK5A+nw+73R77cjrHtnVRZmimZfUNI1YKAmVZo28HTBYK0lM4pSiNuQcVAixasYaC9KFf40cXF3FXpCH2Z2+c4LaHd7L6Z+/yzO66sVxywok6RHtyvkM0NlY8ioBmhUJNRfm3AKitezgmOI6EWXlpaFQKbJ4AtR3DF6uHlTkYO1i2DrqdzRPg60/t5xvPHMDhC7KkJJ3X71rLzUuLxvTEIt+kpzwrlbAIO3uIutG8wdl5Rkz6kQtX9Q2PASKZ5rWTok1VEAQ2XLkBraBB16Wg6fTYnNxue+59gv4A+dOLmFE1Z0yeYziMRWPxnz+sjoncv7plEco4x3vnXrIIgCOb9484D+iqeVLe6wv7G2iyTvwFqWhTcY4xMWUkslNpdJjNUu7gaEeLL4QyEoCCglt6ZKx9QEHBLYNufyE2FlfOWjoqUWkq0D0pYZ3QdQyGIJzvqFYwu/KnVJR/g5KSzzO94pusWbOYnmL4mjWL0esLhvU8Ol0BC+b/gYULHpZKkHxNHDr0JQ4d/gpeb1MiXgrQ0zmY/MdXyURGujStYbXulHMHZS5oJoU4WDK/nP1v7KSruRMxLFJ7pJqze0/gtg580nL//fdjMpliX1VVVeO4Ypn+SFGr6KlpKAT46U3zyDfpJ25RCabZ5uWUJ4X2sCQGZufm8fmrV8b9+FuX9w4wn4yj1/E4REc7VhwlJ+ca0tLmEgq5qKn5w4j3o1EpmFtgBEY2WjySQpJQyE0o5Ot3mx3VHVz96w94+WATSoXA3etn8uwdF1GSOT5CetQ9uO1stzi4O5I3WDWKvMFg0EFT0z8AKC7eOIoVji/l5eVcvngtao9A06nEn9y2nGuKueLW3rY+KVwl3eLg6Eb2oxy32Hlgk5SF9F/XzxnW7/LMFXPR6DTYWrrY/+ZOHJ3DL9focPoBqWRlzf+8N+EXXVrtiXMOguxUGi1m8xoAOru2jerE8EJwDkbR6fLJyFgZV6lYtLHYe4E4B0EqXCsvP8toRaXJjCoiDgaTWBxsbXsDAINh7oBid1XVxsjFF8jLy6aqauTHL1lZl7FyxRuUltyBIKhoa9vEjp1XUlf3F8Lh4MhfCJGmYtdpQBYHh4vJtBCFQovf347bfXailyMjM2FMCnHwkk9tID3PzOP3/JHffuGnvP/4G8y5eCEMcrB77733YrPZYl+7du0axxXL9Mf7p1rpecz9X9fNmTJlJFH21XUBAq1pM8nKyuKqDcM70a/px7U22Uav43GI+gOjHysGEAQF0yu+A0BD4xN4PCMXbqKlCyMRB/3+SOagZujXo1Klxa5UB4K9R4v9wTA/e/0En3x4B002L6WZKfzzyxfx9ctnoFKO39v1qgopy3Db2e7cwV010lqXjyJvsMnyT0IhJykpFZjNF49ukeNMwUzp5LbpVF1CryqLosgHT74FQOWqeeRVJEdoe0WOJA7WdrgIhEbXsOgLhvjmMwfwh8JcMTuHW5YVD+vxGp2GrFLJ+ffhU2/zyN2/5cjm/XE/3mLz8IN/HY39OxkuujQnsKk4iuxUGjkm01IUCg0+X/OITwxFUezhHCxL4OomPxeiczAQsJFmPBn5mxy9qDQZmQyZg60trwGQn3fjgGK3IAisX38VWVlZrF9/1agvtiiVKUyf/p9ULX8Zk2kpoZCb02d+yu49N2Kzxf/Zdj4+fwuhkBNBUJJyAVygSCQKhRaTSfqs7OraOcGrkZGZOBJeW7ezuoOHPqjmcKONTwH767uoWDrw9t969iDP7ZOuJN7c0UlbnYfPHn6VGTkG3rr7EgAOt3t50TSNoxXpOOwuHvj0StRHj2HKTh9wv1qtFq22e1zHYDAk4uXJjIJ3jrcCoFIIBMMijdbJ44aLl721koAyY3o5d974kWE/flpWKgqBXs67yTZ6nZumI1WjxOUPAdL6z3eIRsW00YwVRzGbV2POWENn1xaqq/+XuXN/NaL9jFQcFMVwpIkvvszBaINfINBBIGBFp5VEjzOtDu56+gBHmyRX1K3Livmv6+eQqh3/dtGLyqWfy6kWJ20OHxqVghPN0rqWTxtZ3qAohmhoeAyA4uLPTTonU+60ApQqJW6bC1trF+m5oxO2o5zZfZymU/WoNCpWffyyhOwzEeQbdejVSjyBEPWdbsqzR/4Z+qu3TnGi2UFmqob7b1ow7J+9o9Pey7EpiiLvPvoapfMrSDMbh3z8YG7miXKut9gl13BOgpyDIDmV1qxZzBtvRL9XF55TaaQolTrSTcvp7NpKZ+fWEblufP4WwmEvgqBEp0sOkT9Z6Jk5KIripHv/HwkOx1EEAWbMbKC+rjIhotJkI9kzB72+Zqy2PQDk5AxepFleXs6dd96Z0Oc3GGaxdMnTWCz/5PSZ/8HpPM6evR+nsOATVFT8B243uN0DmwNSU1MxGrs/A11OyTWo15ehUCQmsuJCIiN9BV1d22lpfZWsrMvickXLyEw1En7W6Q6EmJ1v5OPLijn5i6FDPf/7hjl852qp0v2dX7dhKszhYIOKa+Z3/0H23OeX/74XwiJn9pxgRtXsRC9fZowIhMK8f1ISB29aUsizexo4Zhn+aFiyIzkHYekICxvyTXruv2l+r1bne66unFSj10eb7Lj8IVI0Sh769FIqcgy91i+K4e523wSIgwAV0/+Dzt1baG55mZKSL5KWNvzMtoVF6QAca7LjD4bRqOJz6gWDDkRREkLjbd5VqzMIBDposbZwuDmLfXVd/O69M3gDYdJT1PzspgWxjLSJICNVw5x8I8csdradbSdNp0IUoSwzhZy0kYkZ7e3v4fHUoVKZyM+7MbELHgdUGhU50/KxnG6g8WRdQsTBoD/IlmekQPKl11wUl9A1XigUAuXZqRxtsnO2zTVicTB6wRDg/pvmk502/BMWa0snnOfWFMMitpbOuL5n/V90YUIvurQkeKw4SlXVRg4c+CPNzW0XpFNpNGSYV0viYNdWiouHX5YUHSnW6YpQKCa2UCjZ0OkKAIFw2EMg0IFGkzXRSxpzHE7JrVxWVsAN1ydWVJosJHvmYGvr64CIybQ08js6/giCgoKCW8jKupwzZ36Gpfl5GpueornlbXbtvB6PZ+BRY4PBwF133YVKJZ3Ou9xy3uBoCIUk04rVupOt29Yyu/InQ+apyshMNRI+p7a6NJ3PVppYmib9O2B10FbbjL1Dumq09dl3efPBl2LbG3VqhE4rQqcVgiFaWm1o7DauLOoWE2arAtyYKXJRjpZCv5P6f7yBKIosu2ZVopcvM0bsqenC7g1iTtXwqRVSUPexJnu/43ler4XOru14vZbxXuao8AZCHGmUfs+XlIy8zfXW5SVsvecyZkTaQhVxhvYnC1ER+OIZWayZkd1H2AwG7YiidLATj9MuHoxp88jNuQ4QOXv2FyPaR2lmCukpavyhcMwlFw9RoVOpNMR9pTZ6wHzvPz7ktj/v5JebTuENhLl4RhZvfmPthAqDUVZHcge3n+1g17nRjxTX1z8CQGHBJ1AqJ48TticFM6UYhMHKsIbD/k07sbfbMGSksfSaixKyz0Qy2lIShzfAt/5xEFGEjy8tYsPckf1ep+ea+zhuBIWAKU6BNnrRpedb6bc2zJrQiy7RtuLcBBWSREn0+NuFRLSUpKtrJ+FwYIit+3KhlJGMBIVCi1Yrtb5fKI3FDvsRQDo+uVBRJb04KI0U5+ZcM8ErkSZp5sz5BUsWP0FKSgXBYBtKZTMwcIyJ0WjE6XRisViwWCw01J/B6TTj9U6L3Wa3Tz0jxljg9VqorXu4xy1hjp+4b9Kdi8rIjJaEOwdbzzXx3M/+3v3v93by5Hs7mb1mARv+7QZcNieOzt728if/68+9/v0pYMefm5nzwNcACAaCbH/ufWxtXVwfBFXeND5+98fRpg58xd3n8+HzdYf9y23FE8s7x1sAuHRWNrPy0lApBLrcASw2LwXp3SdoTU3PcvzEd5E+DBWT6qrNkUYbgZBIlkFDiXl04ke+Sc/tK8v475eP8vKBRr6wZlqCVjn2bD7VBsAlM3P6vT86UqxSpSV07KG8/Ju0tr1BR+cHdHZtx5wxPLFFEAQWFqWz+VQbB+qtLIg4CYeiu4wkvu0BwoLkdkpRd5c9CAL87Kb55CbYSTRSVk3P4uEPz7H1bHvMLbh8BGUkb1e/zVdf/TKfL3CxzJxGUdHtiV7quFE4s5i9r5KQUhKX1cnuf20FYNXH16HWaka9z0QTEwdbR/b5+aNXjtHQ5aEoQ89/XT/yBuY0s5HLNl7Du4+8FrugdNlnrxmW0/LW5SWsnZnNp/+ykzOtLvLTJ+7vLBgK0+6Ujk8S7RyEsRl/uxBIM8yJuLq7sNsPkp6+bFiPv5DKSEaCTleEz9dMZ+cp3O7cAbc7f1RyshJ1DqalzZ3glUwcapWUORhMwrFir7cJm20fIJA9xEjxeJKRsZIVVa9QW/cwNttzHDl8yYDbrl27lj//+c+4XNFjSQ1wHQf2u4GHgL7uQpn+cXtq6M7rjRLG46mVx4tlLigS/k5RNLuMu/72PQDK7nmVBz+9lCt7uAU2/NsNfR4T3b7F7mXVz97l/z6xiOsWdNu7iypL+fT9X+7e57VLMWSkDbqO+++/nx/84Aejfj0yo0cURd6OiINXzM5Fp1YyPcfAiWYHx5rsMXHQ67Vw/MR9dF8lk67amM0XT4o35uhI8ZKSjIS4Na6Zn88PXznGwQYb59pd/RZ9JBs2dyD2fVg7s/+xoWgZiVqdmJHiKCkpZRQWfJKGxsc5e+bnZCx7ftg/h0XF3eLgZ+LUFqNXxONpKo7iDkqii6GHOCiKUNfpoTAjOVx1VWVmVAqB+k4PjV2e2G3DQRRF7nnr25zsPMtf/RqumvmxCRvdSQT5M4pAAGtzJy6bk1TTyHP4tj//PgGvn9xpBVReND+Bq0wc03NG7hzcdLSZZ/c0IAjwq1sWkaYb3ZjlvEsWU1RZyuPffZBwMERu+fB/j/JNei6ZmcOZ1nPsr7Py0cVFQz9oDGh3+gmLoFQIZBrkXKhkQRAUZGRcRGvra3R2bh22OCiXkQyOXl+EzbaHLVtepLr6+IDbTQUxIxh04HafAy5wcTByXJSMzsHWVqmlON20LJb9nCwoFBqmld1JTva11Nf9CZtNS+9hvzB5eTnMmDEDk8nUQxzsi9FoRKlUjvmaJzvS+7aC3gKhAr3sBJe5wEiqtuJ/7m3AqFOxYc7o36TltuLk4Wybi5oON2qlwMUzJMFoToF0Vbhn7uBgV20mA9EykiUjzBs8n+w0LaunS9+vlw80JWSfY83Ws+2ERUlUKBpA5Ar4I03FcTT7DpeyaV9FqUzB7jhEa9sbw358tJTk4DBKSfyRseLhjEinp0o/157iYLIVz6RqVbHvR1iEnDQtpZnDW99Tu+5jb/NBAE46/ey1ehO9zHFFl6ons1ByxFpOj3w0rq22maMfHABg7W3rEZI0OqAiEm1wts01rIbmNoePe58/DMCX1pZTNQLHaX+k55opmSu5qGsPj6xRdnFJOgD766wJWdNIiOYNZhu0KJP0Z3+hYjavAaCza+uwH9vtHJRPJvtDr5NKSQxpg38OTAUxw+GQxE+tNj8hxWuTlZ5txcP5DBkPWlpfBSAn99oJXsnApKaWccklq+h7uq4gK/sFjhy9k/nzB/++rlu3To6XiAOdLp/ZlT+h+3stTa9NBnOKjEwiSRpxUBRF/rGnno8uLoq7CGAwtFotRqMx9iW3FU8c0ZHileWZMffInHxJHDza1D1qIF21Of8DbHJctRFFkb21VmDkZST98ZGFkjvmpYONSXdg1R+bT0ZHirMH3KZbTEv8AbNWk0VJ8RcAqK5+YNi5UQuKpAPZs20ubJ74Hts9Vhy/ABITBzWSONhfo3MysKqi+2c0r9A0rANMj6eJH275VY/DLPifXX/H45kcQvdAFMyUTnAbT9aN6PGiKPLBk2+BCDNXzIntLxkpy0xFEMDmCdDh8sf1GFEUuff5Q3S4/FTmpXH3+pkJXVPp/AoAao9Uj+jxiyN5sMctdjyRRvXxpjkiDuaakiNCQKYbc4aUO2i3HyAYdMT9OFEMy87BIdDpJaduTs7gx/hTQcyQR4olonErohggFBq4dXe88XgasNsPAAI52ckzUtwflZXLMBja6TZPhDEY2jGZztHWtgmn63/Ou5/Ydnl52VRUVIzvgicxBQW3sHrVByxZ/ASrV30waWKtZGQSSdKIgzuqO6npcHPr8uQ9UZIZGe8clwoqrpjdnTHTn3NQp8unoODWHo8UJs1Vm/pOD+1OH2qlwPxCU8L2u2FuLlqVguo2F0ebkjtUWBTFHnmDg4iDEedgopqKz6ek5Auo1Wbc7nM0Wf4xrMdmGrSxvMjDDfFl5AT8EXFQE78o3GiXRgmNWjePfG45W+5Zx63LS4a11vHAG+w+2HzvRCvP7I5fEHv15DOcdPp6HM7CSaePV08+m9hFjjNRMW+kpSTV+07RcKIWpVrJ6lsuS+TSEo5OraQ44gA+E2fu4LN76nn7eCsapYL/vXURWlViHUCl88sBaDpZh98bn2DZkwKTjlyjlmBY5HDjxORgRZ2DuSNobpYZW/T6IvT6UkQxRFfXzrgf5/O3Eg57EQQlOl3hGK5w8hJ1DgpCB7k5uX17FkTIzcmdEmKGwyGVkaRdwGUkAAqFHkGQ8nSTKXewte11ANLTq9BqBz5eTQb0+gLWrFlMT0fb6jULWb78eSrKv4U5YyWlZYfpz124YkXJpBfaxxudLp+MjJWT4txTRmYsSLg46PIFOdpkiznC6jvdHG2y0WiVMqv+540T3P3MgT6Pe3ZPPYuK05mV1zdLcKh9yiQvXS4/e2olp9jls7sLKubmSwJafaenl0PLmNadvZWSUj5prtpEc/bmFpjQqRN3MpymU8dE1ZcPJrfj6lSLk2a7F51aMegYYWyseBhOu+GgUqUxrUwK4z937rfDvlq9MDJKe6C+K67tu52D8YuDW6ql3/kiU4B1lTlJ5xgEsNg8/PnDbneWCHz3+SNYbEO/74qiyM92/q2fQ1X42c5HJ4ULdiAKI+JgW23zsMWpYCDIh0+/DcCSq1ZizEpP9PISTkV2dLR4aHGwrsPND/91DIBvbZjJ7PzElwqk55oxZqcTDoVpODH8yAlBEFhcLP2tRt+3x5uoOJgnOweTkmhr8XBGi6MjxTpdEQrF6PI1pyp6vfTe6fVaWDBrbt9BEQEWVc7vJWZ4vRY6u7ZPusZQh0NyDl7ITcUgvd+qk7CxuKVFGinOzUnekeKeVFVtJC9PEjHz8rJZUfUFTMaFlJX9O0uWPMFVV/21X3fhrFlLJmzNMjIyk5OEi4OHGmxc+5stXPubLQD8+NXjXPubLfxq0ykAWu2+PqKe3Rvg9SOWAV2DQ+1TJnl5/1QrYREq89J6ZdCZUtQURopIjvdwDwZD3Segbnf1sMZ6JpJY3mBJ4kaKo9ywSBotfvlAE+Fw8ooqm09JDtGV5ZmDCqTRQpKxzOEpLPwkOl0xfn8r9fWPDuuxCyOjxQfq47vKHR2TjlccdHgDfHBGaio165JnzOZ8zrW7OP/XLSSK1LQPveZNZzext/lgP0MusLf5IJvObkrYOsebtEwTaZlGxLBI89nh5Q4eensPttYuUkwGll27aoxWmFi6G4sHDjwHCIVF7n72AC5/iKppZr54cfmYrEcQBErnSfuuG2Hu4JLSdAD2T5A42GyT/v6TpZlcpjfmjEjuYGf84mBspFhuKh4QrTYXQVAjigFmzM5G6aXbPSiC0gdzFnSLaU1Nz7J121r277+drdvW0tQ0OVznoZAbl0t6b7rQx4qhZ+7gxLzfno/HU4fDITntcnKunOjlxIUgCKxffxVZWVmsX39VHzegIbW8j7twzZrF6PWTtwBORkZmYkh4FdhFFZnU/GzgKzEP3LKwz21GnZoTP7p6xPuUSV7ejowU93QNRplTYKTR6uFYk52V5ZJQFAr2PAEVsdkOkJl58XgsdVRExcFE5g1GuXRWNmk6Fc12L7tqOmPfq2Tj/Uje4KWDjBRDj7HiMXIOAigUWirK7+bosW9SU/sghYWfjFu8ixYWHKiXArSHGsmIHvDG64R89ZCFTo8kjCtI3lHxaVmpKAR6CYTxlKaIosj33/s+ChSE+8iDoEDB99/7PhsqNkzacZeCmSWc3H6EplP1lMyNTwRz213sfPlDAFbdfCka/eQYKa2Is7H4wQ/Osqe2C4NWxQMfXzimRRul8ys4/N4+akZcShJ1Dsb3N55oWh2RseJxFAdtNhtu98DCfmpqKkZj4p2ek5GMjJWAArf7LF6vJa7xslgZySTISJ4opJHrfDyeOkTa0HUpcOVHPiMESLGpCHgkN7bXa+H4ifvo6YQ6fuI+zOaLk37cz+k8AYTRaLLRavse+15oqFXpAASSZKy4pVUaKc7IWIlGkzXBq4mf8vJy7rzzzgHvr6rayIEDf6S5uY28vGyqqjaO4+pkZGSmCkmTOSgz9fAHw7GCist75A1GmdtP7mBP5yCAzbZ3DFeYGFy+ICeapdcQdaQkEq1KyTXzpIPhl5K0tdjlC7K7RnLQXTJr8IPhQLSQZIwb/HJzr8NgmEMo5KSm5o9xP25ugQmlQqDd6aPJNnS77nDHip/dU4/DL41qBoN2wuFg3GsbL2w2G7it/Pfl+WQr3GQKLrIVbv7r8jxwW7HbBxY1/SE/dba6foVBgDBh6u31+EPDz4tLFmKlJKfizx3c8cIH+N0+sktymb1mwVgtLeHEnIODiINHm2z871uSk/+/r59DsXlsW7eL5pShUCqwtXRhax2+G2V+oQmVQqDN0XeSYTxojryv5I2TOBgMBnn44Yd56KGHeOihh3jggQf45Cc/yQMPPBC77eGHHyYYTL73oolArTZhNEoRJ/GOFrs9NYBcRjIU0dzBppqDqDygCUlTBjo0KJxh/vXrZ/A43JHvZ1/vuccz/CiB8cbuiJaRXNgjxVFUPRqLk4HW1uhI8TUTvJLEMpS7UEZGRiYeZHFQZszYda4Tpy9IlkHDoqL0Pvd3NxZ3Cw2hoHQCqtXmAWDtRxy02DxsO9seV/bZeHCw3kpYlILuxyo7Ljpa/NphC/5g/6LLRLL9bAeBkEiJOYWyzMGFgahzcKyv2AqCgukV/wFAfcPjeDyNcT1Op1ZSGck+PVhvHXL7bnEwfchtz7Q62FdnxRdOjd2WTCHd0FtIqNn6L67THuMG3XGu0x6jZuu/hhQStCotu/9tN3u/tJeXrvkWf1xcyD/Xf469X9ob+9r9b7vRqiaHc64/CmdK5THNZxoJBYduvG1vaOXIe/sAWHvbehSKyfPRG80cbLR6+m339QZCfPOZAwRCIhvm5HLz0qIxX5NWryV/uvQ8tYeH31qsUytjpVj76qyJXFpcxNqKjePzN6BUKjGZuouyHA4HmzdvxuHoju0wGo0olYktj5nMRFuL4x0t9rgl0UqfIjsHByPaWNzZcgIBgVmFM8jKyuKGj30EU3YGtjYrr/3uObSa/gq6FJPCmdldRiKPFEP3hdNgYOKPddzuGhyOowiCkuzsyTFSPByi7sLy8rGJ9bgQcHTaqT9eg6MzeSd7ZGTGkslzhiIz6Xj7eAsAl1XmoOhnxCx6cnam1RETvIIhaaw4M/MSAOz2A72cVc/srmP1z97ltod3svpn7w6rPXWsiOUNjsFIcZSV5Zlkp2mxeQJ8EGkETiZ6thQPdrVSFEM9xLSxGyuOYjZfTEb6SkTRz7lzv477cYsipSRDiYPS65EOeON5Pc/ukTLqLpmZj0ol/f4nSw5PlPOFhP4YSkgoNhWzJH8J0/R+Zhi0LCtaxZL8JbGvIuPYC0hjibkgC22qjqA/QFtt86DbiqLIh0++hSiKVCydRdHssvFZZIIwp2pIT1EjilIO5fk8sOkkp1qcZBk03H/T/HFzK5REWotrj4wwdzAyWjzeuYNufxCHV/pMyx2nQhJBEFi3bt2g26xbt052mvQgVkrSuXXIAiVRDHdnDsrOwUGJOgddTun7tWDpQu68805mz5vDDd+4FbVOQ93pGt55ahPnN5ZkZHyUri4Gda4nA91lJLI4CMmVOdja+hoAGRmr0GjG/hhUZnJxZPN+Hrn7tzz/s7/zyN2/5cjm/RO9JBmZcUcWB2XGBFEUeeeEJA72N1IMUJiux6RXEwiJnG6VHAyhyFixybgIlSqNUMiN03UCkByD9z5/OJaBFhbjb08dS/bWjV3eYBSlQuD6BZJ78KUkay0WRZH3I2UklwyRNygdHEo/wOG0+44UQRCYPv07AFiaX8DpPBnX46KNxfuHEAeDQTvR0aehnIOBUJjn90ni4C3LimKvP1lGbaIkUkhwuyVXV2pKRULWliwICoGCGZHxuNODjxbXHDxD3dFzKJQK1tx6+XgsL6EIgjDgaPH2sx38ecs5AP7nYwvINIyfG7R0nvQ7VX+sJi735vlEs0XH2znYYpfKSPRqJWnahMc+D0hFRQW5ObndBRBRRMjNyaWiYmr9jY4Wk2kxCoWeQKADp2vwzw2fv5Vw2IsgqNDpJveFj7Em6hwUlR0IgkDR7G4nYGZRNuu/dAOOwjCNgfcAEZcrndbWMgDqajfz0EMPJvUIfCjkw+U6DchjxVGSKXOwJSIOTrWRYpn4Od8ZaO+wcXzLIV77/XO889dXYxeDRFHk3Udfkx2EMhccsjgoMyacbnVS3+lBo1Jw8Yz+x0cFQegzWhyMFJKoVEZMxsUA2KzSaPFo2lPHinBYZH/k5HIsxUGAj0RGi9861ozLlzwHxjUdbuo7PaiVAhdVDJ4j6Pd3N/sqFONzYmw0LiAn5xpA5MzZX8T1mKhz8HCDjWBo4DFuv18ShlWqNBQK9aD7fO9EK+1OP1kGLesqc3qIgxN/Nf18KioqyMvLpr/Mp7y87LiEBFEMx8TBlJSpN+ISzR1sGiR3MBQM8eHTbwOwaEMV6bmT06kQHS3uKQ7avQG+/Y+DiCJ8YnnxgBeBxoqc0jz0aSkEvH4sZ4bXGg3dzsFjTTa8geGLiyOlJTJSnGfSjatTTxAEFlbOP9+MBQIYnGqc8glQLxQKLRkZVQB0DTFaHC0j0ekKx+1zbbISdQ5qDA6yy/LQpfaOYpm+ZBZGoxGzWXpf7Wgv4Vz1ckIhJWnGdtLTLUk9Au9ynUQUg6jVZrTa5C5OGWtsNhsWiwWrTYvTaaatzYXFYol9jYcDNLoGi8VCdfVumptbcDmzCYUWjtsaZJKHns7Av37zNzx05wM8cvdv2fTwy5zedbzP9mJYxNbSOQErlZGZOOSjGJkxITpSvKoikxTNwL9mcwqMbK/u4FhEHAxFxoqVylRMpqV0dH6A1baX4uLPMi0rFYHexgeFwJDtqWNJdbsTmyeATq1gdv7YNj0uKDJRlplCTYebt461cOPiwjF9vnjZfFJyDS4vM5M6hBPGHxj7puL+qCi/m7a2N+noeI+url2xk74Bt882YNCqaAvsYdbvvsGD1/+OK8qv6LNdtFwlHhdkdKT4Y0sKUSsVMadhsjkHQRISqlYU8/JL54+wK1ixoiQuUcPrbSIc9iEIminppukpDg7UeHv43b10WTrQp6VQdcOa8V5iwuh2DnaPFf/g5WM0Wj2UmFP43nVzxn1NgkKgZF45J7cfofbwWYoqh5dFVpShJ8ugod3p52iTfcwv7kRpGee8wZ6Ul5Wh3NT7NqUX2qubePQ/fs/cSxaz/PrVpJnl1mKQcgc7OjbT2bmFkpIvDLidOyIOpqSUjc/CJjH6iHNQneqmeE7fzwVBELjmIxuoqf0TAB0dxQQCepqbZ1JYeJziksMsmP8fSTsCb++RN5isaxwPotnFLlf0M+M6AN5/76HYNgaDgbvuuguVamxORfuuoXsd+/c/PS5rkEkeHJ123n3ktV4xER6nBwTIKy8kuzSPw+/t7XWSKSgETJP0oq6MzEiRnYMyY8I7xyXBaCg3yfmNxcFIIYlKlYopfSnQ3VicZ9Rh1Pf+AJ+VmzZujY/9Ec0bXFCUjlo5tn9OgiBwwyJJEHzpQHzlGuNBz7zBoQjEykjGtqn4fFJSplFQcCsAZ87+fMgMKaVCYF6BEav6b1RbT/LtTff0+5h48xNb7V7ei4ioH18WOTmKiYPJeVWyctZSDIZ2ut2DYQyGdmbNWhLX47tdg6VT0k2TU5aPUq3C43Bjbe77M/Q6Pex48QMAVt50CdqUiXufGi0xcbBVen9+44iF5/Y1oBDgV7csxDCO47E9KY3mDo6glEQQBBYVj3/uYLSpOHcCPrcspxvRdfX+nJo3fQ7Fs8sIh8Icfncvf/uP3/PeY2/Io1SA2SwJ+l3W3YTDvgG3izboToayjIlGpTITDkrvF3mz+v8bMJvbUCqD+HwpuFzSZ2tjwxzCYQUmUws1O19h17+2cGL7EZpO1+PsciCeP1YyQTjkpmIgMdnFU2ENMsmDtaWz3+P4G75xK7f+10Yu++zVXL7xWoRIRr6gELjsc9fIF8tkLjim3hmbzITT7vSxL3KydXllzqDbRktJjjfZCYfFHs5BAwZDJYKgxOdrxutt4lirHpsniF6t4PvXzeG/XjrC8WYHbx5t5qp5EzO+sa/WCoz9SHGUGxYW8Jt3TvPB6XY6nL5xzfjqD28gxPZqSfC7dNbgP2sAf0QI06jHVxwEmFb2NSyWF7Db99Pe/hbZ2RsG3b49uBu/QsoOOtiyl/te/zs/vebTvbbpFgcH//k/v7+RUFhkSUk603PSIo8xR/ZhHcnLGXOUSi1lZYc5ciSaP6hgzZrF6PUFcT3e5ZaKIlKmWN5gFJVaRV55AY0n62g8WUdGfu/f6Z0vfoDP5SWzKJt5lyyeoFUmhoocSRysbnfSYvdy7/OHAfjyJRUsK5u4q+ol8yRxsK22GZfNSarJMKzHLylN5+3jLbFoiPEgmjk4ERe1Tu08hsoDhnRpTDzTnMlHPn8zgiDQcLyGHS9+QOOJOg69s4ejm/cz79LFLLt2FYYL9OQoNXUmGk0Wfn87Ntt+MjJW9rud21MDyGUk8WBr6cLvMKDLsGLM63+cv73jHQA6O4qIzsH7/am0tFSQn38aZ/g5jv6zd/6pUq0kLdOEMSsdY1aP/2anY8xKJ8WU2q+Tz9Fpx9rSSXquOSEigNxULBHNLn7iiScG3GasS5CSYQ0yyUN/sS6CQiCrpNvEMu+SxZTOr8DW0okpQe8JMjKTDVkclEk4751oRRRhTr6RgnT9oNtWZBvQqBQ4fEEaujw9nIMGlMoUDIbZOBxHsFr38Oqh6QBsmJvHbStKabJ6+d17Z/h/Lx9j9fQs0nSDZ76NBdEykmh+1VgzPcfAvEIjRxrt/O69M3xpbTn5psG/x2PJrnOdeANh8ow6ZuYOfWLujzgH1RPQEqfV5lBSvJGa2j9w5uwvycy8bEBHW5PVzYetvwNBAUIYRAUP7PwRX131MQrSu8fY/RFxUDOIOCiKIs/ukfKTbllWHLs9mceKARoan8SUXo/B0IHTmYnJ5KKqamPcj+8uI5k2VkuccApmFtN4so6m0/XMu7RbAOxsaufQu5Lj+eJPrkcxxq7isaY4Q49aKeANhPnkQzvocgeYk2/kG1fMnNB1pZoMZJfm0VbbTP2Rc1Sunj+sxy+OOAf3jaNzsLq2HuuWJ9CsvGvcnhPA3m7FcqYBQRC4/vrrOX76BDd85IbYiXHR7DJunl1G/fEadjy/maZT9Rx8ew9HNu9n3qVLJJEwI21c1zzRCIKAOWM1zS0v0dm5ZUBx0OOONBXLY8VDUnfsHH5nGroMK/6Apc/9oijS3iaJg9aWYmnEL5InY6meR37eWdIKm5h9uQl7owl7uw1nh51QIIS1ubNfFzeAUq2KiIYm0iLCob3NypHNByASC3HZxmtGdSEnHPbjdJ4C5KZi6M4ubm5uofegWpi8vPEpQUqGNcgkB4b0NDR6DX6PHxjYGZhmNsqioMwFjSwOyiScVw9JB3wryocWgNRKBbNy0zjcaONYUztqUXrTVioloclkWhoRB/fy+mHJ7XDtfMkl+NXLpvOvQ03Udrh5YNMp/t8N43swZnX7ORMZs1sSab4cD0rNqRxptPPI1hr+tq2G+2+az63LS8bt+XvSc6Q4nquvsbHiCXAOApSWfomz1S/Q2trF4SNPkNOPezA1NZVnDr8Rcw0CIITxC6d55vCrfPPij8dujidzcF9dF9VtLvRqJdcu6Ha4Rh/jT8Kx4lDIR0PD4wgCrFhZzLatTZSWHkIaMY5vBMflmtrOQYCCmSXAVppO1vW6/cOn3yYcCjNt0QxK503+MhaVUkFGioZWh4/qdsndfeXcXDSqiRc9S+eV01bbTM3hs8MWBxcWm1AIYLF5sdg8Y3ahxWaz4XZLxVltDdWkVL+Pu/VGLBbpfTs1NRWjcWxPRqJh64WzSrj0inVcekX/jeTFs8so+m6p5CR84QNJJHxrN0fe38f8S5ew7LpVpKZfOCKh2RwRB7u20d87mSiGcctjxXFTf/Qcgcjxncfbt8zJ4TiCz9+CUplKZfkNbD0kXWRBgMXz1pOXD83NL5C76AgbPvMgIBU/uboc2Nut2Nqs2NttONql/9rbrTg7HYQCQbosHXRZOvpdlyiKvPvIa5TOryCsFGN/r/0x0N+ry3UGUfSjUhnR6Yr7eeSFRSKyi6fCGmSSg+bqRvweP2qdhmu/djPmgixZBJSR6QdZHJRJKH/fUcv7EcHo0W01VOalDSlczck3crjRxglLC/Mjv5FKpeTOSjctpaHhbzS376LJVoVBq2JtJNtOp1byo4/M4zN/3cVj22u4aUkhC4rSx+y1nU90FG1aVuq4jfdabB5eP9J9tT0swnefP8LamdkT4iCMiYOzhs4bhB5jxeOcOdiNnv37rsTrDXNgfw3wUJ8tUlNTeTL1WRAjrsEoooK/Hf0fvrHm5tgBZdT1N5g4+Mxu6QTo2gX5vdytyewcbG55kUCgA602n4tWfp1AYAnhsBePp46UOJ2AMedg6tQVB/NnFCEIArY2K84uB4aMNGoPn6Xm4BkUSgUXf6Jvic1kxGLz0Oronbn2m3fOcMvy4gl1LgOULqhgz6vbqDtSjRgWY3lB8ZCiUVGZZ+SYxc7+Oiv58/UJHzM8PxS/Sg9Vd9xB2HKchx6SBLvxCMU/tUPKQpu5YuiLaIIgUDxnGkWzy6g/VsOOFzZjOd3Agbd2c/j9/cxft4Rl1150QYiEGebVANjthwkEbKjVvTPMfL4WwmEvgqCaksVLiSQcDtNwvBZDmfR74/X0bRlvb38XALP5YuavvZYzzQ20tLaQm5PL5TduwO2eTnPzi7S3v43DeYI0QyVKlVIaH85Op2h23+cNBUM4u+zY27oFQ8uZRuqPnuu1nSiKvPSrp2k0dOH1eQd8HQP9vXbnDV7YZSQ9qZy1lHcNm3A6zUjOvTAGQ2fc2cVTZQ0yE8/ZvScBpsxFWxmZsWLiL/vLTBksNg/ff+lI7N9iRLiy2DyDPi6aO1jdIhU2KBS62LhntJQk6DuDTunlitk56NTdzqW1M7O5YWGBJJK9cJhgKMx4sW+cR4oBzrW7OD93OySK1LS7+n9AgrHZbFgsFiwWCwdOnqOrrYVspZsZhiAWiwW7ffAQ+4kcKwYpoDojI4fendfnoYX9rbt7C4MAQpiDLXv516F/xb4HbW1OnE4zNps+dlvP78HZVicvHWgCeo8UQ7egmGzioCiGqav7KwDFxZ9DqdRiMFQC3Sc/QxEI2PH7JeE4XjFxMqLVa8kqlrI2LafrCYfCfPjU2wAsuHxZnxzCycq5ft5fpPedgd0140X+9CLUOg0eh5u2uuZhP35JaToglZIc2byfR+7+Lc//7O88cvdvObJ5/6jXlwyh+F3NnbTWNiMoBKYvq4z7cYIgUDJ3Gh+/77N89D9vI396EaFAkAObdvHIt3/PB0++hcsqued7fjb09zXUZ0OyotPmkZIyHQjT1bWjz/3RMhKdrnBKFi8lkrbaZnxuL2Gf9NnXn3OwvV0aKc7OugxBENhw5QaysrLYcOUGBEEgNbWCnJyrAaip+UNcz6tUKTFlZ1A8Zxpz1y7iopsuZf0Xr+9XwGuvbyFg8w56iDDQ36tdzhvsg15fwJo1i+k+3VSwZElG3NnFiUCny6es7EivNQwnP1lmalC9Xxr5r1gysXEoMjLJjnwkI5MwzrW7OL8IKnoCOZi7JNpYXNfRDoVS3mAUnTYPnbYQr6+RaaZarl2wps/jv3fdbN4/2cqRRjuPba/l82vGR4yINhVHTy7Hg2lZqSgE+giEj26tYVFxBnrN2J1gnu+AAbghkqn/5GPHgKEdMIHAxI4VC4LAZZddPmhA9bu8iwIFYfoKzWrU7Hh5B/vDUdEgB7iOA/triboQo9+D5/Y3cc9zh2PnGNVtTqqmdYui3eLg+OWdxUNHx2bc7jMolQYKIw3PaYbZ2O0HcDiPk5t73ZD7iLoGtZpcVKqp7S4qmFlMW10Ljafq8Tg9dDS2oUvVs+IjF0/00hJGf+87SkGgLCtl4AeNE0qVkuLZZVTvP0Xt4WpyyoZXTrW4OIO/76jjyOlmDAe2xUQBURR556+vsu2f76PRaVBpVKjUalTayH81qh63qVGpI//WRP9f2gaVEq+QAzQNuIaxDsU/vVMS9UvmTiPFmDrsx0siYTnFc6ZRd6SaHS98QPPZRva/uZPD7+1l7qWL2d10aNBRzPFwR44VZvMq3O4zdHZtISfnyl73ud01gJw3GA/1x2oAMOfMAt7Ec55z0OttwuE8CijIzLwUgPLycu68885e25WV3Ulr62u0tr6Gy/UNUlOH7wJKMxu5bOM1vPvoazHH8eqb1+G2u9m7fTc2nX/Axw709yo3FfdPVdVGDhz4I83NbRgM7ehTqhEjOY/jgc9nwZReh8HQjtOZRV5e9rDyk2UmP9FIAYVSQemC6RO9HBmZpGbyHaXJJC3FGX0FwHhOICvzJXHQ6ZWcBUpl75OXkHoe+BqZm1XDxTOy+jw+J03Hd66u5L4XjvDAppNcPT9vzEfdgqEwB+qtwPg1FQPkm/Tcf9N8vvv8EUKiSPTY6s1jLdz0x208ePtSSjLH5oQ96oDpKQ6ez1AOGL9/oseKowHVWTQ3t3J+QHVubjb7HPv6FQYBAgSwYSOHgZuZjUYjrU4/9z5/uJf54L4XjnDJrO7x7+hYcTBoHdcD5aGoq/8LAIUFt8aEPUPaHCB+56A72lQ8gpO2yUbBzBIOvr2H2sNnY6ObKz66Fp1hYsdtE8n57ztKQeCnN82b8JHiKCXzyyPi4FmWX796WI9dEnn/ttc29esW8thdeOyjc2aLiCgLIKQlWr4avYPMrOwxD8U/tVO6eDOjas6o9iMIAqXzKyiZV95LJDywaRe+IhE0Az92rN2RY4nZvIaGhsfo7NzS5z5PLG+wbJxXNfmoi4zxFlQsogvpsy8YdMQ+Z6IjxSbTkkGPEdIMlWRlXUF7+9vU1v6ROXN+MaL1DNRMuvz61fzh93/A4XH2+XvNze2/xCIcDuJ0SjEBRlkc7IUgCKxffxWvvfYqhYUf4nKdo739HbKzxyd2w+U6iyDArMpmamsqWb/+qqQ53pIZH87uk0aKi2aXodWPTwyUjMxkRRYHZRJGfWfv8eF4TyANWhVlmSnoBCnjRaXs3Xp7vGMa07WwrKCh10hxTz65vITn9jawr87KPc8d4o5LKpiWlTpmJ68nWxy4/SHStCpm5IyvM+rW5SWsnZlNTbubsqwUajvcfPXJfRy32Ln+d1v49ScWsW7WwOLVSBEEgXXr1g3quhvMARMO+wkGbQCo1RMzVgzRgOoSXn6p/bx7FKxcWcbuabtpc3eHVzu8AT7zl134Q2F++fGFVKh0vPnCmwPuf926ddR0uAcY/+520apVkighiiGCQQdq9cQHIzscx+jq2o4gKCku/lzs9jSDJCpET36GwhVxDk7lMpIoBTOlcfFoS2ZGfibz1029LKPz33eSRRi02Wyk5KUR1IjU19VTe64Wja5bpRqq7KMsMwWzXsni1r4jyYIgcMPdn0Cj1xD0Bwj6g9JXIPr/Pf4bCMb+v8vu4URDFzanD5UYRqcQMXmCOHXnRWwIsGzuwjE9UW1vaKWjsQ2FUsH0pfGPFA9GT5Gw9nA1O17YTIOlEVf+wLOYY+2OHEsy0lcgCEo8njo8nnr0+u6ICLenBoAUuYxkUIL+IE2npDHi0jlzcJxNJxi04vE0kJYmBQW2tUuRDNlZlw+5v7Kyf6e9/W2aW15i2rSv9/qZDIf+mkl1Bj0XVa1k0wdv995YgEWV8/v9PXa7zxIOe1EqDXIxTT+Ul5fz1a9+jTNnvdTW/olzNb8jK+vycXlPcLnPAFBSksV11945xNYyU5HqfdGR4lkTvBIZmeRHFgdlEsYrh6WijOsX5HPbitJhnUDOLTDR0iqJg8oeY8XhsMhrJ7P4+gLI0p5GFEMIQl+BUKEQ+OlN87nm/z5k86l2Np9qRyEwZk2++yIjxYtK0lEOIwA/UeSb9LHvbb5Jzytfu5ivPLGX/XVWPv/obu6+YiZ3rpuOIsFrq6ioIDs3j5bmZnruOixCbl7eoA6Y7vFZRcw1N1EMFlCt1xdQbOp9onHLQh3/2NvAntPp3HbLQg5u30dzcwvnOw/z8iRXgbar73jd+S5apVKLUplCKOQmEOhKCnGwrk5yDeZkX41O153HYzDMAhT4/e34fK1otYOLz+5IU3FqytR3DtYcOtPr3yXzylGqJqdDaih6vu8kA72iDooAwjz62KO9thlqnFUQBK7xtZAd8oJKhRAKSU5ehcBln7uGsgXxC9xtDh+/eusUz1TXEdYa0KQo2Li6jH9fNx3B7eY3D/yakAbJjSSC0g9zFoyty+h0xDVYtmA62lRdQvctCAJlCyoonV9OzcEzPPPCP/AJgbjdVpMFlcqA0bgIm20vnZ1bKSz8ROw+eaw4PixnGwgFgqSmGzAXZKFvKsLhsOL11pOWNptg0BHLdMzKGtpRZjIuxJyxhs6uLdTWPkhl5Y8Tut65C+bxzltvx/332j1SPAdBkOPcB6Kk+PPU1z+Kw3GYzs4PycxcO+bP2X08Mnnfg2RGjsvmxHJWijAoXzxjglcjI5P8yJ9gMgkhGArz5hHJefHxZcVcVJE5rJPIOQVG9Kqoc7B7rHhfXReHmrPwBHUIohun8+SA+zDp1b0yD8Mi3PPcYX777mnePtbCcYsdmycwzFfWP7G8wXEsIxmMPJOOp7+0kk+tKEEU4YG3TvGlx/di9ybm9UYRBIH82Us5X3NUCFA8d/mgV4G7R4rNE37w3F9I9sKF2gEDqm9fKTkBXj1kocsdYNmybPq+fSpYsaIEQRD48HRHr3sGctGqlJLrNHpleyLxei20tL4CQEnJF3rdp1TqSYkIfQ7nsSH3FXMOTuGmYgBHp513H3mt122H3tmDo3Nyli9MNhJR9nF693GyGyVHk2XhYjb+6mt87J7b2fjA15h3yeK41uENhPjj+2dZ98v3eWpXHWERrp6Xx1t3r+Xea2Zj0qsxZppYuXxlt3AmwMrlKzFmDr7+0SCKIid3RluKRzdSPBiCIDBt0QwuuWRtb2EQBnVbTSbMZinvuLNra+w2UQzj8dQByG6xIYg2AxfNLkMQBPR66aJtNHewo3MLohggJWVa3BmCZWWSC6zJ8hxeryWh6+3v7zVLNA3499qzqVhmYDSaTAoLbwPgXM3vEM8PKh8DXJGYk9RUWRi6EDm3/zSIkDMtH4N54i/Cy8gkO7I4KJMQdp3rpMPlJz1FzUUVw8+Tm5NvRKf0AaBUdYuDrxyyIKLAGZas4Fbb3gH3ca7d1ScySgQe2HSKLz62h6v/70MW/mAT8//7Ta783w/Y+MguvvfiYf7w/hleOtDInppOmqyeuBqPd9ZIQte0rOGHu48VWpWSn3x0Pj//2AI0KgVvH2/hI7/byqkWR0Kf55wvjbZwSmxsNixCeziFpfMHH1nzR8pIJnKkuCdVVRvJy8sGwGBoR6l6E6+3/9KAhcXpLCgy4Q+FeXZ3HQrlJgyGdohlE4YxGNqZNWsJbn+Q/31bGmH4xuUzeOrfVrLlnnV9HKxNTc/i87cAcOjQHTQ1PTsmrzNeGhoeQxSDpKdXYTQu6HN/WiR30OkYXBwMhwOxE+ap7hy0tnT2ObkRwyK2ls4JWtGFRTTqYDAGG2e1tXbx9l8kQXx3ag5bPGrSzEaKZpf1GTXsD1EUeeVQE1f8ajP/88YJnL4g8wtNPPOllfzx9qWUZvb+fLj8xg3kZEnvOUovLFu9PJ6XOWJaa5qxtXSh0qiYtnjsGxrnLpyP0kd3dqMISt/YuyPHA3PGKgC6urYjitL7vs/XQjjsRRBU6HRFE7m8pCdaRlIyVyqM00e+X9HG4vbISHFWHCPFUTIyqkg3LUcU/dTV/TmBq5W4/MYN5ObkAtLfq7fJQWfT+XEkErGmYoMsDg5FackXUSg02Gx7sVp3jvnzuVzSxdepfrFSpn9iLcXj8BkoIzMVGPZYcVfXLurqHsbuOILf38qC+X8kO3tD7H5RFKk+92uamp4hGLRjMi2lctYPSUnpbpC1O45w9szPsTsOAUpycq5kxvT7UKkGFlqOHfsPLM3P97rNbL6YxYseHe5LkBkDoiPFV87JQ60cvuY8t8CILuIcRJB+D8JhkdePSPvNNi8H50Fstr0UF326333016gpAGtnZtHpCtBo9dDp8uPwBTnZ4uDkAKKZUiGQZ9RRmK6nIF1HYYaegnTpqyhdz1vHWrBYpbXe/ewBfMHQmIwuj5RblhdTmZ/GV/6+j3PtLm78/VZ+cfNCrl0wvBbP/rB5Ajy2o5aUQCFXak8DkmtwUdUaCtIHL0IJ+CNNxRNYRtKTaEj266+/TkVFLeGwmxMn/4uFCx7uV0y4fUUp/9lwiMNnnmFG+buUlhVw9Eh0/EnBmjWL0esL+M07p2lz+Cg26/nKugq0/YyYer0Wjp+4r8ctIsdP3IfZfDE63eh/TkNhs9l6NYsGg25OnHyNUMhMft6t2O32PjltaYbZtLS8jGOI3EGvtwFRDKBUpqDV5o3J+pOF9FwzgiD0EggFhYApNzkE8AuBiooKcnNyaWlpGdY4azAQ5LU/PI/f4yOnopDt7mxCXR5aHV5y0oYevz1Qb+XHrxxjT8RFnmvU8p9XVvLRxYUDxjkIgsCVV1/FM48/jborRP3Rc6TnjN3vyqmIa3Dawhm9chjHiqjbaushaTx0PNyR44XRuBCl0kAg0IXDcRSjcX6sjESnK0KhkFN6BsLn9tJSLV14K55TBoAukhHo9TQQDgdpb38fiG+kuCdlZXdy4ODnaGx6mrKyr6DR9C2tGymCILDhyg28/vrrZHhSaGtq5NC7e7n09t6N1aIYxhlx1KcZJ78QPtZotbnk599CY+PfOVfzOzIyVo7Zc/n9nQQC0sW6qX6xUqYvfq+fuqPSJEv5UjlvUEYmHoZ9NBMKuzEYKskvuJnDh/+9z/21dQ/R0PA35sz+BTp9MdXV/8v+AxtZueJNlEotPl8L+/d/htzca5k58/8RCjk5dfpHHDv+nyyY//tBnzvTvJbZs38e+7dCMfYHuzJD03OkeKQCVHaaFrNeGoG1edUA7K3rosXuI02nYt601Rw5/Gds1oGdgwM1avYU7jz+EI1WD02Rr8bIV/T/LVYvwbAYu30owiJ89/kjrJ2ZnVRZXAuK0nn5q6v5+tP72Xqmgzuf3MehhnL+48pZqEYg3kb5w/tnsLoDZGcXkJVip721hezcPD5/9dAHd/7IAZpGnRziIEgh2XfeeScu1xl27tpOR8d7tLa+Sm7udX22vX5hAX945wOuLpEKWZYsvoWOdiXNzW3k5WVTVbWRdqePBzdLIyz/cWVlv8IgREPsz3eohvF4asdcHOyV09aLywA4sP8gBsPZPjlt8TYWuyL5Pikp0yZ8fHysSTMbuWzjNbz76GuI4e6cunhcZzKJQRAEFlbOZ1Nry3l3QGXxjAFdg1ufeYfWcxZ0qXquu/MmHn3sICdbHOyvs3Ll3IFF7Sarh5+/cYIXD0hih06t4I61FdxxSTkpmqEPqcrLy7l80cVsr95M7eFq5q9bGv+LHQZiWOT0LkmwmLly/NxMl9+4gUOnjuDwOklR6rj8xg1DP2gSoFCoychYQXv7O3R2bcNonN8jb1AeKR6MxhN1iKJIeq6ZtIhQ3NM5aLPtIxi0olZnYDLGN8ofxWxegzFtAXbHIerqH2F6xX8kdO3RY4Taw2d58fBTHN9yiFU3r+sltrvdNYRCbhQKnSxAxUlZ6R00NT1NV9d2rLa9pJvG5n0wOlKs0xWiVA5+AVtm6lF3pJpQIIQpO53MwuyJXo6MzKRg2OJgVualZGVe2u99oihSX/8IZWV3kp29HoC5c37Jh1uqaGvfRF7u9bS3v4sgqJg18wexE8fKWT9m565rcLtrBg11FhQatFr5jzvZGO1IMUgneLlpkljS7pJ+LV89JLkG18/JJTNjOqDA62vC67UMKKAM1aip1yiZnmNgeo6h38eHwiJtDl8vwbDJ6qGxS/r/ug4X7kBvUef8FtpkIdOg5W8bq/jFppM8uLmaBz+o5nCjjd9+cjGZBu2w99fQ5eaRrTUA3HvtbMo0Jbz++utctWF9XHlS/ohzUK1JPldVaup0ysq+wrlz/8fJUz/EbL4Ytbq320WrErlr6VPolT5avbO4bNq/s359La+//jrr11+FIAj89p3TuPwh5heauG7+wCJfir6MaBFKN8K45FZFc9r6ioPd9JfTlmaQGiU9nlqCQScqVf9/Q253VBy8MEZ45l2ymNL5FdhaOjHlmmVhcALotzzAB4de2InGq2DZtavQ6Lvf887sOcGBt3YDsP5LN5CWaWJJafqg4qDLF+TBzWd56MNqvJHPgJuWFPKfV1aSZxpe0UfJvHK2P7+Z+mM1hIKhMSmwsZxtwNFhR6PTDKtUZbQIgsCyeYvZvO1DsnTGSZ812BNzxmpJHOzcQlnpHbGmYr2+bELXlezUHZPyBovndk8QRduFPZ6G2EhxZualw3ZgCoJAWdmdHDp8Bw0Nj1Na8m9jUnhWMrccU24GtpYuTu04wrxLuxvpHbGR4tn9FubJ9EWnKyA/7yaaLM9SU/N7Fi3865g8jzsyUiyXkVyYVO+TcurLl8yaUp9FMjJjSUJtHV5vPX5/G+aM1bHbVKq0SMvbfgDCYT8KhbqXo0ShkA7arbY9g+7fat3JBx8uZ/uOKzhx8vs92k/74vP5sNvtsS+n0zmalyYzCKMdKY6SlRoCoMkuEAqLvBbZ73UL8lGpDDFxwjZI7iBIDsLhFqJEUSoE8kw6lpZmcP3CAr58SQU//Mg8/vK55bzxjbW88+1L+5RxnN9Cm0yolAruvXo2f/jUElI0Srad7eD6327hUIN12Pv61aZT+INhVpabWTcrJ3ZFvbw8vivlsbHiJHIO9qSs9A5SUqYTCHRw5szP+txfW/snjMrjeIJafrX7EzR0+Xp9D861u3hip5S1d+/VlYM2Ret0+cyu/AnnvwUHg4nNh+yPkea0aTSZsTFhp/PEgI+NlpFcSA6K4eTUySSefssDMCEGw+z+11b+9p0/cmTzfuztVk5sP8ymh18GYMnVKylfNAPq61nnamBu8xm6tuyAfftiX+E9e3nl1V2s++X7/ObdM3gDYZaXZfDyV1fzq1sWDVsYBCkYXZeqx+/xxcYtE82pSEtx+ZJZqDTqMXmOgZg5uxJjg5JQu29cn3esiZaS2Gx7CIW8sbHiFLmMZFCiZSTRkWKQxCEQCIc9WJpfBIaXN9iTrKzLMBgqCYVc1Dc8NsrV9o+gEFgQcfkeemdvryiJmDgojxQPi9LSLyMISjo6NmO3HxqT55DLSC5cwqEw5w5I4nD5EjlvUEYmXhIqDvr8bQB9Mj80miz8kfsyMi7C72+ntvYhwmE/gYCNM2d/AYDf1zbgvs2Za5kz+5csWfx3plf8J11duzhw4POIYqjf7e+//35MJlPsq6qqKhEvccKx2DxsO9uOxTb0yOt4kIiR4igmnR+AeqvAnppOWh3SSPGa6ZJb1JQuXakdrJRkrImOLisjwslALbTJxjXz83npztWUZ6XSZPNy85+28+zu+rgff6TRxgsHGgG475o5I7oCFxsrTpLMwfNRKLTMrvwJPl8Kp06/zcmTm7BYLFgsFk6f3szhw4/jdJrZ3fI52jyZPLWrrtfjf/nmSYJhkUtnZbNq+tC5RwUFt7B61QcsWfwEZvNaQOTUqR+MS3tfRUVFpIyl72hzXl72gDltaYbIaPEgjcXu6FixHP4tM470LA/IzcnlSz/5Otd9/eOYcjNw25y889dXeeRbv+PNP71EwOvHmJ3OqpvXgc8Hy5ez4TPX8urfvsH//HQjLF0a+1IsX0bVrVdh7XJSbNbzx08t4dk7LmJBUfqI16pQKCiZJ7moao+cTcTL70U4HOb0LikbdCxbigfClJMOgMvqJOALjPvzjxUpKeVotXmEw36stj09xorLJnRdyYzLGinxEKB4dhkgZd62tHTi803H6TTT1SXicubi983EYrFgtw+v7V0QFJSVSjFH9fWPjtlFttkXL0CpVtFW10Lz2cbY7bGmYoMsDg6HlJRScnOvB6Cm5g9j8hxyGcmFS9OpOrwuDzqDnoIZxRO9HBmZScO4JygbDDOZM/sXnD7zE85W/xJQUlz8GUlQHCSfKi/yASLtYxYGQyXbtq+jq2sHZvPqPtvfe++93H333bF/nzx5ctILhA9/UM1PXzuOiFQCcf9N8ye8CCMRI8VRUtV+fAGo6YB/HZLcFBvm5KFRSb8XJtNSGhoeH9I5ONYMNbqcrMzITePFr67mW88e5K1jLfznc4c40GDlv6+fM2A2HkhxAfe/fhxRhI8sKmB+0cjC5ZN5rDiKwbCIQ4c+hs8rcGD/dmB7j3uvAUCrBQVhnt1Tz11XzECrUrK/rotXD1sQBPjOVYO3NvdEp8uPfBWxY+cGuqw7aG19jdzcaxP7ws5DEASqVhTz8kvnX5BRsGJFyYDiryFtNu0d7+IYoLFYFMUezkH5YFxm/OhZHrDhyg0oFAoqls6ibOF0dr28hV0vfdhre0e7DbfdRVpGGpSUILa1IYT7NtWHEWg1ZfOt6+bxuTXTBn2vHA4l88o5tfMYtYerueimSxOyzyiNJ+tw25xoU3WUzBt/B68uVY9Gr8Xv8WFvt06ZrCdBEDBnrMbS/BydnR/GWtnlseKBqT9aA0BOSR46g/68zNuLem27f//fATAYDH0yb4ciJ+cqUs6V43ZX09D4JGWldyTqJcTQG1KYuWIOx7cc4tA7e8mfXoQoitgdhwGpaENmeJSV/jvNzS/R1v4WDucJ0gzxHz/Fg0seK75gObtPaimetmgGilFMtcnIXGgk9K9Fq5EOAP3+9l63+/3taDTdB4d5eTdw8ZqdrF69jbUX76F82l34/Z2xDJJ40OtLUKvNuCNjHX3WotViNBpjXwZD//lYkwWLzcNPX5eEQeguwphoB+GrCRopBlArpPZUu0/NP/Y0ANJIcZRoYLHTeYJgcOC8tPFgNKPLE4lRp+bB25fy7Q0zEQR4cmcdtz64Y9Dfo82n2th6pgONUsG3N4y87SvZx4pByuMzZ+QBA7v3sszpZKfpaHf6eeNIc0Q8lcZsb1pcxOz84Y+W6vVFlJZ+BYDTZ346Lr/flbOWYjC00+0eDGMwtDNr1pIBH5NmkIoNnAM4BwOBDoJBG+OVnygj05P+og6UKiVFs/v+LoqiiK2lEwQBfvSjfoVBAAUiJb9/gDsunZ4wYRCgNCLatZxrwuN0D7H18Dj6vhTjUjq/fEzyDIdCEARM2ekA2Nqs4/78Y0n0YnRL878Ih70IggqdrnCCV5W8nJ83GM28HYz+Mm+HQhCUlJV+WXrOuj8TCo3NsfGCy6Tj0NO7juFxuKmp/ROhkPR5feDg52lqenZMnneqkppaQU7O1UDi3YPBoAufzxJ5nukJ3bdMciOKItX7JXGwfLE8UiwjMxwSKg7qdMVoNNl0dm2L3RYMOrDbD2Ay9W0g02qyUKlSaWl5FYVCizljTdzP5fVaCAS60GpyErL2ZOdcu4vzpw2jRRgTRTAU5o3ISPE1oxwpBmIHWN6QDl8wjFGnYnWP8UydrgCtNh9RDGG3Hxz1812oKBQCX71sBo9urMKkV3Og3sr1v93CjuqOPtuGwiL3vyYJX59dVUqxeeTZisk+VgzSSe1ll11Bd3hZXy677DJuW1EGwJ/f3Mdnv/ofbDt8Bo1Kwbc2jPwgpLTk39DpivH5mqmp/eOI9xMven0Bc+Z66P4YULBmzWL0+oIBH5OWJuV+Op2nCYf7jgu6XJJrUKcrQqkcfhabjMxYkJ5r7uOGFRQCptyIi3nDBvyLlxI8b3ohKCjwL16K8SOJd/IazEbJUSd2Z7IlgsPv7ePkDmnM8dTOYxzZvD9h+x4OxpwMAOytA2dDTzZsNhs+/0ycTjMdnQGcTjN+fyUtLW0jGoed6oiiSO0R6TMhq1g6Vh9p5m085ObegE5XRCDQSVPTM8NfcDzPUV5ATlk+oWCIIx++S3X1Az3uDXP8xH14vZYxee6pSlnZnQC0tr6Gy5W4mIVoOZpanTkmJTUyyUtHQxv2NitKtYrS+RdO/rWMTCIYtjgYDLpwOI7Fxso8ngYcjmN4vU0IgkBx8UZqan5PW9vbOJ0nOXrs22g0uWRnbYjto77hMeyOI7jd56hveJyTp/4f0yu+jVrd7bjZvmM9rW1vxp7z9Jn7sdn24/E00Nm5lUOH70CvLyUz8+LRfg8mBdOyUpOuCKPnSPGqUY4UAzG3lCcoiQoXz8iKjRRHiboHm5tflA/ARsklM7P511fXMDvfSLvTz6f+vJO/bDnXK/Puub0NnGxxYNSpuHPdyK+8hkJeQiGpFEidxM5BiC+P7xNVxSgVAnuOV/P4Hx4g5Oxk4+oyCtJH7iRVKnXMnPE9QHI+uN2JEwwGIiOjJeIehLy8bKqqNg66vU5XjFJpQBT9saDvnrhj4d/ywZhM8pBmNnLZxmsQIh+igkLgss9d010gIwic+dp/ohJ7/82rxDBnvvYdyV04BpRETlqiAspocXTaefdvr3XfIMK7j76Go3P8Raup5hyMjsM++sizHNh/Xexr544lPPTQQzz00EM8/PDDBIPBiV5q0rD7X1txW6XP/U0PvRwTqkeaeTsUCoWa0sg4cW3dw4TDiS/EEQSBBZdLx6FnDnxI3ymDcKyoRiY+0gyVZGVdAYjU1CbOPRgVGmXX4IXH2UhLccncaai1mglejYzM5GLY4qDDcZhdu69n124pA/D0mZ+wa/f1VFf/LwClJV+iqOgznDh5H7v33Ego5GbxokdQKrWxfdjtB9m//7Ps2HkNTU1PUznrxxQXf67X87jd1bFQYUFQ4nSe5OChL7F9xxUcP3EvaWnzWLr0mVjT8VQn36Tne9d2B4srBCa8CCORI8VATDzyBqWf6WtHmnlmd+/Sh+hJmqX5ObZuWyuPcIySkswUnv/KKj66uJBQWORHrxzjrqcP4PYHOdfm4v7XpVD7r102g/SUkX/ABiKuQUFQo1KlJWTtY0U0j6/v22N3Hl+uUcec/N6vI884eqdcVtblZGZegigGOHXqh2NaThIMunC5TlBWtp/MzHTWr79qSLeGIAikpUnvQ85ICHtPonmDKXK+j0ySMe+SxWx84Gt87J7b2fjA15h3Se9phoyPXsfBvBkx92BQUHAwbwYZHx27/M/oaHHd4eqE/K1bWzr7aBViODI+Pc6YsiPOwSkiDo7VOOxUxdFpZ/tz78f+LYpiTKiO5zN2pBTkfwytJhefrxmL5fkR72cwZq6YizZFR2d9f8e9CjlSYwRMi7gHW1r+hdudGHG1u6lYFgcvNKojeYNyS7GMzPAZdiFJRsZKLr9sYNu3IAhUlH+TivJvDrjN3DkPDHhflJ7PoVTqWLzo0WGtcyrymYtK+eErkmPz1a9fPKJss0SR6JHicDgYu8rrjTgHxUiu4tqZ2eSb9Hi9FlpaXun5KI6fuA+z+WJ0utGv4UJFr1Hyq1sWsrDIxI9fPc7LB5vYda6DZruv1zajIVpGotFkjurAf7yonLWUdw2bcDrNSCcwYQyGzlgen8Xm4UhTbzfOj185zlXz8kYl2AuCwMwZ32dH53Y6Oj+gvf0dsrOvGMUrGRi74xAQJjdP5GMfuyvux6UZ5mC17sLhPM75f3Ux52CK7ByUST7SzMZut+B55KencOre76O66zOA5Bq03vv9/9/efce3VtePH3+dJM1o06R73fa2t72jvXtP4C7oZQuooOIAFVBR+Ypfv4qioP4QF+IegIAoKKBM2XDh3gtcuHD33r2993avpCOjSc7vjzTp3mkz+n4+Hn1AT04++fQmbZJ33oN5SWOXnT9pxmS0cTpaGptpOFtHau7oBnckBcqku+hWPj2OAhOLbbWxUVYcKId99NFH+z1npOWwsaipj4B0IFCdmGIZ9Dl2pDQaA5Pzb+Do0f9H2ak/k539MTSauFGt2VOcIY4py2aw751deJwp6IyBn1VDdvb/0dgICQl2LJbwvUaPNhbLXFJTzqO+YTOnTv2ZkpK7R71ma+tRQIaRTDTNDXZqyipB8Q8jEUIMj4zviSI6rQazwR/PNcaF99PpUJcUB/oNgr/nYPB4l76KbY4ypIRjbCiKwnWrpvDPG5eTkqDvFhgEuOPZ/aMafuNu75hUHBe5k4q7MplyOOecBfTXj28se4DGx09h8uQvAHDk6P/D63WOes2+2G3+Ei+rdXhvxswdfQf7mljc1uovhZbMQRGNVn/t07gX+EsG3QsWsfprnx7T29Pp48gtngzAqX2j77UVb0lA0XYGp3qVT48jS0fmoK2maUwzoMfTWJXDxiJvu7fXsa6B6sGeY0djUs4niItLwek8Q3X186NeryePx8OemoO05PrwKv7n52NHl7Ht/St58okKKTEfoYIpXwWgsuppnM6KUa/XJpmDE9KBt/cAkJGfRYI1uoeRChEOEhyMMlaT/xNQu6P3MIDxFOqSYo/HX1Lc7tXhVTsDn137KsabCuirDEVKOEJnSUEKP/7IrF7HRxv4au+SORgtli69vuONYO9+fGPdA3RKwVcwGLJwOk9zqvz+kKzZky0QHLT0HhY1kK4Ti7u+6fd6XTicpwHpOSiilKKg//lPoaTE/99xyAKb3FFafGrv6PsONpytRfWqxBn1XPXtvsunx0tiqgUU8LjbabOP/fT18TCW5bCxJtDzK6CvQPVAz7GjodWamDz5iwCUnfoTqto7UDm69bUkJSejKF70ev/rorq6fNzuhOA5UmI+fEnWRSQnLUdV2zl16r5RreXzuXE4/G2J4hMkaD9R7Nu0k/c62hnUlFWFbSCXENFMgoNRJtHozxy0hTE46PH6eGV/6EqKobPfoFZnRtvxAlurKN36KhqN2ZQU30XXh63JlIfBkBmSPQi/hfnJIQ98BScVR/gwkq4UReGCCy4kLS2tVz++bKuJu6+a0+9jdbS02nimTf0uAKdO/QmH40xI1g1QVRWbfRdAn5PkB5KQUISixOHxNON0du7L0ZHZq9NZI37ojBD9Ov98OHDA/99xkD/b/8b17OFyPO7RPa9Xn/Rn22QV5pA3syAsGYMBujgd5mT/7Q+372Bzg53TB8vCMkhlMMUzFnUMcQpkD/owm+tGXQ4bS9wOF4e37gPgoq9c2W+fz4GeY0crd9Kn0OmstLWdoKbm5ZCtC50l5kZjC4oCHo8Oj6d7//OlS5dSVVVFZWVln18y2bpvgezBisrHcblqRrxOW1sZqupFqzVj0Mt7hImgucHOxode7HYsXAO5hIhmw+45KMIrmDnoDF9wcNvJBupaQldSDODpCA4mGCy8/Z21lNW1UZAW3yvYkpNzNSkp52Kz7eDAwf/D4ThFZeW/ycm5OiT7EJ2Br+8+tQ+vqoYk8BXoORinj46y4oDCwkJuvvnmPi+7Zslkkq5bzIUPw1+vW8yGJZNDetsZGReTfPYxGpve4+ixu5g7508hW9vhKKO9vQFF0QcHjAyVRqPHnDCd5pb9NLccwGTKA7o0/44vlAwaIYYoZVIa5uREWhqbOXu4nPw5I89yqT7pz+jPmDL60sxQsGYk0dJgx1bTSPbU3CFdZ9+mnWx86EVUVUVRFNZdf3HYsh/7EiiHffnl0x1HQlcOGysOv7ePdqeb5OxUpi2dOeDzwUDPsaOh0yWSl/s5Tpb9lrJTfyQj4+KQPi8VFRWRlel/C+VyJgIda6uQkZHBa6+9Rmtr/xmzZrOZW265BZ1O3oZ1lZy0HKt1ITbbDsrLH2DatO+OaJ2uw0jk9cjE0FTd0KuFRdc+p0KIoZHMwShj6QgOhjNzMNQlxQBej/9FlFaXQLbVxIqi1H6DUUZjNpmZl1BUeCsAR4/9LBh8EqFxzZLJvP2dtfzzhuW8/Z21XDPKwFewrDjGMsrmTp/CHXfcwdzpU0K+tqIoTJ9+B4qipbb2VerrN4ds7UBJsSVx1ogmvvfVd7Ct1f9iXEp4hBg6RVGYPKejtHjf6EqLazqCg5lTImNAV2BisW2ImYOBzI/AG7yuE24jyViVw8YCVVXZ+6b/+WX2mgVhDczk5X0OrTaBlpZD1NVvDOnaiqJQkOcvI3Y6u/Q1UyDfkjPoMBIpO+6boihMKfBnD545+9iIX9u3tR4DZBjJRBJJA7mEiGYSHIwynT0Hw9PoeCxKiv3r+oODOu3Qm8fm5n4Os3kmHk8TR4+NfrKZ6G6wIO1wBMuKo6jn4FBkZ2dz5513kp09Nm/Gzebp5OZ+DoAjR3+Ez+cOybo2+8iGkQQkmv3Zhi0tB4PHWtv8gQ2ZVCzE8ARKi8tH0XfQ4/ZQd8Zfhhc5wcEkAGw1Q5tYPFDmRyQZy3LYaFd9ooLaU1Vo47SUnDM3rHuJi0sid5J/qFBZ2R9CPhgnJd2/XjA4qILWCUde24PrYNOA15XJ1v1LSTmPxMQ5+HwOyk8/NKI1WgPBQfmwcsLwebv3Fg3nQC4hopkEB6OMxRjezMGxKCkG8HoCPQcTBjmzk0ajo7j4/wEKVVVP09Dwbsj2I0IrWsuKI0HhlK+j16fR1naS0yN8odyTbYSTigPMHaXIzc37g8cCkwFlUrEQw5M3qwAUqD9bO+IsubrT1fi8PkyJ8SSmWkO7wRGyZPgzB4faczApM6VXwERRIjPzI1AOW1goH4Z0tfetHQBMW1KCyRyaAV2jMXny59FojNjtu2lofCeka/uoBsDpTPQfUCAvMZv4xAS8DS60TqBnPFKFzIxMmWw9AH/2oL/U/MyZv9Pe3jTsNQJlxfEyqXjCOPj2XgCyp+f12+dUCDE4CQ5GGYvJ358kXD0Hx6KkGDp7Dmq1Qw8OAlgt84KfDB8+8gN8PlfI9iRCJ1bLiseDTpfI1KLvAHCy7Pc4XVWjWs/jaaGlxT9JcrjDSAISzcUAuFxVuN0NqKqP1taOzEH5pF6IYTGZ48ns6BNYPsLS4uqyjn6DBdkRk5EUzBysHVrmYGKKhVXXrOt2LDUvQzI/ooSr1cmR9/ytJuasXRTm3fjp9WlMyvkE4M8eDKXAoDCj0d93NzMjk8/edgNf+PUtXHHrJ8lLzA62IgxSYH7xnIj5HY1UaWnrMZuL8XpbOH3mkWFdV1W9tAUrGeT1yESgqiqH3tkDwNw1C8ktCe9ALiGimQQHo4w1jD0Hx6qkGDp7Dup0Qy8rDigq+iZ6fQZtbScpO/WXkO5LjJ6qqjFbVjxesrKuwGpdhNfbxrFjPx3VWnb7HsCH0ZAz4knfOl0iJpO/D2VLy0Fcrip8PgeKEofROLTBA0KITvkdfQdHGhwM9hssjIySYgBrR+ZgS2MzHvfQWqGk5Ph7+elN/l6odeXVNFTUjc0GRUgdencvHnc7qZPSyZ4WOc8Dkyd/EUXR09S0jcbGbSFZU1VVHI5yAJYuvYi0tDRKN5SiKApanZaCeVO58qZr0LrozB5UQeuCmXNnh2QPsUxRNBTkfwWA06cfwuNpHvJ1nc6z+HwuNBp9cGCaiG0VR09jq20izqinaPGMcG9HiKgmwcEoEygrtochODhWJcXQmTk4nJ6DATpdItOn3Q5AWdmfghlMIjJ4vW34fE4A4uIirzwsGiiKwozpdwIaqqufp7Hx/RGvFeg3aBlh1mCAuaPvYHPLgWC/QZMpH40mblTrCjERBfsO7juJz+cb9vUDk4ozCyJnaq4pMZ44Qxyo0FxvG9J1asv9H0BOmT+NwoXTAdj+4tYx26MIDVVVgyXFs9cujKjMOKMxm5zsjwJQduqPIVnT42nC2/G6ddq0FX2WmFtSrSxfvLwze1CB5UuWY4mQsv9Il5FxIfHxRXg8ds6c+ceQr9caGI4WX4iiyNCXieDg2/6swWlLSogz6MO8GyGimwQHo0znQJLxDw6OVUkxgNcbmFY8/OAgQEbGxaSmnIequjl46Ns0NLyL01kZyi2KEWpv95cUazRGtNrw9yCKVomJM5k06VMAHD5yJz7fyIYS2Wz+N3AjLSnuuh+AluaDwUnFCQnSf0uIkcgszEFvMuBsdQSzAIeq3eWm4WwtABkRMowE/B9qWIY5sbj2lL+PW/rkTBZfshLwZ6S1RNjEYtFd5bEz1J+pRafXUbJyTri300t+/k0oipaGhi0d2fOj43CcBkCvz0CrNfZ73vorS9H7/O2AkhOTWH9F6ahve6JQFC0F+V8GoPz0g3i9bUO6XmubfxiJ9D+eGDzudo5u8w/HK1kVeX97hIg2EhyMMpZAcNA5vtOKvT51zEqKwd8HDUA3zJ6DAYqiMGPGj1AUHTbbDnbu+gzvvHseFRVPhHKbYgTc7s6S4kjKJohGRYXfIC4umdbWI5w9O/RP0gNUVcVm2wWMfBhJQGKXzMG2tpOA/5N6IcTwaXVa8mYWALD3ze3DGkxSe6oaVVVJSErEnJw4RjscGWtGEjD0voOBzMH0/Eyyp+aSMz0Pn9fHzldDUw4qxsbejf4PnaYvm4Uhof9gWbiYTHlkZl4OwMkQ9B4MBAcHK1tVFIUpyXlo3DAjZ6q8BhqmzMzLMJkm097ewNmz/xzSdTonFcswkong+I4juB0uEtOsTJqRH+7tCBH1JDgYZcLVc/D9k/VjVlIMXTIHRxgcBFAUHaradZS9j4OHvicZhGHm7sgclJLi0YuLS6Ko8H8BOH7iXlzu4fXiams7icfThEZjINFcMqq9BDIHW1uP09zin1qcIMFBIUYszuB/fj+wZQ8P3fo79m3aOaTrBYaRZEZQ1mCAtSNz0F7TNOi5bocLW7U/iJg+OQsgmD24780duFqdY7NJMSrOFgdHPwgMIhndh05jyZ+FplBX9zrNLYdGtdZQg4P+283HckaLtq3n6GIxGI1GF8wePFV+P17v4EMHA2XFMoxkYgiUFJesmoOikeC7EKMlwcEoE5xW7GhHVcfvhcYLe8aupBi6ZA6OsKwYoM1RRmfn5wAfDsepEa8pRi84qViGkYRETs7HSUycg9fbwvHjvxjWdW12f3ZHYuJsNJrR9WXR6zM6Ar6+YKmylPEIMTLNDXYOb90f/F5VVTY+/OKQMghrTlYAkVVSHDCcicV1p2sAMKckYkr0t6AomDeV1Nx03E43ezZuH7N9ipE78PYevO1e0idnklkYOT0ve0pIKCIj4yIAyspG13vQ4ewIDhoHDw4mZ6cB0FhZP6rbnKiysq7AaMjB7a6lonLgaiBVVWlrk8zBiaKlsTk4xKtk1dww70aI2CDBwSgTyBz0+FTa3N5Bzg6NsS4pBoKNnUeTORhvKqCvh7TTWT3iNcXoBcuK4yQ4GAqKou0YTgKVlf/GZhtadhEQPHe0/QZtNhtVVVV4vQtoaUkJftntCVRWVmK3S38wIYajqbqh1wd+qk/FVt0w6HU7h5FEXnDQkjH0noO15YF+g1nBY4qisOjiFQDsem3bkKcei/Ghqir7InQQSV8KCm4GoKbmxVENr3MOI3MwJdv/2keCgyOj0ejJz78JgFOn/oLP5+73XLe7tmOysYb4+ILx2aAIm8Nb96GqKtlTc0nKlOokIUJBgoNRxhSnRdeRNm13jk9p8ViXFAN4PKMbSAL+iXQlxXfR82F98ND/UVX17Gi2J0YhWFaslyfuULFa55Od/XHAP5ykezl9/+yB4KBl5KVfHo+H+++/n/vuu4/Nmyaxa+elwa8HH3yM++67j/vvvx+PR97ECzFUSZkpvQIrikbBOsgbHpfDFQw6RHLmoL2mcdBqh2C/wcmZ3Y5PXzYLc4qFNlsrB9/ZPSb7FCNz9nA5jZX1xBnimLFidri3M6hEczFpaecDKqdO/WnE6wQyB42myYOem5Tl/x12NLfhaB7aUA3RXXb2x9HrM3C5Kqmserrf8wL9Bk2myWg0hvHanggDVVU7S4rPkaxBIUJFgoNRRlGUce87ONYlxdDZc1CnHXlwECAn52pWrdzMwgWPsmL5m2RmXoaqeth/4FZOlT8Qiq2KYZKy4rExteh/0ekSaW7eN6TBOx5PMy2tR4DRZQ5qtVqsVuuA51gsFrRa7YhvQ4iJJjHFwrrrL+4WIDzv2lISUywDXq+2o99gYpqVeMvIM+/HiiXN/7fC7XTjbHEMeG4gczCtR3BQq9Oy8MJlAGx/6T18Pt8Y7FQMV3ODnfef3gzAjBWzMZiiIxhTUPAVAKqqnw32DhwOn8+D0+kv5TcZcwc9P86gJzHV/3ss2YMjo9UayJ98AwCnyv6Mz9f3h4+tUlI8YdSeqqL+bC3aOC3Tl84M93aEiBkSHIxCwYnFjrHPzBmPkmLo2nNw9G9ujMZskpOXEx8/mVkzf0Ve3ucBOHbsbo4e/QmqKm8sxpO7XcqKx4Jen0bhlG8AcOz4L2lvH7inl92+B1AxGidhMGSM+HYVRWHt2rUDnrN27dqILy8TItLMXr2A6+75KuaOgOBQgi2RXFIMoNPHkZDkn6Bsq+n/b5TP66P+jL/nYM/MQYBZqxdgSDBiq27k+IejGyYhRm/fpp08dOvvOHPI39M5EgPT/bFa5pGSci6q6uXUqb8M+/ouVxWq6kFR9BgMvR+rfQn2HayS4OBITZr0CeLiUnA4y6mufr7Pc2QYycQRyBosWjgjIiekCxGtJDgYhSzjmDk4HiXFqurF5/NnFIym52BfFEXD9GnfY+rU7wBQfvqv7D/wzQF7lojQcrulrHisTJp0LeaEGXg8TRw/ce+A5waGhlgto+s3CFBUVERWVjrQM9DuIysrnaIieWEuxEhYUq3MOm8eAEfePzDo+YHgYCSWFAdYM5KAgfsONlbW4233ojfqgxOOu9Ib9cw4bzYevcrbL2yioqKCysrKbl/S63R8NDfY2fjQi93KxD/47ztDGp4TKQK9B89W/Juq6hdwOiuHfN3gMBJTLooytLdR0ndw9LTaeCbnfQGAslN/7LOdSltrIHNQXoPEMq/Hy+H3/AO8imUQiRAhJcHBKGQxdk4sHmvjUVIc6DcIo5tWPJD8yTcws+SXKIqO6urn2L37hmC2ohhb7ZI5OGY0Gh3TO4aTnD37GPbmff2ea7OHZhgJ+LMHly7Lo/dTiIZlyyZL1qAQozB92SwAyvedwNk6cCluYFJx5pTInRI7lInFgX6DaZMzUTS9/354PB4+PL2Xllwf5ZqaYN/Trl/S63R8jGZ4TqRITlqCyVQAtLN//9d5593zhtSeA7oMIxlCSXHw9joyBxsq6oa7VdFFbu616HRW2tpOUFPzcq/LW9s6MgcTpo331sQ4OrXnOI7mNuKtZvJnF4Z7O0LEFAkORqHx6jk4XiXFgUnFihI3pg2Es7OvZN7c+9Bq42lofJsdO6/F5ZYXamNJVdVg5qD0HBwbyclLycy8HFA5cvjOPsvmVdWHzbYLAKt15MNIuiqesQizuY7O7EEfZnMdM2aEZn0hJqqUnDRSczPweX0c33643/OcLY5gNl5GQVa/54WbpSMT0F7T1O85nZOK+y7T1Gq1JCUlDXw70ut0XOj0cb2ODWV4TiRxOitxOE51OeLj4KHvDSmD0OEoB4Y2jCQgOUcyB0NBp0skL+86AMrK/tDt9U57ux23uxaA+HgJGMUSm83WLUv8w03v49GrTFpQQHVNtWSNCxFCEhyMQsGeg2M8rXg8SooBPIFhJGOUNdhVaupqFi54lLi4FJqb97F9+8dpazs1+BXFiHg8zaiq/3EaJ5mDY2ba1O+g1SZgs++kquqZXpe3tZ3E47Gh0Rgwm4tDcpsmUw7nnLOAzqcRDeecswCTKXIzmISIFtOX+RusD1RaXN0xjMSamYwxwTQu+xqJzrLiATIHT3VmDvZFep1GhnaXmzcffrHbMUWjsO66iwcdnhNJ2hxlQM/p2b4eAcO+OZxnAH9Z8VAlZ/lf/9hqG/G0S3braOTlfg6t1kxL62Hq6l4PHm/rGEZiMGSNy/sJMT48Hk+3TPF77rmHPz77VyqtNj4o3y1Z40KEmAQHo9B4ZQ6+uNf/xqN0ZuaYlRQDeDvKe0Pdb7A/FstcFi96AqMxD4ejnA+3f3zAckwxcu3t/k/JtVozWm10TDKMRgZDJlMKvgrAseM/w+Np7na5zeYvKbYkzkWj0Yfsdpcuvb6j9yBkZaWzdOn1IVtbiIksEBw8feAkbfbWPs+pDpQUR+gwkoBAD0F7Pz0HVVUNZg5m5PefAVlUVERmRmbvmI4KmRmZ0ut0jKmqyqv3P09teTUmSwJX/+B6PvqdT3P9PV9j9urRt6sYT/GmAvpqi2Ey5Q96XUewrHjomYMJSWb0Rr2//HqAwTxicHFxVnJzPwPAybI/BEvcWwP9BuNlUnEs0Wq1WK3W4PfNzc1s2rSJ5ubO17mSNS5E6EhwMApZjGM/rdjrU3l5n/+T/Evmjm0mUDBzcJyCgwDx8VNYvOhJzOaZtLfXs2PHp6hveHvcbn+i6Cwpjp5yo2iVl3cd8fGFuN11nDj5m26X2WzbgdD0G+xKURQuuOBC0tLSuOCCCyVrR4gQScpMISM/C9Wncnx739N5awKTigsjO1s3kDnYXG/H6+k9RKClsRlniwONVkNKTnq/6yiKwrziOdDzz4wCk+JHPoFdDM22597m2AcH0Wg1XPK1j5JdNInckoKoyhgMMBqzKSm+i65vg0qK78JoHDzQHigrNpnyhnx7iqJ0TiyW0uJRm5x3PRqNiebmfdQ3bAI6g4PxMowkpkjWuBDjS4KDUWg8MgfHq6QYwNsxkEQ7zmUABkM6ixY+RnLyCrzeVnbv/iJVVc+N6x5inbsjc1BKiseeRqNn+rQfAHDmzCO0tHT2KgvlMJKeCgsLufnmmykslB4/QoTStEFKiwOTiiM9czDeakYbp0NVVZrrbb0uD2QNJmenodPrBlxr1tzZaF10Zg+qoHXC8Y37efL//Y2q42cB/0Td0wfLomqCbiTo2dsr8LXtjXd5+79v4dOqrP3cRUyaPvSsuUiVk3M1SxY/E/w+I+OiQa/j8bQGh6wNJzgIkCwTi0NGr08ld9KnACg7+XtUVe0yjEQyB2ONZI0LMX4GfhUmIpLF1DGteAx7Do5XSTGAx+tPDR/PzMEAnS6R+fP+yv4D36Km5gX2H/gGbnctkyd/Ydz3Eova3R2TimUYybhITT2X9PQN1Na+wuEjP2ThgkfxeluCn6hbQjSMRAgx9qYvnck7T2zk7KFyWptaSEjq/ACt1dZCS4MdFEgfoBQ3EiiKgjU9iYaKOmy1TST1GFxR19FvsL9hJF1ZUq0sX7Kcd/a817E4TEnJpamujspjZ3j8Rw+RWZhDzclKVFVFURTWXX9x1JW9hkOgt1dra99l7ORCnDaO4lVzxndjY8himYXRkIPTVYHdvpeUlJUDnu/s6Deo0yWh0yUO67Y6h5LIILxQSEr6BAcP/ZeWllOYza9QWVmN251Ca0s6lZWVJCQkYLFEX1ar6E1RFIrzplFdU93jAphfPEeyBoUIIQkORqFA5qB9jDIHx7OkGMKXORig0RiYPevXHNWnc/rMwxw99hNc7hqmFn0bRZHk2tEIlhXHSVnxeJk29XvU179FU9P71NS8gE5nBVSMxjwM+rRwb08IMUSW9CSyiiZRdfwsxz44yLwLlgQvC5QUp2SnoTdFfj9Xa0YyDRV12PsYShKcVJw/eHAQYP0VpRyrOkl1TTWZGZl86kufp7WxmXf/8xYH395D9YmK4LmqqrLxoRfJnppL6qT+S5ZFZ2+vfoODQFpGWsz19rJY5+OsqcBu3z1ocDDYb3CYWYPg/10FaJDMwVHzeDz87W9P0dq6AYBdO98HlnT8/7vAu5jNZm655RZ0OnmrG+3a7K2c3HQAbY+7UuuCmXNnh2dTQsSokP/FPHvoFK//ZzO1ZVXEuV08lzyF/7thPRtm9f3JdmtTM7/52b9xV9eR5HWxMz6dTVb/BLBpGWZeu3U1ADtfeZ+3X3gPt70Vh0ZLY1om137pUhYWTrw3u509B8cmODieJcUAHq9/IIlOG77pYoqiYdq029EbMjh+/OeUlz+A21VHSclP0WjiwravaBcsK5bMwXFjMk2iIP/LnDj5a44eu5vMzEuBsSkpFkKMrWlLZ1J1/CxHth3oFhwMlhRPieyS4gBrehIAtpqmXpcFg4NDyBwEfxZJ6YZSXnrpJUo3lKIoCuYUC6U3XE5W0STe/NtL3c5XVZV/fPcvJGWlkDklm8wpOWRMySZ9chZ6Y+gGNEW7QG+vRx99tN9z1q1bF3NZOhbLPGpqXsRm3zXouQ7nyIODgYnFjZX1waxWMTJDCWTLkIrY4Ha4ePZX/8JeYyMxufsHYcuXLMeSau3nmkKIkQh5cLDd1Y4+LQUlcxJseXfQ873tXhYXZ2FdP5dDb27nE1Nz+elVa7noN1u4eI7/Re+hrfvY8vhGXrFO5trPllIQ5+W9v7/En+59mrvv/ixp5sj/1DyUgpmDzrEZSDKeJcXQNXNw/MuKu1IUhYL8mzDo0zh46Daqqp/B3V7PnNl/QBeKvZ0+DbW1/V+ekQG5uaO/nQgiZcXhMXnyjVRWPoXDWU55+YMAxMdLTxYhos20pSVs+edrVBw5TXODPTj8oabM/zydMSWyh5EEWDL8E4ttPSYWuxyu4PTWtCEGB6Gz12lPU+ZP461HXg5OMO2qqaqBpqoGDm/dD/if81Ny0siYkk1mQXZHwDATnX7ifiAY6O1VXV3dffCLCpmZsdnby2qZD4DdvnvQoF1wGIlx+MFBa2YyiqLgdrhos7WQkDS8smTRaSiBbBlSEf087R6e/+2T1JysxJQYz0e/9Rnu+f29AKSmpLL+itIw71CI2BPy4GDBvKkUzPM3g/3NEIKDlvQkSj/nbwJ8+oP9xOt17Dljw+Zo5+OL/YGSyqNnqE9IZNGaeXxqXQkA7acrqd98gCc+PM1X1kys5rOWjuBgi8uDx+tDF8IA3niXFEPntGJtGHoO9iU7+6PE6VPZu/erNDRsYcfOa5k/7wH0oynJdLlgyRKoru7/nKwsKCsDQ+wEuwOZg3oZSDKutFoD06bfzp49NwI+AE6e/DVGQwY5OVeHd3NCiCFLTLGQMz2PiiOnObrtIAsvXIaqqlGbOWiv6V5WXHfa/5xoTrFgMseP+nYSUyysu/5iNj78IqpPRdEorLvuYooWzqD6ZCU1JyuoLquk5mQlLY3N1J+tpf5sLQff3gOAolFIzc0IBgszp2STmpuBLq77y+XmBjtN1Q0kZaZE5bTe/iiKwrwZs3l1AvX2SkychaLocLtrcbkqMRr7f+3rdPh7DhpNw/8gVxenw5KRhK26kcbK+pgPDtpsNtra2vq9fLQ9AYuKisjKSqeqqpru8zV9ZGXFZiA7VvX1WPH5fLzzxEZOHytDH6/nI9/8BKmT0rn8I5eza/cuLv/I5TH590iIcIvIRgxPfHCac6amkZvsf6GYXjiJhI07mZ7gf5Nrq2nk1J5jxE3OYceppj7XsNvt2O2dU+qqqqrGfN/jxWLsvNuanR6SE0JXFjPeJcUAXk9HWXGYeg72JS11DQsXPsru3V+kuXkvH26/mgXzH8ZkGuGEPr0eJk/2Zw76fL0v12ggL89/XgwJ9ByM00vPwfFmTijpcUTl4KHvkZJyLkZjdAQUhBD+wST+4OABFl64jJbGZtpsLSgahbS8oWfbhZMlUFbcI3Ow7tTwSoqHYvbqBeTPKcJW3YC1S/CuYG4RBXM7AwatTc1Ul1X5A4YnK6k+WYnD3kpdeTV15dXs37wLAK1OS2peZ8CwpcHOtmffHv7AkyioHlBVleYTjWid4DXgzx5UQeuO3d5eWq0Js3kGzc37sdl3DRgc7CwrHtlrwZTsNGzVjTRU1pNbUjCiNaLBoMNtYNQ9ARVFYemyPJ57tufvlIZlyyZL4ChKDGUQkskIqXkZACxfvpwXX3xxHHcoxMQSccHBNreHt47W8ptPzA8eS587jXcTszA+9l9+99h/8Xl9zFm7kLMZU6g92dDnOpdffjmbNm0ap12PL51WQ4JeS6vbi83RHtLg4HiXFENnz8FIyRwMsFrmsXjRE+zcdR0Oxyk+3P5x5s97kMTEWcNfTFHgxz+GCy/s+3Kfz395jL2YaW/vKCuWzMFx53Ce6uOoD4fjlAQHhYgiU5eUsOnRV6k6fhZ7bVOwR19qbgZxhugogQ1kDrranDhbHRgTTADUlHdMKh7iMJKhSkyxDJrRl5CUSOH8RArnTwP8gbGWxmaqT1RQU1bZkWlYibPVQU3H//Nm9zVUVWXjwy+SP6do4NuLguoBVVV5+/E3OLhlN0aThtbsjg8yldjv7WWxzKe5eT922y4yMy7u8xxVVTsHkoygrBggOTuVk7uO0hjjQ0nGqydg8YxFbDS/SktLCv7sQR9mcwMzZiwc1bqib6+feJ2vv/R1fnvRbzm/8PyQrDmUx0pySor0jxRinETcKNaj1S1YjDpKZ3YOMKk+Ws7SlmqKLl3NJ3/4RS752sc4ufsYuv0H+13nueee4/Tp08GvjRs3jsf2x01n38HQDSXpWlIc6Pc4HrwdZcXhHEjSn/j4KSxe9CRmcwludx3bd3yKhoZ3cDoraWjcitNZOfTFSkvxLZqHr8dvnU8DvkXzoDS2emeoqg+39BwMm3hTAb3/xGswmfLDsBshxEglJJmZVOzPVDqy7QDVJ/3TeDMLoifIH2fQE2/1fwDYdShJZ+Zg30PrxpOiKCSmWJi6uJiVH1vLld/6FDf+4Vau++XNXHzzVSy6eAVpfQQxVZ+KrbrvD6qDAtUDmn5edoe5ekBVVd598k12vPQeAKVXX0Rmhv9nzczIjPneXlbLPIABh5K43XX4fE5AM2B24UCSswNDSepGdP1oEegJOJBQ9AQ0mXI455wFdL7W0XDOOQswmaKjF2s0UVWVb7/yfxysO8i3X/m/Pvu6jsR4PVaEEEMTWZmDKhytbebKtbPR6zpfQB186V0OxaewaEYRaXkZpOVl4HG189IDz5O+uu9P7ywWS7deFs3NzWO+/fFkMcVRYXNiC+HE4kBJsdUUx6qp4zcF2hOBZcVdGQwZLFr4T/bs+RKNTe+xc9f1+Pu4qYCGkuK7htbHTVFo/c7nSPz4rd0Oa3zQ/J3rSIyxJ7729iYC/e7i4pLDupeJyGjMpqT4Lg4e+h7++8H/WJWsQSGiz/RlMzlz8BRH3z+AyeJvuZIRJf0GA6zpybTZWrHXNpI5JRuvx0v9WX9JYKgzB0NFURSs6clY05OZtnQm8xqW8NCtv+v2xlhRFKyZg7TOiPDqgfee3sSHL/j7hK/5zIXMXbcYc0FKt4nQsczSMZSkuXkfPl87Gk3vjFyH0z+MxGjM7vPyoQgEBxtiPHMQxm+4zdKl17Nr15+oqqolKyudpUuvD8m6orv7nvkjO2p2ArCjZid3/uw21k9ej9fjxef14vP6Ov7fh8/r7fx/jxevt/P/fV6f/3tP53W8Xi/aFAVvnDphBiEJEakiKjhod3qwOzx8dUn3gJ/P7SEt0ci7x+rYMKvj02VFwafCgsmxW+YwEIuxI3PQEbqJxYGS4g2zxq+kGDozByOtrLgrnS6R+fMfZM/em6mv71pX5BtWH7e4S67BPuM2zEddaHz+rMGWaQb0l8TekIhASbFOZx3xC2kxOjk5V5OSci4OxylMpnwJDAoRpaYuLuHNR15mS807PO17kStNF/OJKAsOWtKTqDx2Jth3sLGyHq/Hi95kwJKWFNa9DVXPgScAiakWzEMZLlFainfBApRdu9B0CS76FAV1/ny0YaoeeP+ZzWx79m0Azru2lHnnLwb6nwgdi+Ljp6DTJeLxNNPSehhLYu/+iqMtKQZ/z0GA5job7a72qGkLMBKKojCveE6fw21mTJoasoCzoihccMGFvPTSS1xwwYUxH8gOB3u9jbs+uBtFr6AqKoqq8JDtHyS/koBCaP69japCa3aPbMQYHoQkRKQKeXDQ7XRTdaaWiiYHABaPm7KjZ9mueMjKSaXs1a28v/8MZ2bO5VfXzAeg9pS/lLWusZUck5EUVyv1Z52kTkoHYMqCadS++B4vb9rNvxK15Ou9vPvYa5THW7l9ycQqkXM6K2lzlJFp9g9bCVXmYLhKiiHyMwcDNBoDk/M+3yM4CMPp42Y05XDq5sXM+Po7/jV90P6DW7HEYAlEYBiJlBSHl9GYLUFBIaKcKTGe3JICftn4J6riangh5TV+M+m+cG9rWKwZSUDnUJLaQL/ByZlR9eYvMPCk6thZXnvgOex1NvZt2sGctYsGvqKi0PDlW0i/8bpuhzWqSu2XbyE9DP8G255/m/ee3gzAuZ84nwWlS8d9D5FAUTRYEufR0Pg2dtvuPoODzo7goNE08uCgKTEeo9mEs8VBU3VDSAfxRKJZc2fzxmuv49XTOdzGBXufeR+9S8OSS1ehN42+x+ZECmSHw3N7nuG04Wzwe1VROW08S8uCdtbnrUOj06LRatDqtGi0Xf9fg0arDf5/X8cC/99mb+Whvz3U/bESw4OQhIhUIQ8O1pys4Omf/iP4/ZrmszifPstfTCkkrlvFBlsL7fZWznYEDwEe+8EDABiALGw89oMHSEyz8vl7vgbA0svPBRSUjTs4+8jTHNNosaVm8OkvXkR6YngaN4dDRcUTwRLBj2QrNDZ+AruzOCRrh6ukGKIjczAgPn4KwWetoOH1cbMtS8Y+Q4/lsBvnnDxSP3lXqLcZEdztHZOK42RSsRBCjNYh01FOO/xv0MoNZ3nwhfu46croeUNsTfe3l7DXNAIEB6tEY4AkMcVC4lILLU3NbH70Vd554k2KFhUTbxn4dYzu0kuoSp1ERkMFGlXFpyjUpOSQcNUV47PxLj584V22/vstAFZdvY6FFy0f9z1EEou1Izho3wVc2+vyYObgKIKD4C8trjx6hsbKuqh87A+HJdVKQXIux9vO+A8okK5Jwult5sP/vsvBt/ew6uPrKF45B0UTPR8QTCSqqnLvod+gqP6swQBFVXja8F++d9UPQ/LhTnJ2KsuXLOedPe913EDsD0ISIhKFPDiYW1LALX+7fYAz5tGzcGLg80Gj1bD8yvNYfuV5o95ftHI6Kzl46LsEglKKovLZmf9in+NCYPS9GMJVUqyqvs7gYIRnDoI/C2v6tDs4cvTOjiPD6+Omqj5a205w7AspTP99PY23riEvijImhqNdhpEIIURI2Ott/LnygW5lXXd9cDefPO/TUfPmKTCxuDNz0B8cTIviAMm89Ys5uGU3teXVvP34G5TecHm/56qqyntPb8Y5fz1XvvEI4M8aPFD6MdaN83244+X3eecJ/6C+FR9dw+JLVo7r7Ucia0ffQZt9d5+XO5yjLysGf2lx5dEzNFTEft9BgCSjFW3DGbxG/3CbG266kbJdx9j8z9ew1TTy6v3PsWfjdlZfW0pW0aRwb1f08OrxV/29Bnu8VVEVlR01O3n1+KtsmLohJLe1/opSjlWdpLqmekIMQhIiEkXctGLRtzZHGd2z1UCrqHjd5aNe219S7H+RPt4lxYHAIETmtOK+5OV9BqPBXwY8a9a9QxtG0sHpPIPP56RxUTzvP5RHw0LTWG0z7KSsWAghQiNQ1hXI3FAVldOGszy355nwbmwYLBn+zMHmehs+r69zUnF++CcVj5RGq2HddReDAgff3sPZQ6f6PXfnK+9z5P0DnMmbjnOmv1SuKnUSe3WpwcEs42HXax+w5Z+vAbDsinNZevk543bbkczSMbG4re047e32XpeHMnMQYn9icUBjRR3GRg3WRAulG0rRaDQULpzOp39yE6uuXkecUU/V8bM8/qOHePX+52htiq0BktFMVVW+/+b30fQTLtCg4ftvfj+kk4tLN5SSlpY2IQYhCRGJJDgYJeJNBfS8u7yqQnVb+qjX3naygboWV1hKij0dwUFF0aLRRE+JeGLiLADc7uG9oG9pPdrte6fzTMj2FGmkrFgIIUava1lXV4qqcO+h34TsjdlYMyclotVp8Xl9VB47g7PVgUarISVnfF93hFpW0SRmr1kIwMa/vYTX4+11zumDZbz9+BsAnHftBoy/uRdKSii75npQFLa/uHVc9rr7jQ/Z9I9XAFhy2SqWXTFxK3J60utTMRknA2Bv3tPtMp/Phcvl75EZuuBg7GcOej1emqobiHMofOG6L1BYWBi8TBenY/ElK/nsT79Myao5gD/A/rdv/4kPX3gXT3voBi6KkXF73ZTbyvHh6/NyHz5O20/j9rpDdpuB/pFdHytCiPEjwcEoYTRmU1J8F13vss2nV1HTNvpSlBf2VgDjX1IM4PUE+g2ao+oTogTzDABaW44M63qtLf7goNk8EwCn8+xAp0c1KSsWQojRC5R1de33BN3LuqKBolGwdJQWH/vwEAApOWno4kLe4WbcrfrYWkyJ8TRU1LHzlfe7XdZcb+OlPzyF6lMpWTWHuesXwfnnw4EDFNz6JQAOb91Hc71tTPe4980dvPXIywAsumQlKz66Jqped40Hi9WfPWi37ep23OmsAFQ0GhNxcaN7TZPcMbG4sao+OPE6VjVW1ePz+tCbDJiT+57obU5OpPTGj3DND64nszCHdqebd57YyD++9xdO7DwSNR9+xCKDzsAHN3zAw9Pu55tnvsxvkn7B9hu3d/v64IYPMOiiJ7lDCDEwCQ5GkZycq1m1cjNZmVcCMDv9AC3O1kGuNbBwlhQDeLwdk4qjYBhJV+aO4GBL6+FhXa+1I3MwNXU1AB5Pc5/lK7EgkDmoH+ULaSGEmKjGu6xrrAWCg8e3+4ODsTKQwWg2cc4n1gPw/jNbsNc1AeBxe3jhd//B0dxGen4W6667uFtALqtoEpOKJ+Pz+tj5yrYx29/+zbvY+PCLACy4cBmrPr5WAoN9CJQW23v0HexaUjzafzdrehIarQaP20Nzw9gGhMOt4ay/dDolJ23Qf7esoklc8/3rKb3hcuKtZmzVjTz/6yd45pf/HNeye9FdnjUPc7mBPHcOa2avZWH2wm5fuZbccG9RCBFCEhyMMkZjNsXFP0LRZpBuamCW5YVRrRfOkmIAr8cfHNTqoiw4mNCROdh6FFXtO92+L61t/uCg1TI3WG4bq9mDTqc/6KwSHW9ahRAi0oSjrGssBSYWN9f7PxSL5n6DPZWsmsukGZPxuNvZ9Kg/m/Otf7xM9ckKjAkmLv3ax9Dp43pdb/ElqwDY99YOnC2OkO/r4Nt7eP3B/wIw/4IlnPuJ8yUw2I/OoSS7ugXcO4ODk0d9GxqthqRM/+u/WC8tDgT1UicNrQWSolEoOWcun/vZl1l8yUq0Oi3l+07w6O33senRV3G2hv73QwzM4/ZQeczfAim3JD/MuxFCjLXor+WYgLTaeJKy/ofGs99lZeYLOF3/i9EwshfY4Swphs6BJNEyjCTAZMpHo9Hj9bbhcJwmPn7wJ0xV9dHaehyAhIRpGI2TaG9vwOk8Q2JiyVhveVxVVDyB0+lvzL5////g87YNa3CLEEKIzrKu2rb+M2cyEjIivqzLZrPR1taGmqDBo+8MuiiJOiorK0lISMBisYRxh6OnKAprP3sRj/3gfk7sOMJTP/sHpw+UoSgKF37lymDWZE/5cwpJm5xJXXk1e974kKUfOTdkezr07l5efeA5UGHu+kWcd600+R+I2TwTRYnreG12OhgM7JxUHJosqeScNBoq6misrCd/TlFI1oxEDR3BwZQhBgcD9CYDq65ex6zV89nyr9c5seMIu17dxuGt+1jx0dXMWr2A5uZm2tra+l0jFv6mRIKq42fwtnuJt5qD/TKFELFLgoNRKjPjMrbte4BpySc4duznzJ71q2GvEe6SYgBPMHMwuoKDGo2OhPhpNLfsp7X18JCCgw7HaXw+JxqNHpNpMkbjJJqb98Zc5qDTWcnBQ9/rckTl4KHvkZJyLkZjeB5nQggRrfKseeRZRzcEIZw8Hg/3338/ra0dbVC6xFeefc2f0WY2m7nlllvQ6aL7ZWlqbjp5M6dwau9xTh8oA6Bw0XTyZ/ffXF9RFBZdvIJX/vwMu177gAUXLifO0DvDcLiOvL+fV+/zBwZnr1nAmk9fKIHBQWi1BhLNJdib92Cz7eoMDoZoUnFASnYqx4GGCZM5OLLKpKTMFC675WpO7TvB5kdfpaGijo0Pv8TujdupSGjE4XL2e91Y+ZsSbqcP+j/ozy3Jl78fQkwAUlYcpZLi9fzz0FX4VIXq6mex2XYMe41wlxRD57RibZT1HARIME8HoLllaH0HA/0G4+OLUBQtJuMkABwxFhxsc5RBrxI4Hw7HqTDsRgghRDhptVqs1oGHp1ksFrRa7TjtaOw0N9gp33ei27ETO47Q3DBwb+HpS2diSbPiaG7jwJbdA547FEc/OMjLf34GVVWZed481n3uYhSNvLEfiuBQki59B50hLCsGSM4KTCyuC8l6kcjT7qGp2j+YbriZgz3lzy7kUz++gdXXlmKIN1JXXo3b1n9gEGLnb0q4nTlYBkCelBQLMSFIcDBKxeu1nGnN552zywA4cuTHw+p9B+EvKYbOnoO6KMscBDCbiwFoHXJw8BjgLykGMHYEB2MtczDeVAD0fBOiwWSSFxZCCDHRKIrC2rVrBzxn7drYGJDRVN3QaziM6lOxdQRJ+qPRalh40QoAdry0FZ93eK/nujq+/TAv/+lp/3Tkc+Zy/vWXSmBwGCzBvoOdwcFAWbExVGXF2YHgYOxmDjZVNaD61AEnFQ+HVqdlfulSPvfzrzB37SJMTQO/b4mVvynh1O5qp+q4/z1KbklBeDcjhBgXEhyMUoqiYDXF8dSxS1E0Cdib91BV9cyQrx8JJcUQ3ZmDgaEkQ51YHMgcNAeCgyb/i0yn88wY7C58jMZsMjM/0uWIhpLiu6SkWAghJqiioiIyMzLpNZ9KhcyMTIqKYqPvWlJmSq+AhKJRsHYMoBjIzHPnYUqMx15n48i2AyO6/RM7j/DiH/6Dz+tjxorZnP8FCQwOl7VjYnFLy358Pjft7TY8Hn/mZ6jKigPBwdamFlwOV0jWjDQNFZ3DSEIZpDMlxrPuuov5zHduwEhczP9NCafKY6fxeX2YkxOxZiSHeztCiHEgwcEoZjHqsLst6JO+AMCx478I9vAbTCSUFAN4vR2Zg9EYHDT7g4NtbWV4vQOXN0BncLBn5qDDEVuZgwAGvf+Fb3r6haxauVmGkQghxASmKArziuf0TipXYH7xnJjJ8ElMsbDu+s4SXkWjsO66i0lMGXwwQpwhjvkXLAFg+4tbe2UgDqZs9zFe/L0/MDh92UxKb7gcjUZe5g+XyVSATpeEz+empeUQDkc5AHp9GlqtKSS3YYg3kpDkr5iJ1ezB+uAwkrF5j5GRn8V5554X839TwumM9BsUYsKRLq1RzGryN6x2xl1FvOlZHI5THDv+SzIyNhBvKhgwU+vFvZVAeEuKoXMgSTSWFev16cTFJdPe3khr2zEsibP7PVdVvbS2BcqKpwIEew56PE14PC1R+W/QH3/fQUhJXiEZg0IIIZg1dzZvvPY6Xj3+N/QqaN0wc27/z53RaPbqBeTPKcJW3YA1M2VIgcGAuesX8+EL71JXXs0HG9/jxS2vcNNNN5Gd7X8eDUx97qny6Gk2//M1VNXH9CUz2XDTFWjC+NoumimKgtU6j/r6Tdjsu9Dr/f3yTMbQDgVKzk6ltamFxso6sgpzQrp2JKg/6++nmDrKfoMDmTVvDm+8/kbM/00JleYGO03VDSQN8e9SZ3CwYIx3JoSIFBIcjGKWjuCg3aUwb+p32bP3Js6e/Ttnz/6dQClnXxlbXp/KS/uqgPCWFAN4g2XF0RcYUxSFhITpNDW9T2vL4QGDgw7HGXw+FxqNIdjQWqdLRKez4PHYcTrPBjMRY0FbWxkApviCsO5DCCFEZLCkWlm+ZDnv7HnPf0CB5UuWY0kdeFhJNEpMsQwrKBhgNJuYvXYhO19+n41PvswP//Ij1q9eR3Z2du+pzz1lgU7Rcv4XL5XA4ChZLPOpr9+E3bYbc8fwuVANIwlIzk7jzMFTMZs52BDMHBy74OBE+psyWvs27WTjQy+iqiqKorDu+ouZvXpBv+e7nW6qT/p70+fKMBIhJgx59RDFAsFBm6Mds3lmj0t9HDz0PZzOyl7Xi5SSYgCvx/8iN1qz5gIBvZZBhpL0nFQcEGhu7XRWjNEOx5+qenF0TPbzDycRQgghYP0Vpf7eg/j7gq2/ojTMO4o8CzYsQ1EU6s74gyvP/epx9m3aOaSpz+lZGegN+vHYZkwL9B202XcFX88E+kSHSqDvYEMMBge7TipOzRnb9xnrryglPdV/G1oXrLl0/ZjeXjRqbrAHA4MAqqqy8eEXB5yiXnnU328wMc2KNV36DQoxUUhwMIpZjB2Zgw4PDuepPs7w4XD0Ph4pJcUAno6eg9E4kAQ6JxYPNTgYGEYSYDT6S0kcMTSUxOmsRFXdKIpeSoqFEEIEKYpC6YZS0tLSKN1QKn2s+tG136Cqqrzx4Av8+yePkKYOnI24bt06+TcNAUtHcNDhKMPevA8AkzG0mYMpgYnFFXUhXTcSNFbW+ycVxxtICMGk4oEoisKGiy5E265gbNBgq24c09uLRo0VdcOeon46UFJcLFmDQkwkEhyMYtYumYP+DK2ed6cGk6n7H/VIKikG8HRkDmp1URocHOLE4s5hJFO7HTcFMwdjZyhJoN+gyTS5W5akEEIIUVhYyM0330xhYWG4txKRmvp5w15x5DSn3jmC1olMaB1jcXFJmDoqH5qb9wKhm1QcEMgcbKpuwOf1hXTtcAuUFKfmhHZScX+KioqYps8jzqHQUBl7wdbRKtt7vNexwaaonzlYBkhJsRATjQQHo5jF5G8ZaXe2YzRmU1J8V5dL/T0He2ZuvbS3kroWF4lGXdhLiqHrtOLoLCsOTB52u2txu/v/BK6lx6TigMDE4lgKDjo6+g3GS79BIYQQYliSMlN6BVQURWHVNetYdOEKso1pMqF1HFgt87t9H+rgYGKKFZ1eh8/rw17XFNK1w62hYuyHkfQULNPuCEwKv+qTFex6dZv/my5/Hmadt6Dfvqguh4uaMn+VmQwjEWJikeBgFOuaOQiQk3M1VusiAKZN/W6vYSSPf1DOV/+5E4Bmp4endoS/lDWapxUD6HQJwVKT/rIHVdVLW5v/U7tewUFT7AUHA5mD8Sb5tFEIIYQYjsQUC+uuvxhF438nr2j8wwMWX7yScz95Ph//6qfRuujMHlT9vdZkQmtoWazzgv+vKHEYDJkhW9tms1FVXYUpKxGPXuXowaNUVlYGv+z2/nvBRYP6wDCS3PELDgYCkQ0xWKY9Uh53O6/85VlUn8q0JSVcf8/XKDlnLgDl+0/gaff0eb2KI6dRfSrW9CQZ7iLEBCPTiqNYZ8/B9uCx+Pgp2Gzb8fkc3c6ttDm47am93Y5996l9nDc9nWyraew32wdVVbtMK47OsmKABPN0HM5yWlsOk5K8otflDsfpLpOKu3/yHMgcdDjCH6gNFZlULIQQQozc7NULuNx3Db98/o9c/o1ruk0VlQmt46Nr5qDBkBmyNindpk7rgFx4cdPLsKnzHLPZzC233IJOF51v0wLBwdRJ41ehlNwx+ESCg53eeWIjjZX1JCSZWXvdRZjM8az97IWU7zuBvbaJPW98yMILl/e6XmdJccH4blgIEXaSORjFemYOAhgN/jLintNvT9a14uvRo8arqpTVtY3tJgfg9bYR+Og7WjMHYfCJxf1NKobOnoPt7fV4vc4x3OX4cQQzBwvCug8hhBAiWk0tnsYdd9zB1OJpvS6Tqc9jLzCIBMDpPENFxRMhWXcoU6ctFgtabXT2bPa4PcGhICk545g52BEcbKyqx+eLrR6OI1G+/wS7XvsAgPM/fykmczwAcQY9Kz66BoBtz76Ns8XR67pnAsNIpN+gEBOOBAejmKUjONjs7EwLD0y/dbq6BwenpCXQsxWNVlEoSIsf200OIJA1CBo0mvBkL4bCYENJ+ptUDKDTWYNZk7FQWuzzeXA4TgPSc1AIIYQYqezsbO68806ys3sPj5Opz2PL6azk8OE7uh07eOh7OJ2Vo15bURTWrl074Dlr166N2vu0saoeVVUxxBtJSBq/D/4T06xo43R4273Ya5vG7XYjkbPVwWsPPA/AnLULKZjXfRhiyTlzSc3NwNXmZNtzb3e7zNXqpPaUf3ClTCoWYuKR4GAU6ytz0BAIDvbIHMy2mvjs8s4/8lpF4SdXzQ5bSTHQpaQ4PmpfBAGYzcWAPwioqr0/rWxtPQb07jcI/heJsTSUxOk8i6p60GgMGAxZ4d6OEEIIEZNk6vPY8fdO7vl6zofDcSok6xcVFfkzP2Nw6nSw3+CktHF9ba/RaEgJDCWZ4KXFb/39ZVoamrFmJnPuJ8/vdblGo+HcT6wHYPfrH3SbkH72cDmqqpKUmYK5n4ElQojYJcHBKGYx+nuRtLg8eLz+FzFGQyA42PvTzcJ0/yd4SwqSefs7a7lmyeRx2mnfPJ5mILpLigFMpnw0Gj1eb1swa66r/iYVBwT7Djqjv+9goKTYZMpHUeTPixBCCCGii78tSs/XMBpMIRq0pigK84rn9Dl1enbRzKj+wLwh2G9w/EqKA6TvIBx5/wCHt+5HURQ23PgR4gz6Ps/Ln1NE/pxCfF4f7z75ZvD46WC/QckaFGIiGva798bGbezefQNb3l7BGxuLqK19tdvlqqpy/MS9bHl7OW++NZMdOz9DW9vJbufYm/exc+dn2bR5Pps2L+Lgoe/i8bQykKGsO9EEyoqhs7TYaPSXn3i9LcHgW8CZRn9/wXm5SWHNGAzwBDMHozs4qNHoSIj3B/5ae5QWd59UPLXXdaGz72DPbM9oFBhGIiXFQgghhIhGRmM2JcV30fk2SUNJ8V3B19ihMGvu7N5Tp51w5NXd1JZXh+x2xlvDWX9gLhzBwdQJHhysPlnB6w/6y4mXXLaK7Km5A55/zjXnoygKRz84SOUxf4LC2UOBfoMFY7pXIURkGnZw0Otrw2wuZsaMO/u8/FT5fZw58zeKZ/yYxYufQquNZ+eu6/F6XQC4XNXs3PlZTPH5LF70FAvmP0Rr61EOHPy/AW93sHUnojithni9v2Gx3ekvLdZqTcTFJQO9g01nGv1NZyclhz8wCOD1tADRnzkI/onF0HsoicNR3u+k4oBgn8gYyBxsk2EkQgghhIhyOTlXs2rlZhYueJRVKzeTk3N1SNcPTJ0OZg8qkNhmoLnWxuM/epC9b25HVXvWHUe+zrLiMGYOnp14wcF9b+3kX3c+SHvH+8GhlASn5WVQcu5cALb883UcLW3UnvYHpqXfoBAT07CDg2mpaygq+iYZ6Rt6XaaqKqdPP0RBwc2kp19AormYWTN/idtdTW2dP8Owrm4jiqJjxvQfkpBQiMUyl+IZ/4/a2peDWUcjWXeishj92YN2R5ehJIa++w4GgoO5yeEbQtJVIHNQ1zGQI5oFJxa3Hul2PNhvMH5qr0nFAUZTIHMw+nsOOjp+h02SOSiEEEKIKGY0ZpOcvDykGYNd9Zw6fcOPv0bBvKl4271sfPglXv7T07gc0ZME4XF7sNX4JxWnTkob99sPZCs2VNZFZWB1pOx1Tbzx0Avdjr35yEs0N9gHve6KK1ej08dReewMv/7rL7h70m+pyK0d12EyQojIEdKmYE7nadzuWlKSVwWP6XSJWCzzsdl2AuDzudFo4rr1I9NoDAA02T4c8bo9uVwu7HZ78KulpWXUP18k6nsoif9FTO/goL+sODdiMgc7yop1MRAcDEws7pE52DpIv0Ho7DnodER/cFAyB4UQQgghBtdz6nS8JYHL/+cazrlmPRqthiPvH+CfP3iAmrLRT0keD40dQTlDgpF46/gHl6wZyWi0GtqdblqGEBiLBR53O6/85dlex1Wfiq3LoJH+mFMsLLxoOSoqf6q6n2p9Lc8kvDihgqtCiE4hDQ663P5Ucr2++6dFen0a7o7LkpNX4HbXcerUffh8btrbbRw7/gsA3K7aEa/b0913343Vag1+LV26dOQ/WASzmPxDSQJlxdClTNXVGRxsdXlobPOfEyllxR5vR1lxlPcchM6JxW1tJ/F6ncHjncNI+u43CGDqCA663DX4fNHzCXFPPl97MPtReg4KIYQQQgys59RpRaOw6OIVfOy7nyUxzYqtppEnfvwwu1/7IOIDNvVdhpGEY6iKVqclKTMFmBh9Bx3Nbfznp/+g4kjvYYiKRsHa8W8xmEUXr+C4tYzTRv9r+CPtx7jvmT+GdK9CiOgw7uNEzebpzCz5BeWn/8pbm2az5e3lmEy5/sBfCKeb3nbbbdhstuDXtm3bQrZ2JOkrc7Czh11ncPBskyN4fqAUOdwCPQdjIXNQr0/v6PXoo7XtWPD4UDIH4+JS0WiMgNrnlOlo4XSeQVW9aDQm9PqMcG9HCCGEECIqZU/N5VM/+iJFC2fg9Xh56x+v8MLv/4Or1Tn4lcMkEJALR7/BgIkysbipuoEnfvwwVcfPYkgwsujiFSgaf0BW0Sisu+5iEofQdxDA2ergWfMrKGrH9VWFuz64G3u9bcz2L4SITLpQLmbQ+58M3O46DIbO4IDbXYfZXBL8PivrcrKyLsflrkOrMaEoCuXlD/Y7sGGo63a7jsGAwWAIfm82R392Wl86ew52CQ529Bx0dQk0RVpJMcTOtGLwl4YkJEynqel9WlsOY0mc3WNScf/BQUVRMBon0dZ2HKfzbNRm3XVOKs4PyyfGQgghhBCxwphg4pKvf4zdr33Aln+9zvEPD1FbVslFX7mKrKJJ4d5eL10zB8MlNSeN48RecLCyspK//OUv3HTTTShtPp6793EczW0kplm54pufJCUnjXkXLMFW3YA1M2XIgUGA5/Y8w2lDZ2sjVVE5bTjLc3ue4dNrPzcWP44QIkKFNHPQaMxDr0+nofHd4DGPpxm7fRdW64Je5xv0aeh0CVRXv4BGYyAl+ZyQrDuRWPrMHOzoOdilrDg4qTgpcoKDwWnFMRAchC5DSTr6DvonFbvRaIz9Br4DOrM9o7fvYKDfoEn6DQohhBBCjJqiKMwvXcrV378Oa3oS9jobT971N3a8/F7ElRkHJxXnjP8wkoBYzRw8dugoP/zhD3n7v2/xn5/+HUdzGxn5WVzz/euD/96JKRZySwqGFRhUVZV7D/0mmDUYoKgK9x76TcQ9xoQQY2vYwUGPp5Xm5gM0Nx8AwOE4Q3PzAZzOChRFIS/vesrK/kBt7eu0tBxm/4H/Ra/PJD2tNLjG6TOPYG/eR1vbSU6f+TuHj9zJ1KL/JS6u84/Z1vcuoKb2FYAhrzsRBYKDXXsOGjoCTS5XFarqBSJvUjF0yRyMgbJi6DKUpGNicWdJcVG3ATx9MRn9E4sd0RwcDGYOFoR1H0IIIYQQsSRzSg6f/NEXmbqkBJ/Xx5Z/vs7zv34CZ4sj3FsD/IMxOicVhzdzEKDhbOxMLN63aSfP/epxAN5/dgset4f8uUV89LufHfVU4VePv8qOmp2oSvd/K1VR2VGzk1ePvzqq9YUQ0WXYZcXNzXvZsfPa4PdHj90FQHbWVcyc+QvyJ9+I19vGocPfw+OxY7UuZsH8h9BqO0t87fbdnDjxG7zeNhISCime8f/Izr6y2+20tZ3A42kOfj+UdSeizp6DnuAxgz4dRdGhqh5crhqMxuyILCuO9czB4DCS+P5LigOCE4udZ4Z0W05nJW2OMuJNBcFM0XBzBIKDkjkohBBCCBFShngjF998FXs37mDzP1/l5K6jPPr9+7noK1eSM23gCpWx1lBZD6q/FDreGr4P/ZOzU0Hx99FzNLcRb4nuBITmBjsbH+o9PXjdZy9Cb9SPam1VVfn+m99HgwYfvl6Xa9Dw/Te/T2lRqbQLEmKCGHZwMDl5OevXHe/3ckVRKCr8BkWF3+j3nFkz7xn0dnrexlDWnYgsxo5pxV3KihVFi8GQhdN5BqeroiM4GMgcjJzgYCBzUBcjmYMJCdMBcLtrcLsbaG091nF8OMHBikHOhIqKJzh46HuAD9BQUnwXOTlXj3jfoRIsK5bMQSGEEEKIkFMUhbnrF5E9dRIv/uEpmqob+PdPHmHlx9ay6KLOoRSjZbPZaGtr6/fyhIQELJbOiq+GMx0lxZPSwhpI0unjsKYlYattouFsbdQHB5uqG/rMgLTXNWFJTxrV2m6vm3JbeZ+BQQAfPk7bT+P2ujHoJnYyjhATRUgHkojx19e0YvD3sHM6z/iHkljhbASWFXu9HdOKtdH9xB2g0yVgMk7G4SynpfVwZ1mxeQjBQVNHcNAxcOag01nZJTAI4OPgoe+RknJuWDMIfT5XMLApmYNCCCGEEGMnPT+LT/7wC2z824sc3rqfd57YyJlDpyi94fJRB8Q8Hg/3338/ra2t/Z5jNpu55ZZb0On8byXrK8I/jCQgZVK6PzhYUU9uSUG4tzMqCUmJvY4pGgVrZsqo1zboDHxwwwfUttX2e05GQoYEBoWYQCQ4GOX66jkIYDR0DCVxVtDm9lDf6gZgUiRlDgbKinW9n/iiVYJ5uj842HwwOKnYPITMwUDPQZe7Gp/Pg0bT96+mPzuv5yd8PhyOU2ENDjocpwEfWm0Cen34GlELIYQQQkwEepOBDTddQW5xAW/94xVO7TnOY99/gHM/dwGW7OR+r9cz668nrVaL1WodMDhosVjQarXB7xvO+geARERwMCeNk7uO0lDRf9ArWnz433e6fa9oFNZdd/Gwho4MJM+aR541vCXpQojIIcHBKBfIHLT3yBwMDCVxuiqCWYMWoy54fiTwBgaSxEjmIPj7DtbVvU5t3evBScXGjsDfQPT6dBRFj6q6cbmqMJn6vo4/K08BupcYGI2TR7/5UWjr0m9Q+pIIIYQQQow9RVGYvWYBWUWTePEP/6Ghso7Hn34SdYB3eD2z/vpac+3atTz66KP9rrF27dpur/eCk4onhf8D4pQYmVh8eOs+DnjSAVQAADVlSURBVL69B0VROOea9dzzwp+4/BvXMHv1gnBvTQgRo4Y9rVhElmDmoMPTrSeFMRAcdFYG+w1OiqCSYlVVO4ODMdJzEDonFjc1bQOGNqkYQFE0wcw/5wATi43GbKzWRb2OV1b9ZyTbDZnOfoP5Yd2HEEIIIcREk5aXwSd/+AVKVs1F46HnZ8jd9Mz660tRURGZGZm911EhMyOToqKi4KF2Vzu2Wv+k4pQIyRyE6A4O2moa2fi3lwBY+pFzWHb+Su644w6mFg9ejSSEECMlwcEoF8gEdHt9ONs7y027lhVH4qRin8+JqnqB2JlWDJ0TiwOvpoYyjCRgKBOLfT5PsFx56tTvMrXoOwCcPPlrqmteGsGOQ0MmFQshhBBChE+cQc+GGz/CyuUr/EUm/eiZ9dcXRVGYN21273UUmF88p9v1Gyvr/JOKzaaIGACS3BEcbG1qwdXqDPNuhs/r8fLyn5/B7XCRPS2XpZefS3Z2NnfeeSfZ2eFrISSEiH0SHIxyCXot2o7JZF37DnZmDlZE9KRiAK02cjIaR8tkKkCj0Qe/D0wwHtJ1O8qPHQNMLLbZPqS9vZG4uGTycj9Hfv4N5OVdD8CBA/9Lc/P+Ee58dAKZg/EyqVgIIYQQImzWXn4BqcmpQ8r6G1CzF62TznVU0DohKyWz22mBkuLUSekR0VrGYDJgTvb3M2+ojL7swfee3kTV8bMY4o1c+KUr0Gjl7boQYnzIX5sopygKFqO/Z0jXicWB4KDH00Rlkz/VP6ImFXuaAX+/waGU3UYLjUZHQnxntmBcXOqQr9sZ0O0/c7Cm9hUA0tLWB4eWTC36Dqkp5+HzOdm950ZcrvFvwBzoOWiS4KAQQgghRNgoisKiOQuGlPXXn9amZna9sg1jo6ZzHQWMjRpe+P1/OPbhoeC59R3DSCKhpDggWkuLTx84yYcvvAvA+s9fgiUtKbwbEkJMKLETlZnALH0MJdHpEtF2lOvaW/097CIxczCWSooDlC6Zg4cO3UZFxRNDul5gcEl/PQdVVaW29lUA0tNLg8c1Gh2zZ/+W+PgiXK4q9uz9Ml6va6TbHzav14nLVQlIWbEQQgghRLjNmjsbrYteWX8lc2YN6fpb/vUGboeLSVk5/t6DQEZaOoWFhXjc7bzwu3/z/rNbUFWVhi6Zg5EiGBw8Gz3BQUdzG6/85VlQYfbqBUxbUhLuLQkhJhgJDsaAQN9BW4+JxYFMNFdHmWokBQe9ntgbRgL+ATB2+64uR3wcPPQ9nM7KQa8b7Dno6Ds42Ny8F5erCq02npTkc7pdptMlMm/uX9DprNjtOzl0+LvdBtSMJYejPLiHuLiUcblNIYQQQgjRN0uqleVLlvfK+ivbeXTQ6545dIrDW/eBAus+dxGlG0pJS0tjw0UXcsU3P8n80qUAvPfUJl76w1PUlPlf4xoTI+d9RmBqcrSUFauqymsPPE9rUwspOWmcd23p4FcSQogQk+BgDLAYOzIHnX0HB3XUAJFVVuzxtgCxlzno773XMyjnw+E4Neh1TaaOzEFXZXBYS1c1HVmDqalr0GoNvS6Pj5/CnNm/Q1G0VFU9Q3n5fcPd/og4ApOKTQUR0WtGCCGEEGKiW39FaTDrz2JKROeALY+/EewR2Bevx8tbj7wMwJw1C8mckkNhYSE333wzhYWFaLQaVl9byvrPX4JGq+HoBwdpbfK/pn/lT8+wb9POsf/BhiAlO5A5OP6tdkZiz+sfcnLXUbQ6LRd++UriDHHh3pIQYgKS4GAMCGYOtvUdHEwxNpJo0AXPiwSxmjnoL6vt+WulwWTKH/S6en0GiqJFVdtxuWp6XR4sKU67oN81UlJWMX3aDwA4dvwX1Na9MdStj1ig36AMIxFCCCGEiAyKogSz/i6/6iMUzCnC2+7hlb88i9fT+0NogN2vf0D92VqMZhMrP7a237Vnr17AhV++stsxVVXZ+PCLNDfYQ/pzjESg/6G93ka7yx3m3QystryaLY+/DsA5nzif9MmZg1xDCCHGhgQHY4DF5B9MYXd6uh03GgLBwSYmRVBJMXRmDmq1sRUcNBqzKSm+i85fLQ0lxXdhNGYPel2NRofB4D+vZ9/B1tZjtLUdR1H0pKX1/2INIDf300yadC2gsn//N2hpOTyCn2TogpOKpd+gEEIIIUTECGT9FU0t4vwvXIYxwUTtqSree3pTr3NbGpt57+nNAKy6eh1G88DvHfq6XPWp2KobQrP5UTAlxmNKjAcVGivrw72dfrW72nn5T0/jbfcyZf405p2/ONxbEkJMYBIcjAGWfnoOGjoCUqnGxogqKQbwejrKinWxVVYMkJNzNatWbmbhgkdZtXIzOTlXD/m6wb6DPYKDgazBlJQV6HSJg64zfdr3SU5ajtfbyu49N+J2j90LI5lULIQQQggR2czJiaz//CUAfPjCu5w9XN7t8i3/ep12p5usoknMOnf+oOslZab0aiejaBSsmZHRfzoaJhZvfuxVGirqSEgyc8EXL5P2PEKIsJLgYAwI9hzsOZDE0FlWHEnDSKBzWrE2xnoOBhiN2SQnLx9SxmBXpn6CgzW1rwCQnr5hSOtoNHHMmfN7TKbJOJ1n2Lv3Zny+sSmrCPRTlMxBIYQQQojINXVxMSXnzMWnUXn+gf9w6uQpKisr2fnudg7s2IfXALMvWUxzS/OgayWmWFh3/cUoGn9AS9EorLvuYhJTLGP9YwxJcoQHB49+cJB9b+0EBUpv/Ig/01EIIcJIF+4NiNEbbFpxirGRXEPvARbhFMwcjLGy4tEKZA46nGeCx5zOCpqb9wEa0tPWD3mtuLhk5s29nw8+/ChNtg84fPgOiot/EtJPJb1eBy5XFSA9B4UQQgghIt2qT6zn/TO7sGvsPPzIw50X+Ofi8e//PoXZbOaWW25Bpxv4reLs1QvIn1OErboBa2ZKxAQGAVIjODhor7fxxoMvALD44pVMnjUlzDsSQgjJHIwJgbLintOKDYZMVFUhTushNymymvEGMgdjsax4NIzGjonFzorgsUBJcVLSYvT6tGGtl5AwldmzfwNoqKh8gtNnHg7VVgFo68ga1OmSiItLCunaQgghhBAitOLN8aSkpYLa/zkWiwWtVjuk9RJTLOSWFERUYBAiN3PQ5/Xxyp+fwdXmJLMwh+VXrQ73loQQApDgYEywGP2f6tkc3QeSaDRx2N1WADITbOO+r4F4g2XFkjnYVSDb09klc7AmMKU4vXREa6alrmHa1NsAOHr0J9TXbx7lLjs5ZFKxEEIIIUTUUBSFDRdtgAEKSdauXRv1/e8CmYNN1Q39TmcOh23PvU3FkdPojXou+vKVaHVDC8IKIcRYk+BgDAiUFffsOehs91LrSAIgyRBZk7o8Hn8vE61OgoNdmUydmYOqquJ219PU9AEA6WkXjHjdvLzryc7+OOBj3/6v09p6PBTbDQ4jkX6DQgghhBDRoaioiMz0jN7ZgypkZmRSVFQUln2FUkJyInqTAdWn0lQV/gnKAGcPl7Pt2S0ArL3uYqwZyWHekRBCdJLgYAyw9BMcPNPooMHpf9LR+mrGbT9OZyUNjVtxOiv7PSeQOajTDj55dyIxGLIABZ/PhdtdR13dG4CPxMRZwcDhSCiKQvGMH2K1LsbjaWb3nhtob28a9X7bHGWATCoWQgghhIgWiqIwr2Ru7+xBBeYXz4n6rEHw/4ydE4trw7wbcLY6ePnPz6CqKiXnzKV4xexwb0kIIbqR4GAMCGQONrs8eH2dHwGeaWwLBgedrv4DdaF05sxjvPPuuezc+Wneefc8Kiqe6PM8r6ejrFgyB7vRaPQYDJmAf2JxsKQ4bWQlxd3XNjB3zh8wGifhcJxi776v4fO1D37FAQTLik35o96fEEIIIYQYH7PmzkbrojN7UAWtC2bOjZ2gVUqE9B1UVZU3HnyBlgY71sxk1nx6Q1j3I4QQfZHgYAywGOOC/9/cZSjJ2SYH9Y6O4GCXARdjxeE4y+Ej36fzVYaPg4e+12cGoccbmFYsA0l6Ckwsbmk9TEPDOwCkZ4TmRYRen8bcufeh1cbT2PguR4/eNar1ApmD0nNQCCGEECJ6WFKtLF+yvDN7UIHlS5ZjSbWGdV+hNFBw0GazUVlZ2e+X3W4P2T72vbWTYx8eQqPVcNGXr0JvMoRsbSGECJWB59OLqKDXaTDFaXG0e7E7PCTF64HuZcWucQgOHj/+8z6O+nA4TmE0Znc76pHMwX6ZjLnYbNs5e/ZRVNVNfPwUEuKnhmz9RHMxs2b+ij17v8yZs38nIWEaubnXDnsdj6cFt9tfphEfPyVk+xNCCCGEEGNv/RWlHKs6SXVNNZkZmay/YvSVKpGkv+Cgx+Ph/vvvp7W1td/rms1mbrnlFnS60b1drj9by+bH/JVAqz6+jswp2YNcQwghwkMyB2OExRSYWNyZOdg1ODjWZcWVlU9TXfPfPi7RYOpRcqqqKt5g5qAEBwMCn2C2tmbS0pJCZWUlLS0paDUXUFVVFdJPMNPTL6Co8JsAHDn6Qxoa3h32Gg7HKQDi4lLQ6aR3pBBCCCFENFEUhdINpaSlpVG6oTQmeg12FQgONlbV4/P5gse1Wi1W68AZkhaLBa12dJOEPW4PL/3xaTxuD5NnF7Jgw7JRrSeEEGMp5JmD75+o577NJ9h71kZNs4u/fGYRG2ZlDXgdl8fLb984yjM7K6htdpGeaOCW9dO4ekkeAO1eH3988zj/2XGGKruTwrQEvnNRMWtmZIR6+1HLaoqj2u7C7uwaHOzsOeh21+LzudBoQp/GbrPt4tDh7wKQmrKG+oa3Oi5RKCm+q1fWoM/nRlU9ABJU6tDzE8zm5tV8+OGHLF68mMREJ3BfyD7BDMjP/xKtrUepqn6Wvfu+ypLFTw2rPDg4qVhKioUQQggholJhYSE333xzuLcxJhLTrOj0OjxuD/baJpIyUwB/UHTt2rU8+uij/V537dq1ow6Wvv3469SfqcFkSaD0hstRNLEVfBVCxJaQZw62tXspybbwo48MvZntzY/u5J1j9fzso3N545ur+e0nF1CY3plR9stXD/PYtlP88PJZvP6N1Vy7PJ+b/r6dfWdtod5+1Ar0HeyZOdjSngCKEQCnsyrkt+t0VrJn75fw+dykpZ3PvHn3UzjFn5GWmDiHnJyre10nkDUIoNXGh3xP0ajnJ5jNzc1s2rSJ5ubm4LFQfILZlaIoFBffjcUyD4/Hxu49N+HxNA9+xQ7BfoOmgpDtSQghhBBCiFDQaDQkZ6UCcOS9A9RX1FG25zjvPLmR7f/c0n0gS4AKmRmZFBUVjeq2T+w8wu7XPwSg9IbLSUiSPutCiMgW8szBtTMyWDuMjL63Dtfw/sl6tvzf2mCvvLyU7gGjp3ec5avrprK22L/uZ1LzeedoHQ9sOcGvP7EgdJuPYoGJxfaO4KCz3UttswtQMBiycTlP4nRVEB8fuqmyXq+DPXu/hNtdS0LCdGbNvAdF0ZCVdTknTt5Dc/M+2tttxMV1T9v3ePzBQY3GhKKELtgVzcbrE8yetFoDc+f8mQ8+vJK2tmPs238L8+be3+/9YrPZaGtrA6DibDktLSm0OXKprPSXrSckJGCxWEK6RyGEEEIIIUZCo/O/pt361FtsfeqtbpcZTRpas33dr6DA/OI5o3rN3dJg57UHngdgwYXLKJg7ukCjEEKMh7APJHn9YDVzc638edMJnt55hni9jvNLMvhm6QyMcf4/5m6vD4Oue5KjMU7DB2WN/a7rcrlwuVzB71taWvo9NxZYTN0zByuaHAAk6LXEm3JwOU+GdCiJqqocPPgdmpv3EReXwry596HT+T8RM5lySUiYRmvrURoatpCZeWm363q9/tLZwPnCr6ioiKysdKqqqntc4iMra/SfYPbHYMhg7pw/s33HJ6iv38SxYz9j2rTv9jqvd/PmeOBSdu1sAu4DQte8WQghhBBCiNFobrBTfaL3+5+pS4opmDuVpMwUHvrbQ3j1+Kc2q6B1w8y5Q6+A68nn8/HKfc/ibHGQkZ/Fyo+tHfkPIIQQ4yjsA0nKGxx8UNbIkepm/vKZxfzg0pm8uLeK25/ZFzznvGnpPLDlJCfrWvH5VLYcreXl/VUdmXF9u/vuu7FarcGvpUuXjsePEzbBzMGOnoNnGv3BwdzkeEzGSYC/BDhUyk79keqa/6IoOubM/j0mU163y1NT1wBQV/9Wr+t6OoKDWhlG0o2iKCxdlkfvX0sNy5ZNHtMm0RbLHGbO/AUA5af/SkXFv3udM17Nm4UQQgghhBitpuqGPo/PW7+YWefNZ9KMySxfstwfGARQYPmS5VhSB369O5DtL2zlzMFTxBniuPArV6KLkw/MhRDRIezBQVVVUYBff2I+8/OSWFucwfcvLeE/O87gbPcCcMdlMylIS2D9PW8x7faXuOPZ/Xx8UR4DxUpuu+02bDZb8Gvbtm3j8wOFicXof+KxO/yDPjqDgyYMHQNBnK7QZA7W1r7KiRO/AmDG9DtJTu49eSutIzhYX78JVe2eru/tKCuWzMHeimcswmyuo7MBiorZXMeMGQvH/LYzMy5mSsHXATh0+HZqal6hoXFrMKisKApr1qwZcI2xKH0WQgghhBBiuJIyU3q9LlU0CtaOwSQA668oJT3VP9VY64Tla1cObfHTp2HHjm5ftc++xLH7HyO9voLzNywI9jsUQohoEPKPMs4eOsX2l96jpqySbzS10Hw0FQaYVpwVp3KZ/RRP/+B+mmoamH/BUqZesAJVhUqbkylpCbz5u8eZfaicYIL3WWAvfDQxud91DQYDBkPnZF6zObYDUT3Lis80+vvC5SabMBpyAHCGoKy4ueUQ+w/4B47k5n6GSZM+2ed5VusitFoz7e0N2Jv3YrXMC17m6RhIIpmDvZlMOZxzzgKOHHm/44jCOecswGTKGZfbnzLla7S2HqWm9iX27vtK8HhCwgzAh8NxFrN5DS0tKXT/bGFsS5+FEEIIIYQYjsQUC+uuv5iND7+I6lNRNArrrruYxJTO/tiKonDhxRfx+CP/JK7RR9muo8xeM8iH8i4XLFkC1d1bAaUDgXdG6van4dIy6PJ+VAghIlnIg4PtrnbS8jKYee48Xvhd79LEnuZmW3jLq2Hexcs48IZ/otOJ2lY0CmRb/VN2L/3ax/F6vMHrtNhbeez795MyUwIRAZZ+yoonJZswBjIHR1lW7HbXs2fPjXi9bSQnr2Ta1Nv7PVejiSM15Vxqal+ivu6tbsFByRwc2NKl1/Pcc0cASEtLZunS68ftthVFQ2HRrdTUvtTteGvr4eD/5xfsYv++83tcc+xLn4UQQgghhBiO2asXkD+nCFt1A9bMlG6BwYDCwkLWL1zN1v+8xbHthwcPDur1MHky1NaCz9frYlWjQcnL858nhBBRIuRlxenFBVhXLsSV4w9I1TW72F9h42zHgIyfvXyIWx/fFTz/qvOmcyC3iPvO+vDqdFTZHNz90iGuXpwXHEhysMHJljPN1Hs17G9087MHN+HVaLnuU+f2uw+Xy4Xdbg9+xfpAEmu/mYPxGI3+rDOXqwJVVfteYBA+n5u9e2/G6TyLyZTPnNm/Q6MZOLbc2XfwzW7HAz0HdVoJDvZFURQuu+wKLrroIi677IpxD7i5XD0HovgVFX2bFctf58IL/95R+hx4MeQbt9JnIYQQQgghhiMxxUJuSUGfgcGAokUzADhzoAyXo/++9gAoCvz4x30GBgEUn89/uXxoLoSIIiEPDu45Y+OS377NJb99G4Ant5/hkt++za9e9WdC1dhdwUAhQIJBx9+/sAy7w8PeszY2HallfXEGd14+K3iOy+Pjl68e4fx7N3HT3z8ku7aSGctnkZbUf1nqRBtIYjF2ZA52BAcD/8a5ySYMBn+g1uttw+OxDXttVVU5fOROmmwfoNWamTf3PuLikga9XmrqagCam/fictcFj3s9HQNJdFJW3J/ly5fz4osvsnz58nG/7XhTAX0NRcnKvIz4+CmYEwo455wFXc7RjGvpsxBCCCGEEKGUkpNGUlYKXo+Xst3HBr9CaSneBQvw9QgA+hQF74IFUFo6RjsVQoixEfLg4IqiVMp+egllP70EgPs+s5iyn17CPVf7y0rvuXoej9+0ott1pmaY+ccXl7F0SgrXLJnM7ZfODGYNAiwvTOX1W1dz5P9dxEvXzkLf0syS8xcNuI+JNpCkM3PQg8vjpdru/8QrNzkerdZIXJy/Ie5ISovPnHmEiorHAYXZs35NQsLUIV3PYEgnMdHfKbKhflPwuPQcjGxGYzYlxXfRNfhXUnxXsDwd/KXPWVnpAGRlpY9r6bMQQgghhBChpCgKRYuKATi+/fAgZwOKQsOXb0HToypLo6o0fPkWyRoUQkSdsE8rHq79m3eRmptBVtGkAc8zGAxYLJbgV+wPJOmYVuxsp6LJCUC8XktyvD9oaBzhxOKGhnc4euwuAKZO/TZpaWuHdf3O0uK3gseCPQelrDhi5eRczaqVm1m44FFWrdxMTs7V3S5XFIULLriQtLQ0LrjgQuk1KIQQQgghotrUjtLisj3H8Lg9g54fd+klVKVOCmYP+hSFqtRJGK+6Yiy3KYQQYyKqgoPtLjdH3j/ArNXzw72ViBPIHHR7fByr8QffcpNNwaBNoO/gcCYWt7WdZO++r6KqXrKyrmRy3heHva+0juBgQ8MWfD5/yXOg56CUFUc2ozGb5OTl3TIGuyosLOTmm2+msLBwnHcmhBBCCCFEaGVOySEhKZF2p5vTB04Oev6pA2Vsnb8+mD2oUVWc376NxFTrWG9VCCFCLqqCg0e3HcTr8VC8cna4txJxEvQ6NB3JWwcq7ABMSjIFLzcaOoaSDDE42N5uZ/eeG/F47FgsCyiecdeIssMslrnExaXg8TRjs+0EwOuVzEEhhBBCCCFE5FA0CkWLpgODlxb7vD52vvQe5TlTaZnqL0f2LlhAwf9+Zcz3KYQQYyHkwUG3003tqSpqT1UBYKttovZUFfZ6/yCMd57YyCt/ebbbdQLntzvbcTS3Unuqivqztb3W3r95F0ULZ2Ayx4d621FPo1GwdGQP7q/w/1vnJnf+Ow0nc1BVvezffwttbScwGLKYO+dPaLWGEe1LUbSkppwHQH1HabEnOJBEgoNCCCGEEEKIyBCYWnxi5xF8/UwjBjj24UFstU0YE+Mx/uZXUFKC9uc/l16DQoiopQv1gjUnK/jPT/8R/H7LP18DoOScuZTecDmtthaaG7pPzH3sBw90Xr+sksNb95OYZuXz93wteLyxsp6KI6e54lufCvWWY4bFGEdTWzsHKv2Zg7nJnZmDhkBw0DX4QJJjx35GfcNmNBojc+f+BYMhfVT7Sk1dTVX1M9TVv8nUqf/XJXNQyoqFEEIIIYQQkWHSjHwMCUYczW1UHjnNpOL8XueoqsqHL2wFYN75S9BdfB5cfNF4b1UIIUIq5MHB3JICbvnb7f1eXnrD5b2ODXR+QHJ26pDOm8gCfQfPNDqAHpmDho6BJINkDlZU/pvy038FYGbJz7Ekjr6EOzX1PEBDa+sRnM6KYOagTjIHhRBCCCGEEBFCq9MyZd40Dr27l2PbD/cZHCzff5LaU1Xo9HHMu2BxGHYphBChF1U9B8XAAhOLA7pmDgbKil2uany+vqdvNdm2c+jQ9wEoKPgqmZmXhGRfcXFJWK0LAP/UYm9gIIlkDgohhBBCCCEiSKC0+PiOw6gdw0a62v7CuwDMXj1f2l0JIWKGBAdjSCBzMKBrcFCvT0NR4gAfbndNr+s6nRXs2fNlVNVNenophVNuCeneAlOL6+vfwuPxlxVrZSCJEEIIIYQQIoLkzylCp9fRXGejtry622XVJys5faAMRaOw4MJlYdqhEEKEngQHY4jF2BkcNMVpSUnQB79XFE2/pcVebxu799xEe3s9ZnMxM0t+iaKE9qGR2hEcbGh4B1V1A1JWLIQQQgghhIgscYY48mcXAXB8+6FulwWyBmcsn4UlLWm8tyaEEGNGgoMxxNIlc3BSsgmlx7Qsg7F3cFBVfRw48H+0tBwgLi6FuXPuQ6cLfbmv2VyCQZ+Jz+cMHpOyYiGEEEIIIUSkCZYWbz8cPNZU3cCxD/3BwoUXrQjLvoQQYqxIcDCGdC0r7lpSHGDsY2LxybLfU1P7EooSx9w5f8JkmjQme1MUhdTU1cHvNRoDGk3I5+EIIYQQQgghxKhMmT8NRaNQf6aWpuoGAHa89B6qqpI/t4j0yZlh3qEQQoSWBAdjiMXYGWzrMzjYo6y4puZlTp78DQDFM35MUtLYTttKTVsT/H/pNyiEEEIIIYSIREazidyOScXHtx+m1dbCgbd3A7D4kpXh3JoQQowJCQ7GEEu3zMHek7OCE4udFTQ3H2D/gf8FIC/venJyPj7m+0tJXtUxFAUURYvTWTnINYQQQgghhBBi/BUtKgbg2IeH2P3aB3jbvWQVTWLSjMlh3pkQQoSeBAdjSNfgYIJB2+vyQHDQZt/Drt1fwOdzkJJyLlOLvjMu+9PpzJhM/idTt7uGd949j4qKJ8bltoUQQgghhBBiqIoWTgeg6vhZdr78PgCLLl7Rq6+7EELEAgkOxpAPTjYE//8Hz+7n8Q/Ku11us+8BoL29Dre7Br0+jdmzfjtuvf+czkra2k50OeLj4KHvSQahEEIIIYQQIqKYUyxY0qwAeNo9ADhbHOHckhBCjBkJDsaISpuDP286HvxeVeG7T+2j0uZ/AnM6Kzl58rfdruN2N+D1to7bHtscZYDa46gPh+PUuO1BCCGEEEIIIQbT3GDHXmfrdmzj316kucEeph0JIcTYkeBgjDhZ14qvR9zNq6qU1bUBgcCcr8e1xjcwF28qoPdDToPJlD9uexBCCCGEEEKIwQSmFHel+lRsfRwXQohoJ8HBGDElLQFNj/YXWkWhIM0/mCQSAnNGYzYlxXd12YeGkuK7MBqzx20PQgghhBBCCDGYpMyUXv0FFY2CNTMlTDsSQoixI8HBGJFtNXH3VXPQdjyBaRWFn1w1m2yrCYicwFxOztWsWrmZhQseZdXKzeTkXD2uty+EEEIIIYQQg0lMsbDu+otROjIwFI3CuusuJjHFEuadCSFE6I3PJAoxLq5ZMpnzpqdTVtdGQVp8MDAYkJNzNSkp5+JwnMJkyg9bxp7RmC3ZgkIIIYQQQoiINnv1AvLnFGGrbsCamSKBQSFEzJLgYIzJtpp6BQW7ksCcEEIIIYQQQgxNYopFgoJCiJgnZcVCCCGEEEIIIYQQQkxQEhwUQgghhBBCCCGEEGKCkuCgEEIIIYQQQgghhBATlAQHhRBCCCGEEEIIIYSYoCQ4KIQQQgghhBBCCCHEBCXBQSGEEEIIIYQQQgghJijdcK/Q2LiN8vL7sTfvw+2uYe6cP5GeXhq8XFVVTpz8NRUVj+Px2LFaF1E840fEx08JntPWdpKjx36KzbYdn68ds3kGhYXfICV5Rb+3e+DAt6iseqrbsZSUc1kw/+Hh/ghCCCGEEEIIIYQQQghGEBz0+towm4vJzvkYe/d+pdflp8rv48yZvzGz5BcYTXmcOHEvO3ddz/Jlr6DVGgDYtfuLxMcXsGDBP9BqDJSffpjdu29g5Yo3MRjS+73t1JTzKCn5efB7jUY/3O0LIYQQQgghhBBCCCE6DLusOC11DUVF3yQjfUOvy1RV5fTphygouJn09AtINBcza+Yvcburqa17FQC3uwGHo4z8/C+RaC4mPn4KU4u+hc/noLX1yIC3rWj0GAzpwa+4OOtwty+EEEIIIYQQQgghhOgw7MzBgTidp3G7a0lJXtV5A7pELJb52Gw7ycq8jLi4ZOLjC6mqfApL4iwURc/Zin8SF5dKYuLsAddvanqfzVuWEBdnJTl5BUWFtxIXl9znuS6XC5fLFfy+paUlND+kEEIIIYQQQgghhBAxIqTBQZe7FgC9Pq3bcb0+DXfHZYqisGD+I+zZ+yXe2jQXRdEQF5fKgvkPDZgJmJJ6HunpGzCZ8nA4TnHs+D3s2vV5Fi/+N4qi7XX+3XffzQ9/+MMQ/nRCCCGEEEIIIYQQQsSWcZ9WrKoqh4/ciV6fyqKF/2Lx4qdIT7+A3XtuxOWq6fd6WZmXkZ5+PmbzDNLTS5k/737szXtobHyvz/Nvu+02bDZb8Gvbtm1j9SMJIYQQQgghhBBCCBGVQhocNOj9w0Tc7rpux93uOvQdlzU2vktd3UZmz/oNSUmLsSTOpnjGj9BoDFRWPtVrzf6YTJOJi0uhzXGq770YDFgsluCX2Wwe4U8lhBBCCCGEEEIIIURsCmlw0GjMQ69Pp6Hx3eAxj6cZu30XVusCALw+Z583rSgawDfk23I6K2lvb8SgzxjttoUQQgghhBBCCCGEmJCG3XPQ42nF0SVbz+E4Q3PzAeLikjAac8jLu56ysj8QbyrAZMrj+Ilfoddnkp5WCoDVsoC4OCsHDn6LKQVfQ6s1crbiXzgcZ0hNXRtcd+t7F1BU9L9kpG/A42nlZNlvyUi/EL0+vaPn4M8wmfJJTT03BP8MQgghhBBCCCGEEEJMPMMODjY372XHzmuD3x89dhcA2VlXMXPmL8iffCNebxuHDn8Pj8eO1bqYBfMfQqs1AKDXpzB/3oMcP/Erduz8NKrqISFhGnPn/pnExJLgum1tJ/B4mgFQFC0tLYeprHwKj6cZgyGDlJRzKCy8FY3GMKR9e71eAI4fPz7cH1kIIYQQQgghhBAiYgViHYHYhxDDoaiqqoZ7E+Phv//9L5dddlm4tyGEEEIIIYQQQggxJp5//nkuvfTScG9DRJkJExx0u928+uqrFBQUoNVqR7RGS0sLS5cuZdu2bTLgJIrJ/SiGSh4rsUHuRwHyOIglcl+KoZDHSWyQ+1EMlTxW/BmDZWVllJaWotfrw70dEWUmTHAwFOx2O1arFZvNhsViCfd2xAjJ/SiGSh4rsUHuRwHyOIglcl+KoZDHSWyQ+1EMlTxWhBidkE4rFkIIIYQQQgghhBBCRA8JDgohhBBCCCGEEEIIMUFJcHAYDAYDd9xxBwbD0CYki8gk96MYKnmsxAa5HwXI4yCWyH0phkIeJ7FB7kcxVPJYEWJ0pOegEEIIIYQQQgghhBATlGQOCiGEEEIIIYQQQggxQUlwUAghhBBCCCGEEEKICUqCg0IIIYQQQgghhBBCTFASHBRCCCGEEEIIIYQQYoKS4KAQQgghhBBCCCGEEBNURAYH7777bpYsWUJiYiIZGRlcccUVHD58uNs5TqeTm2++mdTUVMxmMx/96Eeprq4OXr57924++clPkpeXh8lkoqSkhN/85jfd1qisrORTn/oU06dPR6PR8D//8z9D3uMf/vAHCgoKMBqNLFu2jG3btnW7fM2aNSiK0u3rS1/60qDr7tmzh3PPPRej0UheXh4///nPu12+f/9+PvrRj1JQUICiKPz6178e8p7H20S9H51OJ9dddx1z5sxBp9NxxRVX9Drnrbfe6rWuoihUVVUNee+xJBYeKwBbt25l3bp1JCQkYLFYOO+883A4HAOuW15eziWXXEJ8fDwZGRl861vfwuPxhGTP420i349f//rXWbRoEQaDgfnz5/e6vKysrM/f+ffee2/Ie48W0f446O++UhSFJ598csB1Y+k5HCbufSnP48MT7Y8TgKqqKj7zmc+QlZVFQkICCxcu5D//+c+g68pzeGzcj/IcPjyx8Fg5fvw4V155Jenp6VgsFq6++upu++tPLP3OC9FTRAYHN23axM0338x7773Ha6+9Rnt7O6WlpbS2tgbP+cY3vsHzzz/Pk08+yaZNm6ioqOCqq64KXr59+3YyMjL4xz/+wf79+/ne977Hbbfdxu9///vgOS6Xi/T0dG6//XbmzZs35P09/vjj3Hrrrdxxxx3s2LGDefPmsWHDBmpqarqdd8MNN1BZWRn86vkmoSe73U5paSn5+fls376dX/ziF9x5553cd999wXPa2tooLCzkpz/9KVlZWUPeczhM1PvR6/ViMpn4+te/zvnnnz/guYcPH+62dkZGxpD3H0ti4bGydetWLrzwQkpLS9m2bRsffPABX/3qV9Fo+v8z6/V6ueSSS3C73bz77rv87W9/4+GHH+YHP/jBqPccDhP1fgz4/Oc/zzXXXDPgOa+//nq33/lFixYNef/RItofB3l5ed3uo8rKSn74wx9iNpu56KKL+l031p7DYeLel/I8PjzR/jgB+OxnP8vhw4d57rnn2Lt3L1dddRVXX301O3fu7HddeQ6PjfsxQJ7Dhy7aHyutra2UlpaiKAobN27knXfewe12c9lll+Hz+fpdN9Z+54XoRY0CNTU1KqBu2rRJVVVVbWpqUuPi4tQnn3wyeM7BgwdVQN26dWu/63zlK19R165d2+dlq1evVm+55ZYh7Wfp0qXqzTffHPze6/WqOTk56t133z2i9QL++Mc/qsnJyarL5Qoe+/a3v63OmDGjz/Pz8/PVe++9d1i3EU4T5X7s6nOf+5z6kY98pNfxN998UwXUxsbGEa8dy6LxsbJs2TL19ttvH9J6AS+++KKq0WjUqqqq4LE//elPqsVi6fZ3YCR7jgQT5X7s6o477lDnzZvX6/jJkydVQN25c+eI145W0fg46Gn+/Pnq5z//+QHXjfXncFWdOPdlV/I8PnzR+DhJSEhQH3nkkW7XS0lJUe+///5+15Xn8Ni4H7uS5/CRibbHyiuvvKJqNBrVZrMFz2lqalIVRVFfe+21fteN9d95ISIyc7Anm80GQEpKCuD/pKG9vb3bp7nFxcVMnjyZrVu3DrhOYI2RcrvdbN++vdttazQazj///F63/eijj5KWlsbs2bO57bbbaGtrG3DtrVu3ct5556HX64PHNmzYwOHDh2lsbBzVviPBRLkfh2P+/PlkZ2dzwQUX8M4774Rs3WgXbY+Vmpoa3n//fTIyMli5ciWZmZmsXr2at99+e8C1t27dypw5c8jMzAwe27BhA3a7nf37949q35FgotyPw3H55ZeTkZHBOeecw3PPPReydSNZtD0Oetq+fTu7du3iC1/4woBrx/pzOEyc+3I45Hm8t2h8nKxcuZLHH3+choYGfD4f//rXv3A6naxZs6bfteU5PDbux+GYiM/hQxFtjxWXy4WiKBgMhuA5RqMRjUYz4Gu+WP+dF0IX7g0Mxufz8T//8z+sWrWK2bNnA/5+Enq9nqSkpG7nZmZm9tvr5d133+Xxxx/nhRdeGNV+6urq8Hq93f4oBG770KFDwe8/9alPkZ+fT05ODnv27OHb3/42hw8f5qmnnup37aqqKqZMmdJr3cBlycnJo9p7OE2k+3EosrOz+fOf/8zixYtxuVw88MADrFmzhvfff5+FCxeOau1oF42PlRMnTgBw55138stf/pL58+fzyCOPsH79evbt28e0adP6XLuqqqrPdQOXRbOJdD8Ohdls5p577mHVqlVoNBr+85//cMUVV/DMM89w+eWXj/wHi3DR+Djo6a9//SslJSWsXLlywLVj+TkcJtZ9ORTyPN63aH2cPPHEE1xzzTWkpqai0+mIj4/n6aefZurUqf2uLc/hftF+Pw7FRH0OH4pofKwsX76chIQEvv3tb/OTn/wEVVX5zne+g9frpbKyst+1Y/l3XgiI0J6DXd18883s27ePf/3rXyNeY9++fXzkIx/hjjvuoLS0dMjX27JlC2azOfj16KOPDvm6N954Ixs2bGDOnDlce+21PPLIIzz99NMcP34cgFmzZgXXHajvTayQ+7G7GTNmcNNNN7Fo0SJWrlzJgw8+yMqVK7n33nuHvEasisbHSqA/yU033cT111/PggULuPfee5kxYwYPPvggABdddFFw3VmzZg3/h4oycj92l5aWxq233sqyZctYsmQJP/3pT/n0pz/NL37xiyGvEY2i8XHQlcPh4LHHHuuVaTbRnsNB7sue5Hm8b9H6OPn+979PU1MTr7/+Oh9++CG33norV199NXv37gXkOXwkYul+nKjP4UMRjY+V9PR0nnzySZ5//nnMZjNWq5WmpiYWLlwY7DE90X7nhYAIzxz86le/yn//+182b95Mbm5u8HhWVhZut5umpqZun0hUV1f3avB94MAB1q9fz4033sjtt98+rNtfvHgxu3btCn6fmZmJwWBAq9X2mmbU1213tWzZMgCOHTtGUVERL774Iu3t7QCYTKbgz9XXuoHLotVEux9HaunSpSEtX4xG0fpYyc7OBmDmzJndzikpKaG8vByABx54IDjxNi4uLvhz9ZyeJr/zftF0P47UsmXLeO2110a1RiSL1sdBV//+979pa2vjs5/9bLfjE+k5HCbefTlSE/15PFofJ8ePH+f3v/89+/btCwYB5s2bx5YtW/jDH/7An//8Z3kOJ3bvx5GK9efwoYjWxwpAaWkpx48fp66uDp1OR1JSEllZWRQWFgIT63W7EAERmTmoqipf/epXefrpp9m4cWOvMp1FixYRFxfHG2+8ETx2+PBhysvLWbFiRfDY/v37Wbt2LZ/73Oe46667hr0Pk8nE1KlTg1+JiYno9XoWLVrU7bZ9Ph9vvPFGt9vuKfCHK/DmMz8/P7jupEmTAFixYgWbN28OvkgFeO2115gxY0ZUliNN1PtxpHbt2hVcd6KJ9sdKQUEBOTk5HD58uNt6R44cIT8/H4BJkyYF1w0cW7FiBXv37u02ae+1117DYrH0ClBFg4l6P45UrP7OR/vjoKu//vWvXH755aSnp3c7PhGew2Hi3pcjFau/04OJ9sdJoJd0z6n0Wq02mFEuz+Gxez+O1ET9fYfof6x0lZaWRlJSEhs3bqSmpiZYJj4RfueF6CVck1AG8uUvf1m1Wq3qW2+9pVZWVga/2tragud86UtfUidPnqxu3LhR/fDDD9UVK1aoK1asCF6+d+9eNT09Xf30pz/dbY2ampput7Vz5051586d6qJFi9RPfepT6s6dO9X9+/cPuL9//etfqsFgUB9++GH1wIED6o033qgmJSUFJxcdO3ZM/dGPfqR++OGH6smTJ9Vnn31WLSwsVM8777wB121qalIzMzPVz3zmM+q+ffvUf/3rX2p8fLz6l7/8JXiOy+UK7jk7O1v93//9X3Xnzp3q0aNHh/zvO14m6v2oqqq6f/9+defOnepll12mrlmzJri/gHvvvVd95pln1KNHj6p79+5Vb7nlFlWj0aivv/76UP5pY060P1ZU1X+fWiwW9cknn1SPHj2q3n777arRaFSPHTvW77oej0edPXu2Wlpaqu7atUt9+eWX1fT0dPW2224b9Z7DYaLej6qqqkePHlV37typ3nTTTer06dOD+wtMr3v44YfVxx57TD148KB68OBB9a677lI1Go364IMPDvnfN1rEwuNAVf33qaIo6ksvvTSknzvWnsNVdeLel6oqz+PDEe2PE7fbrU6dOlU999xz1ffff189duyY+stf/lJVFEV94YUX+l1XnsNj435UVXkOH65of6yoqqo++OCD6tatW9Vjx46pf//739WUlBT11ltvHXDdWPudF6KniAwOAn1+PfTQQ8FzHA6H+pWvfEVNTk5W4+Pj1SuvvFKtrKwMXn7HHXf0uUZ+fv6gt9XznL787ne/UydPnqzq9Xp16dKl6nvvvRe8rLy8XD3vvPPUlJQU1WAwqFOnTlW/9a1vdRuX3p/du3er55xzjmowGNRJkyapP/3pT7tdfvLkyT73vHr16kHXHm8T+X7Mz8/vc08BP/vZz9SioiLVaDSqKSkp6po1a9SNGzcOum6sivbHSsDdd9+t5ubmqvHx8eqKFSvULVu2DLpuWVmZetFFF6kmk0lNS0tTv/nNb6rt7e0h2fN4m8j34+rVq/vc08mTJ1VV9b+xKCkpUePj41WLxaIuXbpUffLJJwddNxrFyuPgtttuU/Py8lSv1zvknz2WnsNVdWLfl/I8PnSx8Dg5cuSIetVVV6kZGRlqfHy8OnfuXPWRRx4ZdF15Do+N+1Gew4cnFh4r3/72t9XMzEw1Li5OnTZtmnrPPfeoPp9v0HVj6XdeiJ4UVVVVhBBCCCGEEEIIIYQQE05E9hwUQgghhBBCCCGEEEKMPQkOCiGEEEIIIYQQQggxQUlwUAghhBBCCCGEEEKICUqCg0IIIYQQQgghhBBCTFASHBRCCCGEEEIIIYQQYoKS4KAQQgghhBBCCCGEEBOUBAeFEEIIIYQQQgghhJigJDgohBBCCCGEEEIIIcQEJcFBIYQQQgghhBBCCCEmKAkOCiGEEEIIIYQQQggxQUlwUAghhBBCCCGEEEKICer/AxaK+N4Hw99lAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"env.render('simple_figure')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Render in *advanced_figure* mode\n",
"\n",
"* Clicking on a symbol name will hide/show its plot.\n",
"* Hovering over points and markers will display their detail.\n",
"* The size of triangles indicates their relative volume."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertext": [
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 12736.381709
margin: 6730.000000
free margin: 6006.381709
margin level: 1.892479",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12706.535265
margin: 3230.933000
free margin: 9475.602265
margin level: 3.932776",
"balance: 12736.381709 USD
equity: 12605.835265
margin: 3230.933000
free margin: 9374.902265
margin level: 3.901608",
"balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf",
"balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf",
"balance: 12605.835265 USD
equity: 10927.304248
margin: 7894.516666
free margin: 3032.787581
margin level: 1.384164",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 12340.810450
margin: 4180.000000
free margin: 8160.810450
margin level: 2.952347",
"balance: 10927.304248 USD
equity: 12284.032107
margin: 4180.000000
free margin: 8104.032107
margin level: 2.938764",
"balance: 10927.304248 USD
equity: 14737.797087
margin: 4180.000000
free margin: 10557.797087
margin level: 3.525789",
"balance: 10927.304248 USD
equity: 12907.743921
margin: 4180.000000
free margin: 8727.743921
margin level: 3.087977",
"balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf",
"balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf",
"balance: 12907.743921 USD
equity: 11394.930310
margin: 7234.529500
free margin: 4160.400810
margin level: 1.575076",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 10782.592383
margin: 3831.428119
free margin: 6951.164264
margin level: 2.814249",
"balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf",
"balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf",
"balance: 10782.592383 USD
equity: 13026.542293
margin: 4987.296900
free margin: 8039.245393
margin level: 2.611944",
"balance: 10782.592383 USD
equity: 14401.292293
margin: 4987.296900
free margin: 9413.995393
margin level: 2.887595",
"balance: 14401.292293 USD
equity: 14401.292293
margin: 0.000000
free margin: 14401.292293
margin level: inf",
"balance: 14401.292293 USD
equity: 16069.266491
margin: 7110.000000
free margin: 8959.266491
margin level: 2.260094",
"balance: 14401.292293 USD
equity: 11701.665022
margin: 7110.000000
free margin: 4591.665022
margin level: 1.645804",
"balance: 14401.292293 USD
equity: 10928.383748
margin: 7110.000000
free margin: 3818.383748
margin level: 1.537044",
"balance: 14401.292293 USD
equity: 12550.990984
margin: 7110.000000
free margin: 5440.990984
margin level: 1.765259",
"balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf",
"balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf",
"balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf",
"balance: 12550.990984 USD
equity: 12607.800048
margin: 306.659600
free margin: 12301.140448
margin level: 41.113339",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 13476.741387
margin: 9248.130601
free margin: 4228.610785
margin level: 1.457240",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 11866.091062
margin: 3895.966800
free margin: 7970.124262
margin level: 3.045737",
"balance: 11866.091062 USD
equity: 11866.091062
margin: 0.000000
free margin: 11866.091062
margin level: inf",
"balance: 11866.091062 USD
equity: 14164.385010
margin: 9746.529273
free margin: 4417.855737
margin level: 1.453275",
"balance: 11866.091062 USD
equity: 17007.087916
margin: 9746.529273
free margin: 7260.558643
margin level: 1.744938",
"balance: 17007.087916 USD
equity: 17098.937565
margin: 258.533000
free margin: 16840.404565
margin level: 66.138317",
"balance: 17007.087916 USD
equity: 16949.082195
margin: 11995.055500
free margin: 4954.026695
margin level: 1.413006",
"balance: 17007.087916 USD
equity: 18179.652195
margin: 11995.055500
free margin: 6184.596695
margin level: 1.515596",
"balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf",
"balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf",
"balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf"
],
"legendgroup": "g1",
"line": {
"color": "rgba(31, 119, 180, 1)"
},
"mode": "lines+markers",
"name": "GBPCAD",
"opacity": 1,
"type": "scatter",
"x": [
"2021-05-05T00:00:00+00:00",
"2021-05-06T00:00:00+00:00",
"2021-05-07T00:00:00+00:00",
"2021-05-10T00:00:00+00:00",
"2021-05-11T00:00:00+00:00",
"2021-05-12T00:00:00+00:00",
"2021-05-13T00:00:00+00:00",
"2021-05-14T00:00:00+00:00",
"2021-05-17T00:00:00+00:00",
"2021-05-18T00:00:00+00:00",
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-24T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-02T00:00:00+00:00",
"2021-06-03T00:00:00+00:00",
"2021-06-04T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-28T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00",
"2021-09-03T00:00:00+00:00"
],
"y": [
1.70525,
1.68648,
1.69619,
1.7070699999999999,
1.71108,
1.70468,
1.7082899999999999,
1.70635,
1.7059199999999999,
1.71128,
1.71211,
1.7107,
1.70726,
1.7044000000000001,
1.7066,
1.71089,
1.71345,
1.71356,
1.7132399999999999,
1.70755,
1.70462,
1.7068400000000001,
1.70999,
1.71255,
1.7139199999999999,
1.70927,
1.71433,
1.71691,
1.71341,
1.71492,
1.71638,
1.71949,
1.72017,
1.72173,
1.7158099999999998,
1.7177,
1.7149299999999998,
1.70721,
1.71244,
1.71535,
1.71437,
1.71059,
1.70511,
1.70716,
1.71879,
1.72167,
1.72692,
1.7307000000000001,
1.72832,
1.72767,
1.73236,
1.7407,
1.73684,
1.74244,
1.7273800000000001,
1.72183,
1.72851,
1.72728,
1.73336,
1.7481900000000001,
1.7405300000000001,
1.73688,
1.73335,
1.73577,
1.7441499999999999,
1.7412999999999998,
1.7408299999999999,
1.7419799999999999,
1.7408000000000001,
1.7316500000000001,
1.73282,
1.72889,
1.7357200000000002,
1.7402199999999999,
1.7349700000000001,
1.74061,
1.74874,
1.7468,
1.73506,
1.72784,
1.73259,
1.7377,
1.7353399999999999,
1.7338900000000002,
1.73501,
1.7372800000000002,
1.73603,
1.7362600000000001
],
"yaxis": "y"
},
{
"hovertext": [
"order id:
hold probability: 0.0000
hold: False
volume: -44.176482
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=49647.13488780763, order profit=-2247.909433094914, free margin=10000.0)",
"order id:
hold probability: 0.0000
hold: False
volume: 72.038866
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=49507.25646699986, order profit=-1901.7386746816774, free margin=12736.381708571604)",
"order id: 3
hold probability: 0.0108
hold: False
volume: 5.578163
modified volume: 5.5800
fee: 0.000689
margin: 7894.516666
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: -23.267540
modified volume: 23.2700
fee: nan
margin: nan
error: low free margin (order margin=32939.58357766416, order profit=-1372.3300137940907, free margin=10927.304247610115)",
"order id:
hold probability: 0.0000
hold: False
volume: -60.861710
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48716.679483547174, order profit=-2006.6653647666162, free margin=8727.743921036426)",
"order id:
hold probability: 0.0000
hold: False
volume: -47.949233
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48286.44183342022, order profit=-2061.781190291184, free margin=12907.743921036426)",
"order id:
hold probability: 0.0000
hold: False
volume: 25.554756
modified volume: 25.5500
fee: nan
margin: nan
error: low free margin (order margin=35588.47445149181, order profit=-1520.1010704901496, free margin=12907.743921036426)",
"order id:
hold probability: 0.0000
hold: False
volume: 76.377012
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48862.149399783804, order profit=-2201.901585803025, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: 41.376815
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48709.71799553661, order profit=-2057.0564947657103, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: -24.612648
modified volume: 24.6100
fee: nan
margin: nan
error: low free margin (order margin=34159.687771032084, order profit=-1346.1979953576295, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: -43.428668
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48415.57530402245, order profit=-1673.8828367509084, free margin=11394.930310040349)",
"order id: 6
hold probability: 0.0000
hold: False
volume: -2.767402
modified volume: 2.7700
fee: 0.000678
margin: 3831.428119
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: 86.698742
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48271.320130953914, order profit=-1926.546075508112, free margin=10782.592383267549)",
"order id:
hold probability: 0.0000
hold: False
volume: 58.165697
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48225.67261353844, order profit=-2061.3341280204318, free margin=8039.245393258917)",
"order id:
hold probability: 0.0000
hold: False
volume: -23.148405
modified volume: 23.1500
fee: nan
margin: nan
error: low free margin (order margin=32177.92921221077, order profit=-1256.0504973146583, free margin=9413.995393258905)",
"order id:
hold probability: 0.0000
hold: False
volume: -62.835675
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48583.01676157127, order profit=-1936.8996474079252, free margin=14401.292293258906)",
"order id:
hold probability: 0.0000
hold: False
volume: -75.380819
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48473.505804099645, order profit=-2063.592990500289, free margin=4591.665022357844)",
"order id:
hold probability: 0.0000
hold: False
volume: 52.140152
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48378.502854692575, order profit=-2003.1495778654673, free margin=3818.3837479887043)",
"order id:
hold probability: 0.0000
hold: False
volume: -10.638036
modified volume: 10.6400
fee: nan
margin: nan
error: low free margin (order margin=14646.306796116505, order profit=-589.7664711693458, free margin=5440.990983899694)",
"order id:
hold probability: 0.0000
hold: False
volume: -69.807531
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=47848.94942489055, order profit=-1869.8149703127222, free margin=12550.990983899694)",
"order id:
hold probability: 0.0000
hold: False
volume: 47.309933
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=47681.927520801306, order profit=-2075.872962742034, free margin=12550.990983899694)",
"order id:
hold probability: 0.0000
hold: False
volume: 40.251066
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=47980.931528662426, order profit=-2106.4075730786462, free margin=12550.990983899694)",
"order id:
hold probability: 0.0000
hold: False
volume: 31.759616
modified volume: 31.7600
fee: nan
margin: nan
error: low free margin (order margin=43707.13884222511, order profit=-1915.7067892978068, free margin=12301.14044816353)",
"order id:
hold probability: 0.0000
hold: False
volume: -97.668424
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48557.36495012261, order profit=-2013.4883226468503, free margin=12607.800048163532)",
"order id: 10
hold probability: 0.0000
hold: False
volume: 6.651386
modified volume: 6.6500
fee: 0.000786
margin: 9248.130601
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: -47.663715
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48588.34397044004, order profit=-2097.7086650777032, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -96.021717
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48700.617480933084, order profit=-2150.22721921506, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 36.467051
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48748.699854383696, order profit=-1944.1821334036877, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -60.311601
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48562.92862433988, order profit=-1784.2635914173381, free margin=13476.74138657302)",
"order id:
hold probability: 0.0012
hold: False
volume: -74.391499
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48411.839414659094, order profit=-1915.7597390538695, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -32.194224
modified volume: 32.1900
fee: nan
margin: nan
error: low free margin (order margin=44447.348156312146, order profit=-1808.0163021987307, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 48.948332
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48095.130605585386, order profit=-1876.3109125196697, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -17.182294
modified volume: 17.1800
fee: nan
margin: nan
error: low free margin (order margin=23624.70555704783, order profit=-1010.1259860739742, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 47.823681
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=47720.17776391705, order profit=-1904.8013206750984, free margin=13476.74138657302)",
"order id: 12
hold probability: 0.0000
hold: False
volume: 7.104986
modified volume: 7.1000
fee: 0.000675
margin: 9746.529273
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: 46.866510
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48167.25710109932, order profit=-1930.6790843243173, free margin=4417.855736977503)",
"order id:
hold probability: 0.0000
hold: False
volume: -58.948852
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48150.00673849106, order profit=-1819.865669657485, free margin=16840.40456466897)",
"order id:
hold probability: 0.0000
hold: False
volume: -11.765242
modified volume: 11.7700
fee: nan
margin: nan
error: low free margin (order margin=16189.410584100846, order profit=-610.9683308350316, free margin=4954.026695193326)",
"order id:
hold probability: 0.0000
hold: False
volume: -64.416248
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48137.79736660616, order profit=-1930.4115556441482, free margin=6184.596695193482)",
"order id:
hold probability: 0.0000
hold: False
volume: 89.812738
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48409.00761655885, order profit=-1945.310857650552, free margin=18179.65219519348)"
],
"legendgroup": "g1",
"marker": {
"color": [
"gray",
"gray",
"green",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"red",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"green",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"green",
"gray",
"gray",
"gray",
"gray",
"gray"
],
"size": [
30,
30,
11.507428571428571,
22.62685714285714,
30,
30,
24.06,
30,
30,
23.469142857142856,
30,
9.741142857142858,
30,
30,
22.551428571428573,
30,
30,
30,
14.687999999999999,
30,
30,
30,
27.963428571428572,
30,
12.18,
30,
30,
30,
30,
30,
28.23371428571428,
30,
18.798857142857145,
30,
12.462857142857143,
30,
30,
15.398285714285715,
30,
30
],
"symbol": [
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down"
]
},
"mode": "markers",
"name": "GBPCAD",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-18T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-02T00:00:00+00:00"
],
"y": [
1.71128,
1.7066,
1.70755,
1.7139199999999999,
1.71949,
1.72017,
1.72173,
1.7177,
1.7149299999999998,
1.71244,
1.71535,
1.70511,
1.71879,
1.72692,
1.7307000000000001,
1.72832,
1.73236,
1.7407,
1.73684,
1.74244,
1.7273800000000001,
1.72183,
1.72851,
1.7481900000000001,
1.73335,
1.73577,
1.7441499999999999,
1.7408299999999999,
1.7419799999999999,
1.7316500000000001,
1.72889,
1.7349700000000001,
1.74061,
1.74874,
1.72784,
1.73259,
1.7353399999999999,
1.7338900000000002,
1.73501,
1.73603
],
"yaxis": "y"
},
{
"hovertext": [
"order id: 3
order type: Buy
close probability: 1.0000
margin: 7894.516666
profit: -1678.531017",
"order id: 6
order type: Sell
close probability: 1.0000
margin: 3831.428119
profit: -612.337927",
"order id: 10
order type: Buy
close probability: 0.9998
margin: 9248.130601
profit: 868.941338",
"order id: 12
order type: Buy
close probability: 1.0000
margin: 9746.529273
profit: 5140.996853"
],
"legendgroup": "g1",
"marker": {
"color": "black",
"line": {
"width": 1.5
},
"size": 7,
"symbol": "line-ns"
},
"mode": "markers",
"name": "GBPCAD",
"showlegend": false,
"type": "scatter",
"x": [
"2021-06-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-26T00:00:00+00:00"
],
"y": [
1.70462,
1.70716,
1.73577,
1.7377
],
"yaxis": "y"
},
{
"hovertext": [
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 12736.381709
margin: 6730.000000
free margin: 6006.381709
margin level: 1.892479",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12706.535265
margin: 3230.933000
free margin: 9475.602265
margin level: 3.932776",
"balance: 12736.381709 USD
equity: 12605.835265
margin: 3230.933000
free margin: 9374.902265
margin level: 3.901608",
"balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf",
"balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf",
"balance: 12605.835265 USD
equity: 10927.304248
margin: 7894.516666
free margin: 3032.787581
margin level: 1.384164",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 12340.810450
margin: 4180.000000
free margin: 8160.810450
margin level: 2.952347",
"balance: 10927.304248 USD
equity: 12284.032107
margin: 4180.000000
free margin: 8104.032107
margin level: 2.938764",
"balance: 10927.304248 USD
equity: 14737.797087
margin: 4180.000000
free margin: 10557.797087
margin level: 3.525789",
"balance: 10927.304248 USD
equity: 12907.743921
margin: 4180.000000
free margin: 8727.743921
margin level: 3.087977",
"balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf",
"balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf",
"balance: 12907.743921 USD
equity: 11394.930310
margin: 7234.529500
free margin: 4160.400810
margin level: 1.575076",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 10782.592383
margin: 3831.428119
free margin: 6951.164264
margin level: 2.814249",
"balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf",
"balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf",
"balance: 10782.592383 USD
equity: 13026.542293
margin: 4987.296900
free margin: 8039.245393
margin level: 2.611944",
"balance: 10782.592383 USD
equity: 14401.292293
margin: 4987.296900
free margin: 9413.995393
margin level: 2.887595",
"balance: 14401.292293 USD
equity: 14401.292293
margin: 0.000000
free margin: 14401.292293
margin level: inf",
"balance: 14401.292293 USD
equity: 16069.266491
margin: 7110.000000
free margin: 8959.266491
margin level: 2.260094",
"balance: 14401.292293 USD
equity: 11701.665022
margin: 7110.000000
free margin: 4591.665022
margin level: 1.645804",
"balance: 14401.292293 USD
equity: 10928.383748
margin: 7110.000000
free margin: 3818.383748
margin level: 1.537044",
"balance: 14401.292293 USD
equity: 12550.990984
margin: 7110.000000
free margin: 5440.990984
margin level: 1.765259",
"balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf",
"balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf",
"balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf",
"balance: 12550.990984 USD
equity: 12607.800048
margin: 306.659600
free margin: 12301.140448
margin level: 41.113339",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 13476.741387
margin: 9248.130601
free margin: 4228.610785
margin level: 1.457240",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 11866.091062
margin: 3895.966800
free margin: 7970.124262
margin level: 3.045737",
"balance: 11866.091062 USD
equity: 11866.091062
margin: 0.000000
free margin: 11866.091062
margin level: inf",
"balance: 11866.091062 USD
equity: 14164.385010
margin: 9746.529273
free margin: 4417.855737
margin level: 1.453275",
"balance: 11866.091062 USD
equity: 17007.087916
margin: 9746.529273
free margin: 7260.558643
margin level: 1.744938",
"balance: 17007.087916 USD
equity: 17098.937565
margin: 258.533000
free margin: 16840.404565
margin level: 66.138317",
"balance: 17007.087916 USD
equity: 16949.082195
margin: 11995.055500
free margin: 4954.026695
margin level: 1.413006",
"balance: 17007.087916 USD
equity: 18179.652195
margin: 11995.055500
free margin: 6184.596695
margin level: 1.515596",
"balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf",
"balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf",
"balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf"
],
"legendgroup": "g2",
"line": {
"color": "rgba(144, 94, 131, 1)"
},
"mode": "lines+markers",
"name": "EURUSD",
"opacity": 1,
"type": "scatter",
"x": [
"2021-05-05T00:00:00+00:00",
"2021-05-06T00:00:00+00:00",
"2021-05-07T00:00:00+00:00",
"2021-05-10T00:00:00+00:00",
"2021-05-11T00:00:00+00:00",
"2021-05-12T00:00:00+00:00",
"2021-05-13T00:00:00+00:00",
"2021-05-14T00:00:00+00:00",
"2021-05-17T00:00:00+00:00",
"2021-05-18T00:00:00+00:00",
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-24T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-02T00:00:00+00:00",
"2021-06-03T00:00:00+00:00",
"2021-06-04T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-28T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00",
"2021-09-03T00:00:00+00:00"
],
"y": [
1.20036,
1.20646,
1.21618,
1.21282,
1.2147000000000001,
1.20705,
1.20791,
1.21441,
1.21511,
1.2221899999999999,
1.21744,
1.22269,
1.21806,
1.2215,
1.22497,
1.21922,
1.21934,
1.21896,
1.2225,
1.22126,
1.221,
1.21265,
1.21662,
1.21893,
1.21726,
1.21787,
1.21751,
1.21063,
1.212,
1.21264,
1.19943,
1.19069,
1.18597,
1.19185,
1.19413,
1.19258,
1.19315,
1.1937,
1.19242,
1.1896,
1.1856,
1.18497,
1.18646,
1.18634,
1.18231,
1.17903,
1.18449,
1.18774,
1.18606,
1.17765,
1.18358,
1.18118,
1.18055,
1.17987,
1.17805,
1.17946,
1.17707,
1.17689,
1.18029,
1.18165,
1.18441,
1.18865,
1.1873,
1.18688,
1.18637,
1.18367,
1.18327,
1.17611,
1.17362,
1.17203,
1.17388,
1.17296,
1.17962,
1.17768,
1.17081,
1.17108,
1.16756,
1.16996,
1.1745700000000001,
1.17555,
1.17716,
1.17515,
1.1795499999999999,
1.17962,
1.18083,
1.18384,
1.18744,
1.18772
],
"yaxis": "y2"
},
{
"hovertext": [
"order id:
hold probability: 0.0000
hold: False
volume: -5.600001
modified volume: 5.6000
fee: nan
margin: nan
error: low free margin (order margin=6847.064, order profit=-138.8566776607775, free margin=6006.381708571604)",
"order id:
hold probability: 0.0000
hold: False
volume: -62.223997
modified volume: 62.2200
fee: nan
margin: nan
error: low free margin (order margin=75787.6932, order profit=-1560.9756801646708, free margin=12736.381708571604)",
"order id: 2
hold probability: 0.0000
hold: False
volume: 2.651722
modified volume: 2.6500
fee: 0.000233
margin: 3230.933000
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: 88.656548
modified volume: 88.6600
fee: nan
margin: nan
error: low free margin (order margin=108072.99360000002, order profit=-1743.9558924969394, free margin=12605.835264609543)",
"order id:
hold probability: 0.0000
hold: False
volume: 77.548375
modified volume: 77.5500
fee: nan
margin: nan
error: low free margin (order margin=94528.0215, order profit=-1849.3482681928433, free margin=10927.304247610115)",
"order id:
hold probability: 0.0003
hold: False
volume: -94.766423
modified volume: 94.7700
fee: nan
margin: nan
error: low free margin (order margin=115359.73019999999, order profit=-2067.1155720645615, free margin=10927.304247610115)",
"order id:
hold probability: 0.0000
hold: False
volume: -75.529795
modified volume: 75.5300
fee: nan
margin: nan
error: low free margin (order margin=91985.7211, order profit=-1772.9834004175866, free margin=10927.304247610115)",
"order id:
hold probability: 0.0000
hold: False
volume: 21.124000
modified volume: 21.1200
fee: nan
margin: nan
error: low free margin (order margin=25713.8112, order profit=-432.3591558240023, free margin=10927.304247610115)",
"order id:
hold probability: 0.0000
hold: False
volume: -73.889688
modified volume: 73.8900
fee: nan
margin: nan
error: low free margin (order margin=89453.4507, order profit=-1379.7610779415754, free margin=10927.304247610115)",
"order id:
hold probability: 0.0000
hold: False
volume: 62.120651
modified volume: 62.1200
fee: nan
margin: nan
error: low free margin (order margin=75289.44, order profit=-1107.2811057389522, free margin=8160.8104503766845)",
"order id:
hold probability: 0.0000
hold: False
volume: 34.455269
modified volume: 34.4600
fee: nan
margin: nan
error: low free margin (order margin=41787.5744, order profit=-712.699513565751, free margin=8104.032106561184)",
"order id:
hold probability: 0.0000
hold: False
volume: -75.416466
modified volume: 75.4200
fee: nan
margin: nan
error: low free margin (order margin=90461.01060000001, order profit=-1622.1397144142256, free margin=10557.79708683329)",
"order id:
hold probability: 0.0000
hold: False
volume: -38.321286
modified volume: 38.3200
fee: nan
margin: nan
error: low free margin (order margin=45627.2408, order profit=-832.8209114516719, free margin=8727.743921036426)",
"order id: 5
hold probability: 0.0000
hold: False
volume: -6.069555
modified volume: 6.0700
fee: 0.000212
margin: 7234.529500
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: -59.930551
modified volume: 59.9300
fee: nan
margin: nan
error: low free margin (order margin=71564.2109, order profit=-1255.28500697473, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: 53.921603
modified volume: 53.9200
fee: nan
margin: nan
error: low free margin (order margin=64303.91359999999, order profit=-1292.4046823968365, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: -18.052204
modified volume: 18.0500
fee: nan
margin: nan
error: low free margin (order margin=21523.181, order profit=-309.40284270080696, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: 30.609904
modified volume: 30.6100
fee: nan
margin: nan
error: low free margin (order margin=36291.216, order profit=-533.3124273301988, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: 78.643252
modified volume: 78.6400
fee: nan
margin: nan
error: low free margin (order margin=93293.7776, order profit=-1606.9550097028743, free margin=10782.592383267549)",
"order id: 7
hold probability: 0.0000
hold: False
volume: 4.232193
modified volume: 4.2300
fee: 0.000155
margin: 4987.296900
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: -60.549445
modified volume: 60.5500
fee: nan
margin: nan
error: low free margin (order margin=71917.657, order profit=-1282.0610017970778, free margin=14401.292293258906)",
"order id:
hold probability: 0.0000
hold: False
volume: 36.277468
modified volume: 36.2800
fee: nan
margin: nan
error: low free margin (order margin=43030.256799999996, order profit=-691.4361101205322, free margin=14401.292293258906)",
"order id:
hold probability: 0.0000
hold: False
volume: 41.028668
modified volume: 41.0300
fee: nan
margin: nan
error: low free margin (order margin=48318.9795, order profit=-789.0613013174274, free margin=8959.266490917913)",
"order id:
hold probability: 0.0000
hold: False
volume: 67.920132
modified volume: 67.9200
fee: nan
margin: nan
error: low free margin (order margin=80225.7456, order profit=-1597.0027565761818, free margin=3818.3837479887043)",
"order id: 9
hold probability: 0.0000
hold: False
volume: -0.260075
modified volume: 0.2600
fee: 0.000205
margin: 306.659600
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: -86.342260
modified volume: 86.3400
fee: nan
margin: nan
error: low free margin (order margin=101612.6826, order profit=-1886.9757349406686, free margin=12607.800048163532)",
"order id:
hold probability: 0.0000
hold: False
volume: -56.131961
modified volume: 56.1300
fee: nan
margin: nan
error: low free margin (order margin=66249.6777, order profit=-1278.6756114942887, free margin=12607.800048163532)",
"order id:
hold probability: 0.0000
hold: False
volume: -85.452239
modified volume: 85.4500
fee: nan
margin: nan
error: low free margin (order margin=101570.1425, order profit=-1375.9879912446002, free margin=12607.800048163532)",
"order id:
hold probability: 0.0000
hold: False
volume: 30.796775
modified volume: 30.8000
fee: nan
margin: nan
error: low free margin (order margin=36568.84, order profit=-761.5295130288157, free margin=2940.1956972515854)",
"order id:
hold probability: 0.0000
hold: False
volume: 34.883000
modified volume: 34.8800
fee: nan
margin: nan
error: low free margin (order margin=41380.585600000006, order profit=-756.6366349535826, free margin=13476.74138657302)",
"order id:
hold probability: 0.4698
hold: False
volume: -59.973584
modified volume: 59.9700
fee: nan
margin: nan
error: low free margin (order margin=70984.6899, order profit=-1281.8710375274152, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 47.776494
modified volume: 47.7800
fee: nan
margin: nan
error: low free margin (order margin=56536.640600000006, order profit=-1072.4355341251994, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 25.136558
modified volume: 25.1400
fee: nan
margin: nan
error: low free margin (order margin=29567.4054, order profit=-496.30293891752723, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 72.416751
modified volume: 72.4200
fee: nan
margin: nan
error: low free margin (order margin=84993.56040000002, order profit=-1203.5430779180415, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 95.416212
modified volume: 95.4200
fee: nan
margin: nan
error: low free margin (order margin=111835.1026, order profit=-2089.9493143201016, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -40.881684
modified volume: 40.8800
fee: nan
margin: nan
error: low free margin (order margin=47988.214400000004, order profit=-489.2798151010228, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -86.385672
modified volume: 86.3900
fee: nan
margin: nan
error: low free margin (order margin=101907.3718, order profit=-1827.856763017767, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 12.583248
modified volume: 12.5800
fee: nan
margin: nan
error: low free margin (order margin=14815.214400000003, order profit=-228.83822964707855, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -85.192746
modified volume: 85.1900
fee: nan
margin: nan
error: low free margin (order margin=99764.3052, order profit=-1785.6869691316595, free margin=13476.74138657302)",
"order id: 11
hold probability: 0.0002
hold: False
volume: -3.327621
modified volume: 3.3300
fee: 0.000227
margin: 3895.966800
error: ",
"order id: 13
hold probability: 0.0000
hold: False
volume: 0.220905
modified volume: 0.2200
fee: 0.000225
margin: 258.533000
error: ",
"order id: 14
hold probability: 0.0000
hold: False
volume: 9.946175
modified volume: 9.9500
fee: 0.000222
margin: 11736.522500
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: 41.674727
modified volume: 41.6700
fee: nan
margin: nan
error: cannot add more orders",
"order id:
hold probability: 0.0000
hold: False
volume: -97.687594
modified volume: 97.6900
fee: nan
margin: nan
error: low free margin (order margin=115355.2827, order profit=-1747.9611976516298, free margin=18179.65219519348)"
],
"legendgroup": "g2",
"marker": {
"color": [
"gray",
"gray",
"green",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"red",
"gray",
"gray",
"gray",
"gray",
"gray",
"green",
"gray",
"gray",
"gray",
"gray",
"red",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"red",
"green",
"green",
"gray",
"gray"
],
"size": [
9.261132152728017,
22.01207902548879,
8.596785750844509,
27.96642440372607,
25.464428293581737,
29.34240966322039,
25.00951990991913,
12.756269833145666,
24.640188350905927,
21.989558808475792,
15.760466782679906,
24.984747671204833,
16.62974715938172,
9.366977172689118,
21.496366055891084,
20.142901013409766,
12.064899170846555,
14.893438427679396,
25.70989865902344,
8.952605179649913,
21.635991401371687,
16.170334732316512,
17.240045040434026,
23.295731395229808,
8.058552564233802,
27.443955369024465,
20.64059780939707,
27.243525437608763,
14.936226840004096,
15.855051694134508,
21.505374142696283,
18.760159688811548,
13.661582557068279,
24.30914116081482,
29.488791073804894,
17.206264714914525,
27.455215477530967,
10.833043300235438,
27.184972873374964,
8.74992322653291,
8.0495444774286,
10.24076159279353,
17.384174429317227,
30
],
"symbol": [
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-down"
]
},
"mode": "markers",
"name": "EURUSD",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00"
],
"y": [
1.22269,
1.21806,
1.21922,
1.21896,
1.21893,
1.21726,
1.21787,
1.21751,
1.21063,
1.212,
1.21264,
1.19943,
1.19069,
1.19185,
1.19413,
1.19258,
1.19242,
1.1856,
1.18634,
1.17903,
1.18774,
1.18606,
1.17765,
1.18118,
1.17946,
1.17689,
1.18029,
1.18865,
1.1873,
1.18637,
1.18367,
1.18327,
1.17611,
1.17362,
1.17203,
1.17388,
1.17962,
1.17768,
1.17108,
1.16996,
1.17515,
1.1795499999999999,
1.17962,
1.18083
],
"yaxis": "y2"
},
{
"hovertext": [
"order id: 2
order type: Buy
close probability: 1.0000
margin: 3230.933000
profit: -130.546444",
"order id: 5
order type: Sell
close probability: 1.0000
margin: 7234.529500
profit: -1512.813611",
"order id: 7
order type: Buy
close probability: 0.9947
margin: 4987.296900
profit: 3618.699910",
"order id: 9
order type: Sell
close probability: 1.0000
margin: 306.659600
profit: 56.809064",
"order id: 11
order type: Sell
close probability: 0.8872
margin: 3895.966800
profit: -1610.650324",
"order id: 13
order type: Buy
close probability: 1.0000
margin: 258.533000
profit: 120.009649
---------------------------------
order id: 14
order type: Buy
close probability: 1.0000
margin: 11736.522500
profit: 1052.554631"
],
"legendgroup": "g2",
"marker": {
"color": "black",
"line": {
"width": 1.5
},
"size": 7,
"symbol": "line-ns"
},
"mode": "markers",
"name": "EURUSD",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-28T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-31T00:00:00+00:00"
],
"y": [
1.21896,
1.19413,
1.18774,
1.17707,
1.1745700000000001,
1.18083
],
"yaxis": "y2"
},
{
"hovertext": [
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 12736.381709
margin: 6730.000000
free margin: 6006.381709
margin level: 1.892479",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf",
"balance: 12736.381709 USD
equity: 12706.535265
margin: 3230.933000
free margin: 9475.602265
margin level: 3.932776",
"balance: 12736.381709 USD
equity: 12605.835265
margin: 3230.933000
free margin: 9374.902265
margin level: 3.901608",
"balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf",
"balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf",
"balance: 12605.835265 USD
equity: 10927.304248
margin: 7894.516666
free margin: 3032.787581
margin level: 1.384164",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf",
"balance: 10927.304248 USD
equity: 12340.810450
margin: 4180.000000
free margin: 8160.810450
margin level: 2.952347",
"balance: 10927.304248 USD
equity: 12284.032107
margin: 4180.000000
free margin: 8104.032107
margin level: 2.938764",
"balance: 10927.304248 USD
equity: 14737.797087
margin: 4180.000000
free margin: 10557.797087
margin level: 3.525789",
"balance: 10927.304248 USD
equity: 12907.743921
margin: 4180.000000
free margin: 8727.743921
margin level: 3.087977",
"balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf",
"balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf",
"balance: 12907.743921 USD
equity: 11394.930310
margin: 7234.529500
free margin: 4160.400810
margin level: 1.575076",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf",
"balance: 11394.930310 USD
equity: 10782.592383
margin: 3831.428119
free margin: 6951.164264
margin level: 2.814249",
"balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf",
"balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf",
"balance: 10782.592383 USD
equity: 13026.542293
margin: 4987.296900
free margin: 8039.245393
margin level: 2.611944",
"balance: 10782.592383 USD
equity: 14401.292293
margin: 4987.296900
free margin: 9413.995393
margin level: 2.887595",
"balance: 14401.292293 USD
equity: 14401.292293
margin: 0.000000
free margin: 14401.292293
margin level: inf",
"balance: 14401.292293 USD
equity: 16069.266491
margin: 7110.000000
free margin: 8959.266491
margin level: 2.260094",
"balance: 14401.292293 USD
equity: 11701.665022
margin: 7110.000000
free margin: 4591.665022
margin level: 1.645804",
"balance: 14401.292293 USD
equity: 10928.383748
margin: 7110.000000
free margin: 3818.383748
margin level: 1.537044",
"balance: 14401.292293 USD
equity: 12550.990984
margin: 7110.000000
free margin: 5440.990984
margin level: 1.765259",
"balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf",
"balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf",
"balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf",
"balance: 12550.990984 USD
equity: 12607.800048
margin: 306.659600
free margin: 12301.140448
margin level: 41.113339",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf",
"balance: 12607.800048 USD
equity: 13476.741387
margin: 9248.130601
free margin: 4228.610785
margin level: 1.457240",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf",
"balance: 13476.741387 USD
equity: 11866.091062
margin: 3895.966800
free margin: 7970.124262
margin level: 3.045737",
"balance: 11866.091062 USD
equity: 11866.091062
margin: 0.000000
free margin: 11866.091062
margin level: inf",
"balance: 11866.091062 USD
equity: 14164.385010
margin: 9746.529273
free margin: 4417.855737
margin level: 1.453275",
"balance: 11866.091062 USD
equity: 17007.087916
margin: 9746.529273
free margin: 7260.558643
margin level: 1.744938",
"balance: 17007.087916 USD
equity: 17098.937565
margin: 258.533000
free margin: 16840.404565
margin level: 66.138317",
"balance: 17007.087916 USD
equity: 16949.082195
margin: 11995.055500
free margin: 4954.026695
margin level: 1.413006",
"balance: 17007.087916 USD
equity: 18179.652195
margin: 11995.055500
free margin: 6184.596695
margin level: 1.515596",
"balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf",
"balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf",
"balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf"
],
"legendgroup": "g3",
"line": {
"color": "rgba(188, 189, 34, 1)"
},
"mode": "lines+markers",
"name": "USDJPY",
"opacity": 1,
"type": "scatter",
"x": [
"2021-05-05T00:00:00+00:00",
"2021-05-06T00:00:00+00:00",
"2021-05-07T00:00:00+00:00",
"2021-05-10T00:00:00+00:00",
"2021-05-11T00:00:00+00:00",
"2021-05-12T00:00:00+00:00",
"2021-05-13T00:00:00+00:00",
"2021-05-14T00:00:00+00:00",
"2021-05-17T00:00:00+00:00",
"2021-05-18T00:00:00+00:00",
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-24T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-02T00:00:00+00:00",
"2021-06-03T00:00:00+00:00",
"2021-06-04T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-28T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00",
"2021-09-03T00:00:00+00:00"
],
"y": [
109.188,
109.09,
108.604,
108.81,
108.615,
109.699,
109.453,
109.362,
109.209,
108.888,
109.227,
108.767,
108.945,
108.74,
108.747,
109.139,
109.808,
109.872,
109.556,
109.467,
109.547,
110.276,
109.524,
109.238,
109.492,
109.618,
109.319,
109.682,
110.071,
110.056,
110.708,
110.221,
110.211,
110.314,
110.658,
110.949,
110.874,
110.778,
110.614,
110.538,
111.101,
111.521,
111.02,
110.962,
110.61,
110.608,
109.748,
110.102,
110.349,
110.627,
109.95,
109.831,
110.081,
109.447,
109.843,
110.286,
110.149,
110.547,
110.381,
109.774,
109.909,
109.47,
109.656,
109.305,
109.042,
109.473,
109.761,
110.217,
110.267,
110.56,
110.428,
110.386,
109.592,
109.243,
109.595,
109.763,
109.763,
109.799,
109.694,
109.679,
110.023,
110.081,
109.85,
109.913,
110.007,
110.025,
109.937,
109.712
],
"yaxis": "y3"
},
{
"hovertext": [
"order id: 1
hold probability: 0.0000
hold: False
volume: -6.730375
modified volume: 6.7300
fee: 0.017759
margin: 6730.000000
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: -38.349191
modified volume: 38.3500
fee: nan
margin: nan
error: low free margin (order margin=38350.00000000001, order profit=-713.478037300569, free margin=12736.381708571604)",
"order id:
hold probability: 0.0000
hold: False
volume: 70.101185
modified volume: 70.1000
fee: nan
margin: nan
error: low free margin (order margin=70100.00000000001, order profit=-1149.4569094786657, free margin=12736.381708571604)",
"order id:
hold probability: 0.0000
hold: False
volume: -62.801324
modified volume: 62.8000
fee: nan
margin: nan
error: low free margin (order margin=62800.0, order profit=-1185.3573400470723, free margin=12605.835264609543)",
"order id:
hold probability: 0.0004
hold: False
volume: -14.116188
modified volume: 14.1200
fee: nan
margin: nan
error: low free margin (order margin=14119.999999999998, order profit=-223.48196501415427, free margin=12605.835264609543)",
"order id:
hold probability: 0.0000
hold: False
volume: -17.651297
modified volume: 17.6500
fee: nan
margin: nan
error: low free margin (order margin=17650.000000000004, order profit=-255.90901089330043, free margin=4392.5603641726575)",
"order id:
hold probability: 0.0000
hold: False
volume: -31.030814
modified volume: 31.0300
fee: nan
margin: nan
error: low free margin (order margin=31030.000000000004, order profit=-675.7762066331674, free margin=10927.304247610115)",
"order id:
hold probability: 0.0000
hold: False
volume: 69.850673
modified volume: 69.8500
fee: nan
margin: nan
error: low free margin (order margin=69850.00000000003, order profit=-1467.3959994147483, free margin=10927.304247610115)",
"order id:
hold probability: 0.0000
hold: False
volume: -61.864062
modified volume: 61.8600
fee: nan
margin: nan
error: low free margin (order margin=61860.0, order profit=-1120.5552031906175, free margin=10927.304247610115)",
"order id:
hold probability: 0.0000
hold: False
volume: 27.594693
modified volume: 27.5900
fee: nan
margin: nan
error: low free margin (order margin=27590.000000000004, order profit=-508.7204641174047, free margin=10927.304247610115)",
"order id:
hold probability: 0.0000
hold: False
volume: -77.049518
modified volume: 77.0500
fee: nan
margin: nan
error: low free margin (order margin=77050.0, order profit=-1521.1870346250705, free margin=10927.304247610115)",
"order id: 4
hold probability: 0.0000
hold: False
volume: 4.175580
modified volume: 4.1800
fee: 0.016785
margin: 4180.000000
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: 54.005682
modified volume: 54.0100
fee: nan
margin: nan
error: low free margin (order margin=54009.99999999999, order profit=-875.6499843537008, free margin=8104.032106561184)",
"order id:
hold probability: 0.0000
hold: False
volume: -46.004748
modified volume: 46.0000
fee: nan
margin: nan
error: low free margin (order margin=45999.99999999999, order profit=-963.8211700453492, free margin=12907.743921036426)",
"order id:
hold probability: 0.0000
hold: False
volume: -99.698869
modified volume: 99.7000
fee: nan
margin: nan
error: low free margin (order margin=99700.00000000001, order profit=-2117.341522440786, free margin=5544.360810040249)",
"order id:
hold probability: 0.0000
hold: False
volume: -19.626021
modified volume: 19.6300
fee: nan
margin: nan
error: low free margin (order margin=19630.000000000004, order profit=-284.9405887945674, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: -97.640257
modified volume: 97.6400
fee: nan
margin: nan
error: low free margin (order margin=97639.99999999999, order profit=-1334.354520180602, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: 33.847410
modified volume: 33.8500
fee: nan
margin: nan
error: low free margin (order margin=33849.99999999999, order profit=-673.7195476679124, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: 31.789763
modified volume: 31.7900
fee: nan
margin: nan
error: low free margin (order margin=31790.0, order profit=-541.3829097242395, free margin=11394.930310040349)",
"order id:
hold probability: 0.0000
hold: False
volume: -44.370963
modified volume: 44.3700
fee: nan
margin: nan
error: low free margin (order margin=44370.0, order profit=-844.7517534525579, free margin=10782.592383267549)",
"order id:
hold probability: 0.0000
hold: False
volume: -50.448845
modified volume: 50.4500
fee: nan
margin: nan
error: low free margin (order margin=50449.99999999999, order profit=-869.2298390077685, free margin=5729.665393258908)",
"order id:
hold probability: 0.0000
hold: False
volume: 71.096034
modified volume: 71.1000
fee: nan
margin: nan
error: low free margin (order margin=71100.0, order profit=-1479.922751109066, free margin=8039.245393258917)",
"order id:
hold probability: 0.0000
hold: False
volume: -97.856209
modified volume: 97.8600
fee: nan
margin: nan
error: low free margin (order margin=97860.0, order profit=-2118.1397120366405, free margin=14401.292293258906)",
"order id: 8
hold probability: 0.0000
hold: False
volume: 7.108274
modified volume: 7.1100
fee: 0.018474
margin: 7110.000000
error: ",
"order id:
hold probability: 0.0000
hold: False
volume: -43.677408
modified volume: 43.6800
fee: nan
margin: nan
error: low free margin (order margin=43680.0, order profit=-668.4377790543372, free margin=4591.665022357844)",
"order id:
hold probability: 0.0000
hold: False
volume: 63.957580
modified volume: 63.9600
fee: nan
margin: nan
error: low free margin (order margin=63959.99999999999, order profit=-1307.4066483924425, free margin=3818.3837479887043)",
"order id:
hold probability: 0.0219
hold: False
volume: 35.456921
modified volume: 35.4600
fee: nan
margin: nan
error: low free margin (order margin=35460.0, order profit=-724.0323566243522, free margin=12550.990983899694)",
"order id:
hold probability: 0.4744
hold: False
volume: 82.934333
modified volume: 82.9300
fee: nan
margin: nan
error: low free margin (order margin=82930.00000000001, order profit=-1633.5742084281487, free margin=12550.990983899694)",
"order id:
hold probability: 0.0000
hold: False
volume: 21.864062
modified volume: 21.8600
fee: nan
margin: nan
error: low free margin (order margin=21859.999999999996, order profit=-341.824261611394, free margin=12239.000448163535)",
"order id:
hold probability: 0.0000
hold: False
volume: 39.091968
modified volume: 39.0900
fee: nan
margin: nan
error: low free margin (order margin=39090.0, order profit=-579.1790940626934, free margin=12607.800048163532)",
"order id:
hold probability: 0.0000
hold: False
volume: 69.045625
modified volume: 69.0500
fee: nan
margin: nan
error: low free margin (order margin=69050.0, order profit=-1181.1728116417908, free margin=12607.800048163532)",
"order id:
hold probability: 0.0000
hold: False
volume: -88.662501
modified volume: 88.6600
fee: nan
margin: nan
error: low free margin (order margin=88660.00000000001, order profit=-1530.5850946830033, free margin=12607.800048163532)",
"order id:
hold probability: 0.0000
hold: False
volume: 39.171585
modified volume: 39.1700
fee: nan
margin: nan
error: low free margin (order margin=39170.00000000001, order profit=-626.4812959463898, free margin=12607.800048163532)",
"order id:
hold probability: 0.0000
hold: False
volume: -65.920087
modified volume: 65.9200
fee: nan
margin: nan
error: low free margin (order margin=65920.0, order profit=-916.5004798623785, free margin=13476.74138657302)",
"order id:
hold probability: 0.0665
hold: False
volume: 28.620767
modified volume: 28.6200
fee: nan
margin: nan
error: low free margin (order margin=28620.0, order profit=-579.4265199667365, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -74.797554
modified volume: 74.8000
fee: nan
margin: nan
error: low free margin (order margin=74800.0, order profit=-1671.8298346959605, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 76.680796
modified volume: 76.6800
fee: nan
margin: nan
error: low free margin (order margin=76680.00000000001, order profit=-1060.7877447905712, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -64.477346
modified volume: 64.4800
fee: nan
margin: nan
error: low free margin (order margin=64479.99999999999, order profit=-1170.5778809611165, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: -82.902545
modified volume: 82.9000
fee: nan
margin: nan
error: low free margin (order margin=82900.00000000001, order profit=-1805.8683032142244, free margin=13476.74138657302)",
"order id:
hold probability: 0.0000
hold: False
volume: 35.268062
modified volume: 35.2700
fee: nan
margin: nan
error: low free margin (order margin=35270.00000000001, order profit=-692.6660983599846, free margin=11866.091062407233)",
"order id:
hold probability: 0.0000
hold: False
volume: 77.884616
modified volume: 77.8800
fee: nan
margin: nan
error: low free margin (order margin=77880.0, order profit=-1305.3657830043476, free margin=1738.9696947621178)",
"order id:
hold probability: 0.0000
hold: False
volume: 42.925688
modified volume: 42.9300
fee: nan
margin: nan
error: low free margin (order margin=42930.0, order profit=-794.0177002763351, free margin=4417.855736977503)",
"order id:
hold probability: 0.0000
hold: False
volume: 18.945682
modified volume: 18.9500
fee: nan
margin: nan
error: low free margin (order margin=18950.000000000004, order profit=-372.7402826455092, free margin=4954.026695193326)",
"order id:
hold probability: 0.0000
hold: False
volume: -22.607761
modified volume: 22.6100
fee: nan
margin: nan
error: low free margin (order margin=22610.0, order profit=-491.2012028514523, free margin=18179.65219519348)"
],
"legendgroup": "g3",
"marker": {
"color": [
"red",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"green",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"green",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray",
"gray"
],
"size": [
9.483715803186692,
16.454754985469485,
23.454454354143703,
21.84507465677924,
11.11293716805291,
11.89117146006614,
14.840966028660187,
23.399338611083273,
21.63783946287203,
14.082573404148713,
24.98667201122357,
8.921535223970338,
19.907205130774628,
18.14129672311855,
29.980158332498245,
12.32768814510472,
29.526004609680328,
15.4626716103818,
15.008517887563883,
17.781942078364565,
19.12235694959415,
23.674917326385412,
29.574506463573503,
9.56749173263854,
17.629822627517786,
22.10081170457962,
15.817616995690951,
26.28299428800481,
12.819320573203727,
16.61789758492835,
23.222968233289905,
27.546247118949793,
16.635534622707688,
22.53291913017336,
14.309650265557671,
24.490630323679724,
24.905100711494136,
22.215452450145303,
26.27638039883756,
15.775729030965028,
25.169656278184185,
17.464475398336504,
12.177773323980357,
12.984667802385008
],
"symbol": [
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down"
]
},
"mode": "markers",
"name": "USDJPY",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-02T00:00:00+00:00",
"2021-06-03T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-09-01T00:00:00+00:00"
],
"y": [
109.227,
108.767,
108.747,
109.872,
109.556,
109.467,
109.547,
110.276,
109.492,
109.618,
109.319,
109.682,
110.056,
110.221,
110.314,
110.874,
110.778,
110.614,
110.538,
110.61,
110.608,
109.748,
110.102,
110.349,
109.95,
109.831,
109.447,
109.843,
110.286,
110.149,
110.547,
110.381,
109.47,
109.761,
110.217,
109.592,
109.243,
109.595,
109.763,
109.694,
109.679,
110.023,
109.913,
110.025
],
"yaxis": "y3"
},
{
"hovertext": [
"order id: 1
order type: Sell
close probability: 0.8309
margin: 6730.000000
profit: 2736.381709",
"order id: 4
order type: Buy
close probability: 1.0000
margin: 4180.000000
profit: 1980.439673",
"order id: 8
order type: Buy
close probability: 1.0000
margin: 7110.000000
profit: -1850.301309"
],
"legendgroup": "g3",
"marker": {
"color": "black",
"line": {
"width": 1.5
},
"size": 7,
"symbol": "line-ns"
},
"mode": "markers",
"name": "USDJPY",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-20T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-07-16T00:00:00+00:00"
],
"y": [
108.767,
110.221,
110.081
],
"yaxis": "y3"
}
],
"layout": {
"height": 600,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Balance: 18179.652195 USD ~ Equity: 18179.652195 ~ Margin: 0.000000 ~ Free Margin: 18179.652195 ~ Margin Level: inf"
},
"width": 1400,
"xaxis": {
"autorange": true,
"range": [
"2021-04-27 18:11:41.9845",
"2021-09-10 23:13:12.0621"
],
"tickformat": "%Y-%m-%d",
"type": "date"
},
"yaxis": {
"autorange": true,
"range": [
1.6821454430379748,
1.7557015611814346
],
"tickfont": {
"color": "rgba(31, 119, 180, 0.8)"
},
"type": "linear"
},
"yaxis2": {
"autorange": true,
"overlaying": "y",
"range": [
1.16372491902834,
1.2288050809716597
],
"tickfont": {
"color": "rgba(144, 94, 131, 0.8)"
},
"type": "linear"
},
"yaxis3": {
"autorange": true,
"overlaying": "y",
"range": [
108.40913967611336,
111.71586032388664
],
"tickfont": {
"color": "rgba(188, 189, 34, 0.8)"
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAAJYCAYAAACXVBgzAAAgAElEQVR4XuydB3wdxbXGj3qXZdmSe++929jgAsY2mI4JoYSWQCANUiEhJAQSUkkeKST0AAnNoZjqhhu4d9zlIrnITbbVe/Obs2LlvXt3d3b37r26vvrmPX4B3Wn7n9ndmW/nnBN1ViRCAgEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQ8CEQBdEEMwIEQAAEQAAEQAAEQAAEQAAEQAAEQAAE/AlANMGsAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEDAhBNMC1AAARAAARAAARAAARAAARAAARAAARAAKIJ5gAIgAAIgAAIgAAIgAAIgAAIgAAIgAAI2COAkyb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OPnl+sUfX6R3P/mcdi5/2WUNKAYCIAACIAACIAACIAACIAACIAACIBBOBIZMu5Ounz2Zfv3gN5RuRbxoMveDZfTYX14xHAMtCKeD1FpFE77uEwWF9PyTPzFFxpNMm7p2zqKFr//JEjGXefSHd9CNV1/sk2/n3oN04zd/ZVlWX+4f/36P/vXK+81l7LRv1IBR23Of+xUN6d+zObs6D4zK69s1movfuuMa+u5d17lioxZatmoLfffnf/WpQ99P/lHPRd+oTABU2zEaJ239/3jiAbr4wlHN1ZuNof7+sxrrSWOHWM45p/ev0/x25qERc6ftmOVX2WuZqeMZzHbt9J/78eHi1Zb3+D0//hOt3rhTOke1GWbd8hO6asYkw/tD/4zR91N/X9m9R+xcL/cr/9ip5qyy54/VfWbULzvvJSs23J7RfNXfl5zPqH1tf43K2GHkNo+232bPRvWZ6/a57rZv+nI8B1uqD/r5b/ZMtrpWu3XYnUvcltE7zuy9on93Wj3j9c8Pq3vE7nV5NQ+s6tE/K5y+c0PRR7UN7XgYjZl2HriZb15di/rea8k+YB3cetfBXs1jtR7tO9hsTqvPv5ZcB6v3v9d9UO/nUK817I5jqxVN9JPRaBNiFyLna42iicrM7KYxY6ouHGSLJ6cvQaNNo/pw0bYla99o3NXxlW1I7c4DdTGp3QjYmYNq/U6ECrWM/iEU6CbbjWiitqnfAKk8tHNJfSgbLYjVMbQjMjm5j+3mteqb3ToCyReuoonKxWrzaLS5NJujKiOzeSNjqM4r7dw3einL2jdqR61b9pyye58ZjamdhYmMjVE/zTYasntaxtvr37UbM6M5Jfvd6/7IRIdQiyZGzyGnY+ikDrVu7XPX6B5jTlb3mf7db/ae7t45208c52c/J+2HF/1Cln93cl2hmidGfQ9V207b0YomRs842e9O23Obv6VFE6yD/UeuNa2D3c5bs3Ja0cRobyX73ev+mNVnZ23ipi8QTdxQC2IZq4Uuv7gPHyuQnoKw2lTLvs4H8dJCVrX+hIKZaGL24FRvNv2GV/bFVnaB+oWT2WLO6YbX7qaH++fkZZHVLsPnBIa2vF6cscPGjCvXa7RYc3JdRuxli3P9w88Od+anHnuT5W/JxZKsb7K5GozfAx3PQPqk/6Jstnk0uyfVOarfJOm/KDsVyXjea+t0eo/IFjYywYTL2x0Xvp9OnSn2O11ntoiwy8ZoQ8n9Mtqoyu7pQOaIm7La+4zNX41O8fCpJh5jt+9uN/0KlzJm7xv++/qte2ytZZzUYbZG4r9z0p44NZt3/HejjwVmH7K0gqfZ80P9u/a96eS6QjWe56Nowh8tjOaSOr5G92WoeLZkO1gHm9NvTetgr+eg9uMJ31v6j53qqSZ+3xmJyl73J9T1QTQJNXFJe1aiidELzczcwswsQyuaGB1B5+4ZfWXhG+Avv/qOj+mJbOOhvVT913i7Jimykwuy4dNvSrT5zU5nyBbmst+N+mS0MbF6cDsRyPSLPCsmdl8WZnXINlhWbKw2pEb1ytqSjb1snMxEE7sbXzvCREstQu30Tc9Pf0ycxUY2UdE+S8zuJ/181W/+zUyteCOy+LONSjtGgq7RParOIztmIUZzxOresnr+mm2ylGfml2Z5ducOlzG6H5zeI2b3gNEm0e09LbvPrPosY+P0eSG7p2V99fp37bifPFXot3lTzTh5jutFE7vvX+0zWytOaxeretFavXf1ecwEOuaiNRE1m8fqM8Luxxez54VszmjHyUkdZveo/l1iNY/0zwer95C+PScfYpxcl9fz1qw+O+8rLbsCIaKq80b7PLZr9hSIGaL23cAm0VpRi8eMxcqffucWxRRY+5uZCbyZKMZ/N7tOI2GC32VGLLT3ojrH7K6psQ62Npfn+Yx1cGieEtr7n99rnFQxWn0f8lz//dOv+4kmRmbKRh+11Wfj97/5FZ89p/reMTLBVN952neT1Yfq19/71McE2665jRPRRLbPtXreGn00ktWn3get0qeJ/gFutpjnh2mHrEwfO3qjjYbRy5wHZcaUsT5fDo0GSv2bXiQxWqAYtc0T/Ie/err5q5Jan3YzZtQuT4BgvizMbF5lgoXThbvZBtZKwLArbmiPI2sXvczOaOFrJrLZXQSbjZP6uHa6CVLLWZkp6F8FMhMkO33hPEYPP/WhbqcNO8KEkwesdr7zvxuJAqqKb+WjR7tRtSMsmF2H0X3qVjTR8tazNTpSb7XZDqZowu2qG1An/ljciCY81/QLBqvNpJONprqA1D8TjBYoZoKWnXtAO2fN8luxsXpeGP1mtMniPtg5UaN9jmifg17cZ/ysZd9R2g2aOl78bDV6p9h9/2r7asTYaB6pZeyIJvp3hdU8cyqamIkYTt6hduuwmmf6a7K6Rv271+pdrH8eWq0d9Ndh97pkWyHt/Wt2f8t8OKltOBFNZGsM7dwzWhcancR08r7Ujoueu+pDSX9Pcp957Hmzp32HGq2vtc8aq7WU9p40MmE0mmtO1tRYB8sDWGAdLHtKnDu5aXbf8pzsmJ3ZfJLarEbts5vzsA9O9V5XxUo2TTRaK/IzT/8OM3p/qWswow/zZutFI7cGZqKJsh7V+DK0u98y2zcYsbKzz5VZG2jXNXbq4360Wp8mZhPWzkJWXTxogdudFOqENFLF9c5R9XXaWQjJFmROvtTKHxNNGyDZETH9VzrZRtPOdRot0PVjZ7VAsDteah1mmy/ZtWg3iTKl1c5m1c4myGiM7W4I1QeHnU2SbJyM+DvZlNkRTaxOLujnr9ofVcAymrt8/SOG9JU64zVS4vXtqfPRbKFv9IU1GKIJ98uoD3oedu53O3lkoqh2karWJ/MF4VQ0Mbv3zRYE6mJfu0CRLWr4d60YqvZRdi3qePAXU9l9pvbXytmaFRure0h2/6rXr7K086zTLnq8vM/UZ5r2hI+6cWPH2XbmHPfN6P3rRlw3ep46MQWzOlVl5x5T5t6Xp6+MxsXu2Dqpw8m94+Tda/WhQM/USnTQMnVyXVa89WY/RvOM5w8n1azUqj79WkibV31f2HnHGz03uO7xIwcq/bB6Jtg9Jae9L7T3DZsQ8nOS72+780xdB6n9096LRtdiVa8dM2yz54HddZ/de1DNh3XwuWgiZuzUuR9p62B1PaM1YTN6vvP1f+Om2X7mt3pe+rmvva/Vk5UcIMPOnDN6H6v3otm+zaxeo3vHzr0ou9f1129H2HWyzzUSjfRrX6f14aTJl6NmpMxrB1w/uNrNqdnD2M5RRbsPeDvmFLKvNtqXltMXg1F+qxtXv3DRbjStNhZOXsSyjbXRlzttP2QnQOws/uwIbUY3rpan3T7J2KgLUP2Lye4LS32g8v/KIhzJ+iJ7+BktILX3lGxsuY9ORBPtJktlr33oq9djZzzt9M2oDe2Yh1I0Mdvkef084OuTbWD1Gx/tPHBzmsLouWR1vwV6j9jZPMrEELv3mZ2TWTJByew0oROB1OhLttXiWB/lKND7TH0uaL80s723+vw2m3N23r+yd6bR4hKiiW+ENz0PO+9N7diZmQ+2tGhi9HVY2yftcXlthDire0P2brV6r1qtAbViiOykjx1/N/r7Qq2fzeDU+1smbug5aMVft9dpZ6Nmd03txRpYtgnFOvgc5UhcB/PVacUM/m/9O1l7KlI25/T3hfZjqva+lYkb+nbsmIFbrSXCSTSRvbO161qjZ6b+GeKkvlZ70sRsUWu2oNfmN5pYZhOKJ652A2v0orD7gLejkqsLYbMb0+vwUFaiiWwha/blUrYZ116bncW8fnPOgo1dx4FWiz+ZKKDtp9UXMruCCddnh42RiRCz5k2GHUHA6suf9ppkfbEj8ukZcehWtY92hAknY6B/sWlFDfXf7Wx2tS9F2dd3q5dQKEUT/cJO/wVV9iJ38ruVaGI2J2SnNGTCgLZ/duZEIPeIlWhi9Zueoew+syOYGC3QjMbKyERIfSbIvvwp77Avw7bbyRuM+0wrpqrPc+3fjOacyk/2/rV6r5qdCAkH0URdrAdy0sRJHa3RPMdIaFefpWqYcSend63WAep9a/VeNXpuae939WOU0f2ufy7IPhjp7wutAKmWNeqrWk4/L/VrRTvXadTH8000wTr43MyLxHWwmXCqP41s591ptsZX32Xa9anZ/aSsCcQpMDU5WWc6vSft3It29y36/lrxcrLPNROwjNxXmK1ztftmiCY6StqFrNkEsiOamCn9gYgmdjah/MKy8xXBySbIKq+VaGKlKlv9JtuMq/1xspHSXwO3b2exY3WSwclGwuxl4UQwcfrw0V6z3SO5XEa2mbPL3858tdrs2hFN7CxCvZrr2nrs9E15eVk4MHXyMtMvvIzqlfHWCiVPPfc/5XJkvlvcsLMSTazmltVvTu51t6YPdu8RO0f/7TxbrK7XrmAim2NW4+fkXeHkWedmzpiVMRp3I8FPP+ecvH/PZ9HE7P1r1xyTuTupw+ze0j97rN7h+rGyem7Z/SJoNE+cXJeXc1a2XuLfrU5x2jmBIRM8vBDFje4LramA2XrEbI60VtEE6+Bzd0QkroO9fnYY3f96cxKj57bZe8zJOvN8EU2crF3UPY3qKN5oneekPogmuhmvvallTmSszHPMFgKBiCaylynbdjtZLHlxs1uJJlYbWquNjV3RxO7mXn+dRg8gKxZmLz2ZGYJMXFCv044PBLUuu2y016OWsat0O9l0yk4aaTfm3A+jkKpqX/UPfZkwYWZO58W8ltUh65u2vBkjJy8zO6KJnYWyOrZGoexk12z3d6v7wupkmFU5u6KJnZNnRtfh9B4xe/bIhCtt20b3mVMR1a1oorZj92SV3Wed3TliN5/dcbe7Ebf6Mm60EZV9JbbjCNZIQHPyjLViZbZQdrIIdFKHGQ+jhajZNeo/WJi904zuSbP1jdGzz8l12Z2PgeazI/JbvePtvv/t3jdu5pbR2kJ9jli160Q0kfkYsBs9R+YnMNDxVMtjHVwgNec2mxuRsA72ah6ZCZFG9evnnNmz2ck6k9sxe26Hk3mO032u9gQwO+83CwRjZ48E0UQzG9WFsArOaGOkXdRaiSZGx7TVv3GTeq+9+nCJnMdokqp91B4t0i+QjPJwfXzzcGJxRU1qG3YXz/qb1+ploU5svUmQWf/Uuu0sDJwcg9f2Wb1eo5vDjIX60NGOt9GGXe2TfvGtfjXW/l1rp2jHgZwTNtrrVdvRL9zVeaw311GPvtsx49E+4PX1G3HWzn8zp712fZqo/XQ7bwN9yTkRTYxOK2mPOmtZGL3g1PtFK64ZLUDsLJTV+q3M9NzOTZWpHfGD8xodITUbTzvX5mRM7Nwj6jOTX7L6+a3OZSMbfe2C3sl9ZlSnnXlqh422HrUdI7MOvq/0zuoCfUfYuQazPHavTT/nnLx/rU6aGNWjXQN4LZoYvSus+BnNeZkIob/33dShvR/MFrBGp5PMWBuJkGZrCyPhwUqA1M5zO2uLQOarrGygool2Xahfw/A4bN+T2+yQ1uyjAjPgcKCyU4Z2zMGNeBpdo/q+tuvThK/TqB51nngtmgT6jMM6+I5mB6etcR0su++d/G73GaWfc0bPW62Znh2fJto1j/b5YmSax3lbyjyH23ayz1WfJ2xSafaR2m59rVY0MV2kaWzBlIX9l8fr1fwMXI39LnMEq90kcnl+Ydxy3aV+ce3NNhmy41baa9Bv1M1sWvWbVTcvCyt7Wf2mR89P5WD0wlZfrEZjo78+Na/smKq+r1abRSsW+rHkPpqFp9T336hNmW2yvoxdNkb9NGNkVKeTUy/a61QX+1ZzUv3NKK9yr0nuPW3dXvvmcfJSM3ouGJXXzg+9Q0pe9HEoc96Qm92Tap388uJFrlZYNdtM6tvR3492XshuRBN9u1oeRl/ajeae2Zd+dhIp42v1EtWXdXKPGAmmVvPeLKqF6v9A+x7RfwWV+SHQ35vqS17GxugZbCaKmj2X7IqoTu8jWX63ognXa/f9K9sc6uvhcWBhiSOIWC1ErfpudQrD6Fko46R/plpFJDF7dtqpw+zZZ/aFzui5YPY+0s89q2e8fu5b+Zaye10yxl787oVooqw9hEDC80+f9ONg9KzjMnY+NsjuC+09pq9P/3zn++SHv3raJ9KinXeRvh6+Pg47LhPtnK6psQ4+N5OwDibTjbUXzwBZHXbuC67DSKjTryH4PuGkX2daiXycX18PP1856V0/BFM0MeOkfdbY3edqr8nKdNpOfa1ONJFNWPwOAiAAAqEg4MSUw6v+tJSZhVf9Rz0gEA4EnJp4hkOf0QcQON8JODUrPN+vF/0HgXAhYGSCGS59a8l+RJ0VqSU7gLZBAARAoDUQCLVo4takrTWMBa4RBMwI8Jcl7ekIu6dfQBQEQMA9AT7xMGxg72azD64Jor97nigJAnYIGJnvOfUhYqedSMkD0SRSRhLXAQIgENYEQi2auHWcHNYQ0TkQCDIBI3NCO+YNQe4WqgeBiCZgZCrY0ma5EQ0cFwcCgoCZSV9LmeiG+6BANAn3EUL/QAAEQAAEQAAEQAAEQAAEQAAEQAAEWoQARJMWwY5GQQAEQAAEQAAEQAAEQAAEQAAEQAAEwp0ARJNwHyH0DwRAAARAAARAAARAAARAAARAAARAoEUIQDRpEexoFARAAARAAARAAARAAARAAARAAARAINwJQDQJ9xFC/0AABEAABEAABEAABEAABEAABEAABFqEAESTFsGORkEABEAABEAABEAABEAABEAABEAABMKdAESTcB8h9A8EQAAEQAAEQAAEQAAEQAAEQAAEQKBFCEA0aRHsaBQEQAAEQAAEQAAEQAAEQAAEQAAEQCDcCUA0CfcRQv9AAARAAARAAARAAARAAARAAARAAARahABEkxbBjkZBAARAAARAAARAAARAAARAAARAAATCnQBEk3AfIfQPBEAABEAABEAABEAABEAABEAABECgRQhANGkR7GgUBEAABEAABEAABEAABEAABEAABEAg3AlANAn3EUL/QAAEQAAEQAAEQAAEQAAEQAAEQAAEWoQARJMWwY5GQQAEQAAEQAAEQAAEQAAEQAAEQAAEwp0ARJNwHyH0DwRAAARAAARAAARAAARAAARAAARAoEUIQDRpEexoFARAAARAAARAAARAAARAAARAAARAINwJQDQJ9xFC/0AABEAABEAABEAABEAABEAABEAABFqEAESTFsGORkEABEAABEAABEAABEAABEAABEAABMKdAESTcB8h9A8EQAAEQAAEQAAEQAAEQAAEQAAEQKBFCEA0aRHsaBQEQAAEQAAEQAAEQAAEQAAEQAAEQCDcCUA0CfcRQv9AAARAAARAAARAAARAAARAAARAAARahABEkxbBjkZBAARAAARAAARAAARAAARAAARAAATCnQBEk3AfIfQPBEAABEAABEAABEAABEAABEAABECgRQhANGkR7GgUBEAABEAABEAABEAABEAABEAABEAg3AlANAn3EUL/QAAEQAAEQAAEQAAEQAAEQAAEQAAEWoQARJMWwY5GQQAEQAAEQAAEQAAEQAAEQAAEQAAEwp0ARJNwHyH0DwRAAARAAARAAARAAARAAARAAARAoEUIQDRpEexoFARAAARAAARAAARAAARAAARAAARAINwJQDQJ9xFC/0AABEAABEAABEAABEAABEAABEAABFqEAESTFsGORkEABEAABEAABEAABEAABEAABEAABMKdAESTcB8h9A8EQAAEQAAEQAAEQAAEQAAEQAAEQKBFCEA0aRHsaBQEQAAEQAAEQAAEQAAEQAAEQAAEQCDcCUA0CfcRQv9AAARAAARAAARAAARAAARAAARAAARahABEkxbBjkZBAARAAARAAARAAARAAARAAARAAATCnQBEk3AfIfQPBEAABEAABEAABEAABEAABEAABECgRQhANGkR7GgUBEAABEAABEAABEAABEAABEAABEAg3AlANAn3EUL/QAAEQAAEQAAEQAAEQAAEQAAEQAAEWoQARJMWwY5GQQAEQAAEQAAEQAAEQAAEQAAEQAAEwp0ARJNwHyH0DwRAAARAAARAAARAAARAAARAAARAoEUIQDRpEexoFARAAARAAARAAARAAARAAARAAARAINwJQDQJ9xFC/0AABEAABEAABEAABEAABEAABEAABFqEAESTFsGORkEABEAABEAABEAABEAABEAABEAABMKdAESTcB8h9A8EQAAEQAAEQAAEQAAEQAAEQAAEQKBFCEA0aRHsaBQEQAAEQAAEQAAEQAAEQAAEQAAEQCDcCUA0CfcRQv9AAARAAARAAARAAARAAARAAARAAARahABEkxbBjkZBAARAAARAAARAAARAAARAAARAAATCnQBEk3AfIfQPBEAABEAABEAABEAABEAABEAABECgRQhANAkQ+7EzVQHWEPnF42OjKT0ljk6X1ET+xbbwFSbEx1BKYgwVlta2cE8iv/mkhBhKjIuhonKwDvZopyTGUmxMFJVU1AW7qVZff1pyrMKgrLK+1bMINoA24r1Y33CWKqrBOtis26bGU3VdA1XVNAS7qVZff2Z6vJjTDVRTC9bBngzt2yRQqXgv1tY3BrupVl1/53ZJrfr6cfFNBCCaBDgTIJrIAUI0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsirHBBNvCIprweiiZyRVzkgmnhFUl4PRBM5Iy9yQDTxguL5XwdEkwDHEKKJHCBEEzkjr3JANPGKpLweiCZyRl7lgGjiFUl5PRBN5Iy8ygHRxCuS8nogmsgZeZUDoolXJOX1QDSRM/IiB0QTLyie/3VANAlwDCGayAFCNJEz8ioHRBOvSMrrgWgiZ+RVDogmXpGU1wPRRM7IqxwQTbwiKa8HoomckVc5IJp4RVJeD0QTOSMvckA08YLi+V8HRJMAxxCiiRwgRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMoB0cQrkvJ6IJrIGXmVA6KJVyTl9UA0kTPyIgdEEy8onv91QDQJcAwhmsgBQjSRM/IqB0QTr0jK64FoImfkVQ6IJl6RlNcD0UTOyKscEE28IimvB6KJnJFXOSCaeEVSXg9EEzkjL3JANPGC4vlfB0STAMcQookcIEQTOSOvckA08YqkvB6IJnJGXuWAaOIVSXk9EE3kjLzKAdHEK5LyeiCayBl5lQOiiVck5fVANJEz8iIHRBMvKJ7/dUA0CXAMIZrIAUI0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsirHBBNvCIprweiiZyRVzkgmnhFUl4PRBM5Iy9yQDTxgjU5KsIAACAASURBVOL5XwdEkwDHEKKJHCBEEzkjr3JANPGKpLweiCZyRl7lgGjiFUl5PRBN5Iy8ygHRxCuS8nogmsgZeZUDoolXJOX1QDSRM/IiB0QTLyie/3VANAlwDCGayAFCNJEz8ioHRBOvSMrrgWgiZ+RVDogmXpGU1wPRRM7IqxwQTbwiKa8HoomckVc5IJp4RVJeD0QTOSMvckA08YLi+V8HRJMAxxCiiRwgRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMoB0cQrkvJ6IJrIGXmVA6KJVyTl9UA0kTPyIkdrE0125uTRjfc+5oNu8oTh9Mwffqj8ber1D9DpwhKf33cuf7n5v+976C/0+bptPr//4ef30pUzJvr8TVaP2hb/74p3/yotO/fZR2nIgF5eDLlhHRBNAkQL0UQOEKKJnJFXOSCaeEVSXg9EEzkjr3JANPGKpLweiCZyRl7lgGjiFUl5PRBN5Iy8ygHRxCuS8nogmsgZeZEj3EST/KIqWrTzBHVtm0wzh3Tw4hKb63jm1Q/o7y+9S3qRY87dv6THf3KXIkqw2HHztdPpvtuvVsqxSHLqTDG988Ljzf/N/6KKLB8tXkMPPfFsc52qKHPDlVPpsR/f1dz2o0/+W/l39W9c7t9vzVcEmp986yYf0UXfB7Xf3/v69c398hSMqAyiSYBEIZrIAUI0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsirHBBNvCIprweiiZyRVzkgmnhFUl4PRBM5Iy9yhJNo8tLKPHpqyT4qrapTLm1wp3R67vaxQkBJ8uJS/QQRo0qNBIs35i1pPg3CIgonVTThf2fRZejAXoogwv+e1S7D53ejdriekUP60tad+/3q0/dBae9LwUd76sUTKF9WAtEkQJoQTeQAIZrIGXmVA6KJVyTl9UA0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsirHBBNvCIprweiiZyRFzmCJZqcLq+h/6495KiLL608SKXVTYKJmlg4cXLipH1qAn3tgh5+7aonQGRmLnrBQiuIcKUy0WTItDv9TrIYQeB83Je8wyfoT/9608dEx0g04Trs1u0I+peZIZq4oaYpA9FEDhCiiZyRVzkgmnhFUl4PRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMoB0cQrkvJ6IJrIGXmRI1iiyZ4TZXTZU5950UVHdQzsmEYLvj/Fr4xqRqOe1ND7NlHFFCNfJFpTG71oop4A4fKc2F+KTJhRTXNUkx+9GGImmpj93REgk8wQTQKkCNFEDhCiiZyRVzkgmnhFUl4PRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMoB0cQrkvJ6IJrIGXmRI1iiiZuTJv9afoBq6ht9LivYJ030J1CMhAkWNVR/IkaOYLUiiZ3TIKppjtZvCl+01hmt1q+KCsRO3W7nBEQTt+S+LAfRRA4QoomckVc5IJp4RVJeD0QTOSOvckA08YqkvB6IJnJGXuWAaOIVSXk9EE3kjLzKAdHEK5LyeiCayBl5kSNYoombvi3aeZK++Z+NzUXTk+LozXsuoMGd091U51eGBZFpk0b6OGi1I5poTXSMzHO0DdnxacLih1FST8HAp4knwx3aSiCayHlDNJEz8ioHRBOvSMrrgWgiZ+RVDogmXpGU1wPRRM7IqxwQTbwiKa8HoomckVc5IJp4RVJeD0QTOSMvcoSTaMLXs+tYKS3adYLSE+PohjFdiYUTr5JR9ByZaKL+rj1pwv3ROoLV9k81A9JHz+G2jxecoXEjBvr5MOHy2lMketFErRPRc7yaCUGoB6KJHCpEEzkjr3JANPGKpLweiCZyRl7lgGjiFUl5PRBN5Iy8ygHRxCuS8nogmsgZeZUDoolXJOX1QDSRM/IiR7iJJl5ck1Udel8mnFcrRhj5NNH+LjtporatP03SPrON4uzV7CSKtl6jPsj8pATKDeY5ARKEaCIHCNFEzsirHBBNvCIprweiiZyRVzkgmnhFUl4PRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMjR2kQTL5hFYh0QTQIcVYgmcoAQTeSMvMoB0cQrkvJ6IJrIGXmVA6KJVyTl9UA0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsiLHBBNvKB4/tcB0STAMYRoIgcI0UTOyKscbkSTuqoaqhX/pGR640TKq2sJ93ogmoRuhCCamLNuaCijutqjlJg00JMBgWjiCUZblUA0sYXJk0wQTTzBaKsSiCa2MHmSCaKJJxillUA0kSJqFRkgmgQ4zBBN5AAhmsgZeZXDiWjCYsnOhatp32ebleYzumTTyGumUVbfbl51J6LrgWgSuuGFaGLMuqRwHp049gdqFMIJp87dfkNtMq8NaGAgmgSEz1FhiCaOcAWUGaJJQPgcFYZo4ghXQJkhmgSEz3ZhiCa2UUV0xvNWNCkqWke1tQXUocNVhgMU6O9qpVzP6TNLfNpITu5NXTrfpPwNoon8/oBoImfkVQ4nosnBDTtpwxsLfJqOS0qga5/4rlfdieh6IJqEbnghmviz5tMluXtvaBZM1Bx9By2kuPgurgcHoolrdI4LQjRxjMx1AYgmrtE5LgjRxDEy1wUgmrhG56ggRBNHuCI283knmlRW5tHp00vFP0soo+0E6t3rAZ/BCfR3/UgfPfYmlZVuF+LM1c0/xcamUFraUIgmNm8LiCY2QXmQzYlosvql9+nojv1+rc5+5B6Y6tgYC4gmNiB5lAWiiT/IwlP/oZPilIk+dej8EGVm3eaaPEQT1+gcF4Ro4hiZ6wIQTVyjc1wQooljZK4LQDRxjc5RQYgmjnBFbObzTjSpqSkgFkaKitcqg6IXTQL93Ug0qak56deOmg8nTeT3BkQTOSOvcjgRTbbOW9ZsmqNtH6KJvdGAaGKPkxe5IJr4UywrWUr5B+/3+yFQEx2IJl7MWHt1QDSxx8mLXBBNvKBorw6IJvY4eZELookXFOV1QDSRM2oNOc470UQdFD4BYiVmBPq7tp2iorXUUZw0SUjIbj5hov5+orC6NcyTgK6RRZPU5FgqLK0NqB4UlhOIj4+mlIQYKiqrk2auKCyhj379vE++/lPH0KhrL5aWRQaixIRoSoyLoeJyOWvwCoxAcmIMxcZEUWlFfWAVRVjpAzlzqLpqT/NVsVlOnwHvUExMmusrTU2OUcqWVza4rgMF7RFIT4ml+oazVFkN1vaIuc+VkRpH1XUNVF3T6L4SlLRFoG1aHFXUNAgTerC2BSyATCxQlVfWU209WAeAUVq0Y2aiNA8yRD4BiCY68x79kLMpUGnZduXPtV+echk48AlKTu6l/K3x7NnInyUeXGF0VBRYecBRVkUURRH//1mb8/Kjp+ZS3tZ9SrXtumbRnIdvp4RkvBxknPl3hbVIZ8X/IQWXAFib8125cizV1RVTbGwbGjfuA0pMdO/PBPM6uPNYXzvmdeh4g3UIWYv1Hr8W8W4MPnOsrYPPmFtgzkggELGiycovXqCyyhN0+cRHDEdZPYnyxq6Zfr/zl/rvX9pf+fva3DO0ZHdBc54ecS9Sm6Q4umry75S/wTxHfhPBPEfOyKscTsxzuM0PH/0XVZdVKs2ntMug2T//hlddifh6YJ4TuiGGeY456707LqCGhnIhmrSjfkNWBDwoMM8JGKHtCmCeYxtVwBlhnhMwQtsVwDzHNqqAM8I8J2CEtiqAeY4tTBGfKeJEk9zTFULkOElHj75J/bNq6JbpjxkOIosm5RUnqCjG12FeU/kCevGOsUq519cfph35JXT1yM7Kf9dXLKToui00afSflP+GaCK/RyCayBl5lcOJaHLm4DFa+rc3KC2rLVUUloooHA107W+/R3GJ8V51J6LrgWgSuuGFaGLMuqGhhPbuuLD5x4HDv6CoqCbzGrcJoolbcs7LQTRxzsxtCYgmbsk5LwfRxDkztyUgmrgl56wcRBNnvCI1d8SJJgWl1cTCx968/5LwomEpmhj5RPnTB29Q/8x9dM1Fv1TG/O01H1B+xUDl5ElDQwXt2/dbSksfhpDDDu4IiCYOYAWY1YlosnPBatq1aA31nTyKzuQdo6L8k3TJ/TdTu55NAiGSNQGIJqGbIRBNjFmzP5M8EXY4KipWmOTVU9/Bn1JcXMeABgaiSUD4HBWGaOIIV0CZIZoEhM9RYYgmjnAFlBmiSUD4bBeGaGIbVURnPO9EE/YxcvTYG9RQXyEcqFUozlm7d7ub2orww5zU348VFSoiR7f23Qx/NyrPpjjLtjxPl/b8gsaNeUOp78PPf0a1VRspI6UzxcVUUXZGP+rX72HhaC9F+R0nTeT3B0QTOSOvcjgRTZb89XUqPHScLrrnOjqyJYcObdxFY74yg3pPHO5VdyK6HogmoRteiCbGrNUIOuz4taGhjHr2e52SkgO7fyGahG5eQzQJHWuIJqFjbUc0iYuJDl2HJC3VNZy/TlQhmoRmGkE0CQ3ncG/lvBNN7AJlsxo+daL6JrFT7uF3t9P0QR3EP9nN2dlUZ+fR4xQnTq0cK0uhfaca6bfXD6Pe7ZtEEziClZNlB2zsQwms5KwCzWGXdUVRGb30g79RTGwM3ffcg7R14Xpa9dYSGjFjHE251d/PT6D9isTyTp3uRiKDUF0TWBuTzs9/RZx+/LVw/tqVqqvzadjQf1H7rBkBDQscZgaEz1HhKDjMdMQrkMxgHQg9Z2XZaSb7ordyBMvjUVFRISLstGxUxbS0NPERNDCTRmd0vM1th7W3LbbO2uAItnWOu/6qIZp8SYTFEfaFwoKIVXri493Kzz+/YpDyvwg5LL+R4mKjKC1ZyE4IOSyHFWAODjmcLBwZF0tCDuet20Hr31xAnYf0ocl3X0fHd+fRZ8+9Q9n9utPF374xwF60juJKyGEhOhVXIORwsEdcCTkcLUIOi9CKSOcInDj2RzpT8AolpYygqoovqFPXRyiz/c0BIULI4YDwOSqcnixCDjci5LAjaC4zZ6SIkMP1CDnsEp+jYhki5HClJORwnAghnxBHtHDhQiovL3dUv1eZhw8fTj169qLahvNXNOFTPWWVdVRXjyh+Xs0Lo3oQcjiYdM+fuiGaiLGqqKmn+9/cKk6l9KNhXdpYjt4HW48pEXVUcQXmOfLJDvMcOSOvctg1z1n76kd0ZGsOjZoznfpeOJIqi8vo48efo4TUZLr68W951Z2IrgfmOaEbXpjnGLPOP/gDKitZTOkZs6i0eCG17/BNyup4f0ADA/OcgPA5Kny+mOeEy1fWQE6rwjzH0dQMKLMd8xxuIDE+Roi9JbR40aKA2nNTuGvXrjRhwgVi/X/2vD4FDfMcN6PvvAzMc5wzi8QSrU40YcGD/9Ga7agRcoxOmXDeC3q3U8aexRU+aTK0axu6ZXx35W8QTeS3BUQTOSOvctgVTeb9/B9UV1VDlz/8DUptn6E0//4jT1NtZTVd+ei9lNQm1asuRWw9EE1CN7QQTYxZ5+27iaordwix5B46ffJ5ysi8jjp1+3VAAwPRJCB8jgqfL6JJaoIwtxD/15KJzTnY5IM3uW4SRBM31NyVsSuacO3J4sTmkUN5tGnTJneNuSiVmppKl112GVWJQ6J19eevPxO+dIgmLiaAiyIQTVxAi8AiESeasJkNiyAscPA/2emJdM/kXs3CB//Gp0Xe/OYFynBynm+8slExtzE6ZcIiCQsnXA/nZV8mnDclIVYpD9FEfldANDnHKCHO1/lZ8dECKj9dQrHinGrHgT19YNbUOX+Z2xFNCvYfoRX/nEttOrWnmT+5o7nN5U+/RacO5NPke+dQxwG+fZGPcuvLAdEkdGMO0cSY9b6dU6i+vpA6d/89HTv8U0pJu5C69342oIGBaBIQPkeFzxfRJEmYURw6mEtbt251dH1eZp5+6aXCDC2dal1a6EE08XI0rOtyIpoId3diPR0l5tYWys3Ntd1JNmurEYJHQmy0YrrpJM2YOZMSklJdzyUnbQU7L0STYBNuqh+iSWg4h3srESeaBAM4iyUny2qoQ1pCs1iitgPRRE4cosk5Rm1ThW+XoiKqrqqmslNFVHLiNJ0Vdtac4pITKbtvN4oWTsmys7OoUvhHaxALAyfJjmiy7aPPKGfpBhpw8TgaftWU5uq3vLuE9q/cSiOunkr9p4110mzQ8rKoxCdisgSXcEsQTUI3IhBN/Fk3NlZSzvbxwsl2vIia84YIPTyHEhL7U+8B7wY0MBBNAsLnqPD5Ipqwv9pU4Vdo08YNdPDgQUfX6EXmUaNGUdfuPcUm2dnmWNs2RBMvRsJeHU5EE64xVvg3SRd+79i/SZFYH8lSRW0D7T5eqvio4dSlTRL1+jI4g6zsmDFjqHOXblTTED7Re2R9tvodokkg9OyXhWhin1Uk54RoEuDoQjSRA4Roco5RnPgqwl/tFsyfT/s37aRGXai7tOy2dMnsmdSxUxdXL3U7osniP/+HWIyYct8N1KF/j+bOHVj9BW1++1PqOX4ojbtplnxgg5iDhZINbyygozv2K63EJSXQhXddE1biCUSTIE4AXdUQTfxZ11QfoNycayg+oSf17Psq7RWnTmJiM6j/kJUBDQxEk4DwOSp8vogm6sY2LSlW2dgWFxc7us5AMvfo0YPGjBlLFbXCQMjZNwSfZiGaBDIKzso6FU24dj6F21BXRfM/+USMs/VAb80vpnLxMVOb+menUbb4sGmVevfuTSNHjaaK6sYWNjZzxtMqN0QT71ha1QTRJDScw70ViCYBjhBEEznA1iKa8Ea/orBEbPATKSUz3RQMOz8rOXmc3nj+Vb88Q0cNo6lXzBILRDlXoxwy0aTiTAl98sQLwhwonq773fd8qjidd5SW/f1NyuzWkab/4FZ3HfCo1M6Fq2nXwjU+tbFwcu0T3/WohcCrgWgSOEO7NUA08SdVXvY5Hcn9ljDJmShMcp6nPdtGic1GHQ0cvkmcPrHePFhxh2hid1YGnu98Ek34avndVVdToWxsQ5HatGlDs2bNovLqBqpvCEAxEZ2FaBKKEWtqw41owuWSRPS/UwXHafWqVaad5VMmW474n0Zpl5JAgzqmmZbLzMykmcIsp1REmgl0LoWOpLwliCZyRl7kaE2iyZy7f0l79h/2w/a9r19P991+NU29/gG6+drpyr+r6ZlXP6A35i2hFe/+VfkT5zkt9kNqap/Zpvk39XdZHZxvyLQ7ffoxsG93eueFxw3b4D/OffZRGjKglxdDblgHRJMA0UI0kQNsDaIJn9xY/e/3hWhSqgDpOW4Ijbv5MlM4CdGNtGnxCtqocX7GL/U5X/sqnU1Jdf1Sl4km6mmSriP608Q7rvLpH4s+7CA2Ji6Wrv/DA/KBDWKO1S+933zKRNvM7EfusRSkgtglv6ohmoSONkQTf9ZFZ+bSifzHhfPXOcL562O0f/dMqqs9Rn0HLaC4+K6uBweiiWt0jgueb6IJX2BiXBSdPJ5P69ats3W9JcLb5r6CcsWUoo04Ztm7fSqlCPHFTpolnHXGxidTXZMVRkAJoklA+BwVdiuacCPs32TXzh2Uk5Nj2Cb7Mlmbd8bvtw5pidQv29iBPTsRvnz2bKLoeBHi272JlyMIIcoM0SQ0oMNNNCk9XUwHNu+l9PZtqM/oAZ5CYNFk6MBe9NiP7zKs165oohVF7nvoL3TqTLGP4CETTbidaZNG+vSD+6YVTbR1sHDz95feJVXc8RTKl5VBNAmQKkQTOcDWIJqo0Wi0NFg0YfHELJ0tLaaVi5fRgQMHKDo6mq686krK7N1T2KLEy6Ga5JCJJquEGHFMmLyMvXEm9bpgmF8tn/zmeUX4ueynd1FadqbrfgRacOu8ZbTvs81+1UA0CZTs+Vkeoon/uBUcf4rOFLwgQgx/T0TPuZcO7v+aCN+5lXoIU53klNGuBxqiiWt0jguej6KJurHdsX0b7du3z/Ka+VTA9qMlYqN6zql5rHjXjeqWoTjwtEoTJkyg9tkdqa7RnsAigw/RREbIu98DEU1ihFPX9ORYWr58OZ08edKwU7tPlNGZiprm31gGGdK5DWWw7bNBmjhxIrXP6ihMniNLMOFLhWji3by1qimcRJMti9bTuvc+oxoR7ZJTVvcOdOUDXxECSlMkzEBTMEQTo5MoVqLJzpw8uvHexyxPjpiJNyyc7Fz+cqAYDMtDNAkQK0QTOcBIF034lAn7CdGnLkP70qSvX2MKiJ2fVeUfo/kfz6cB/fuLCBg9KK1nYA5PrUQTthN+76d/E3bD9XTFL79JyRn+R1lXvvAeHd+VSxPvvIq6Du8vH9wg5eBTO0e3N/kzUVO8cJQ7+5G7KS7RvemBl93FSRMvaVrXBdHEn8/Rww9RadHH4rnxW2rT9mrKP/gDKitZTF16/JnSM9z7JIJoErp5fb6KJryxTUuKoWXLltGpU6dMgR0rqaLc0xV+v8v8T/Tr14+GDBlKlXXebXIhmoRuXgcimnAvec0YG92gmIHV1JwTR7RX8EV+CZXV1BHPRXaY3zUjmXq2S/a7yMGDB1O//gNEeGHv5lLoSMpbgmgiZ+RFjmCJJpWlFbR9qbNw21sWrm8WTNRrY+Gkt4MTJ8ltUmj4JWMM0QRDNNHXafe0Cpv1qCdL9J01qoPzsEnPH35+L105Y6IXQ+9TB0STAJFCNJEDjHTRRDVr0ZPoN2U0jbz2YlNAtUIl3vLmfBp40TAqE6c7jucVWJr0yEkLZ2ri2HOKiHJQWOrvFOXEnjz6/Ll3qa3wWXKpic+S7R9/TnuWrKchsybR4FneP3DsXIPah5j4OGLhqaG2jkqOn6ZycbRPJkTZqd+rPBBNvCIprweiiT+jg/tvEydLtlCPPi9TcupYOnn0d1R4+jXq0Pkhysy6TQ7VJAdEE9foHBc8X0UTvlB23BklfOjwxraurs7w2g8XVtLhokq/3wZ1TKd2KcYnKrOysuiSSy4RvifqHUePsxoAiCaOp6frAoGKJsr8iiUqF6dxly1batgPPsFUUl2nmHvlni5X8ozq1tbH9KtDhw40ZcoU4ROn0dO55BpMEApCNAkCVIMqgyWanD5SQK898lxoLkLTSvtu2XTrb75p2G4wfJrccOVUHzMbO6IJd07v00RremMmmpj93QvIEE0CpAjRRA4w0kUTJsCRXg5u2NkMgx2tXvzdr1JGl2xTQAX7DtOKf/2Pxl0zhXat2EwxCQk066E75UAtchiJJizq7P1sEx1YtZVqyquEWc5wYZ4zw3iRu2k3rXvtEzLyeRJQx2wW3i/6uOWdJUruC79xLXUe0kf5d3awu/Svb1B1WYVfqGSbVXueDaKJ50hNK4Ro4o9m367pVF93UvgwWSQs+jorpjpsstMu++uU3emHrgcHoolrdI4Lns+iCV8s+zcpLjpNn61YYXjtRv4nEmNjaKQwz4kVJwT0KTY2VvE90XA2xnPfExBNHE9P1wW8EE248aT4KMrdv5e2b9/u15f1hwqptr6RxvXIpHwhzB0vrRZC3DlnsAliPcVzqV6Yd3G+SE0QTUIzssESTfikybYlzk6abPx4tXJiXJv4pEmfMfZ9mySlh+6kid6fCffbrmiivUbVZ4l6igQnTUIz9z1tBaKJHGdrEE2YwuInX6XiY01HlUdcO436TzE++qYS27tiE33x/nLqc+EIOrhuBzUIR3nX/PrbFJ+SJIdqksNINDFyqjrjR7cZCjrcf74O9mfCfk1CmY7tPECrXpynNDl6zqUKF206mXOQPnv2HeVPI6+7mLJ6dxVOYdso4YhbIkE0CR11iCa+rM+erRfRckaKP0bRoBHblP8tKfqAjh1+WJjqXClMdn7venAgmrhG57jg+S6a8AWnJETT3pzdtHPnuY8GWhDs1+QLESK2UZiHslDCpwHM/JlMFqcC2mZmUXVdYJFyjAYCoonj6em6gFeiCetqqeLk7Nq1ayg/P7+5P2yOs0Y4g40WDl4n9W4nHAWfpU2HixTfOYM6iFNMqfE07eKLKS29LekiE7u+pnAtCNEkNCMTLNHETe8PbM6hj/76v+aiCcJ0fc7PblN8m3iRZOY5Rr/LfJbonbraqcPoWrRCCXyaeDHaIa4DookceKsRTYRfE/ZvwqnfZGGaIzb2Vmn96/Pp0MZdNOYrM+iwOOFxKjefJt9zPXUc5D5cll40MfO3Yhbd56xYjLz9478o3b7+jw9QjPjyF4rE/eRwx/XCFGfgpRNo2OyLDJvdv1KcRHm36SSKmmRmUMHqP0STYJH1rxeiiS+T2prDdGDPbOWECZ804VRRtoYO54roUqkTqHufF10PDkQT1+gcF4wE0YQ3rqmJ0bRmzWo6evSoIQP1VAA7gb2gl7GD8aFDh1Lvvv2EYBIc3xMQTRxPT9cFvBJNuANxwr9JsjhxMn/+fCovbzLDUcMOJ8fH0mhxaomT6j+H/3aXMAXo3qOXcPxq7WzY9QWGUUGIJqEZjHASTfiKTx0+SQc25VBCSiINvmg4sXDiVZKJJo8++W96+6MVPs5W2YxGa4KjFzRUx67qKRFZHR8tXkP/fmu+jz8T9aSJ6uRV3waXeeiJZxE9x6uJEIx6IJrIqbYW0eS9n/2d6muafIm069mZLrn/Zks4i/70iuKrY/r3b6X8L3IoZ9nGgH2J2BVNrHyDqP1ivyfs/yTYiU2Glv3jTSorKKQeYwfT+FsuN22STY0+ePRf1ChO5WiTGqmIf2czqdqqasru042y+gbmWNfq2iGaBHtmnKsfookv64rydXT4wDcUXybs04RTTfUBys25hhISelHvgR+6HhyIJq7ROS4YCaIJXzRvbBNjz9KCBQuoosLf8evq3DPKSRNOE3pmUlyM72a2c+fONOnCCxXfE41CuA9GgmgSDKrGdXopmnALicJXW3VlKS1auFBp8ExFLe0+Uar4xWH/OGraKpzDZmR1oGtmxwCyygAAIABJREFUTKW0xERKjvMm8lLoyDlvCaKJc2ZuSoSbaOLmGuyWkfk04XpU0UOt067PEo5soxdOzOow6oc2Kg6LJqeF6b42zX32URoywP2HZxkj+DSREZL8DtFEDrA1iCZVpeX00a+eVVTfmopqihaLwjl//L44NW/81YxNcd598CkF3pw/fV+EAT5Aa175kDqJUyYXidMmbpNeNGER4cNfPeNn/8gOavmEhlFa+5+P6ciWPTTuJhEyebx5yGS3fdSX++yZt+nk3kOKwDHt2zdaVntq/xFa/s+5fnlS2qZTv6ljaOeCVVRXfc4JrizscyDXANEkEHrOykI08eVVXCiiXB35hRI1h6PncGpoKKW9OyaJZ08qDRi61hlgTW6IJq7ROS4YKaIJX3iS2NhWlBfTp4sX+3BoEGLJGiGa8JuQ5ZDhXTIoPfHcCcakpCTF90RNfRTVBdH3BEQTx9PTdQGvRZOm+RVFR48coo0bN1J+cRUdPFNBXTKSqFe7lOZ+1kUnUOdhF9DTK/Jo17FS6pedSo9cLqLniP+N1ATRJDQj25pEk9AQPT9bgWgS4LhBNJEDbA2iCZvWLP/HW8oJk7rqGio9cUY5QZLZ3fikxplDx4Vj09cpo3MWzfjx7VRZVEof//p5Ibok0dXCr4nbpBdN2Kkrm/6wiNPY0Kj4/+DIOGaCCbe7+9N1tOOTldR/2lgacfVUt12xVW7jmwspb/0OShXx5acJx7lJ6daLG7NIRWaN8fVe+8R3bfXFaSaIJk6Juc8P0cSX3akT/6TTJ/9J7TvcR1kdz83vnO3jxJf6KhowbB1FR5/bTDghD9HECa3A8kaSaMIkkoV/k0N5B2jLli3NYGqEELJBOO2MER8QWEDpl51GHdLO+aGafuml4sRUG6oJgh8T7ehANAlsrjopHQzRhNtPTYiirVu30KJ12+iEcPzaR0TO6dTmnFnC6EnT6F9rjtP8nSebu5sqwvAsun+Kk+6fV3khmoRmuCCahIZzuLcC0STAEYJoIgfYGkQT3vizAMDmJVFiccgmIqPmTKe+F7KzRv90YPUXtPntT0nrW+Tjx5+jyuIyxQErO2J1k7SiCTuZZWezcYkJNO07NwrBJJHihYggc5zKp15WvTSPOg7oSZPvneOmG7bK7FywmnYtWkPRIprCxd+9yVRg0lemd2zLkYp6XTBUcaarPWWilpv9iPDzkHnuCK+tztnIBNHEBiSPskA08QV57MgjVFI4jzp1e4wyMs/dowf2XEG1NYeojzDPiRdmOm4SRBM31NyViTTRhA9WsmPYzZs20sGDBxUo5cIT51bhCDZeCPe1Qrjv2jaZemYmK7+NGjWKugnfEyJybNATRJOgI25uIFiiSWxMFKUnx9FfXn6bco+eoKGd2lCG+G9OY8eOpR2l8fTTebv8LvSVO8ZH7GkTiCahmdcQTULDOdxbgWgS4AhBNJEDbA2iCZ/M4BMafIojPjVJCZtr5myViW0SgkmuEE5GXjNNMSvhtOblDyl/214KxKREFU3WzFtF2z76TKl38jeFc9mB9jdQ5WeKaf4TL1JSm1S68tF75QPsIkfe2u20cW6TA8uJd15NXYf3c1TLvs82K053WQDqJ6IUsSiydd4y4r9rE06aOMIatpkhmvgOzeEDXxemEOupe+/nKSVtYvOPhw7cSZXlG4Wfk5fE1/vxrsYTookrbK4KRZpowhDUjS37NykuLqbiqjracayEUoSDzoraemovwsIO7JhGPXv2pNGjx4i/naUv3Z24Ymi3EEQTu6QCzxcs0YR7lhAXTStzjtLHn3xMo7tmiLDX0dS7d28aMXIk/WHhfnp9w2G/C3jnm5N8TqQEfoXhUwNEk9CMBUST0HAO91YiVjTJ33OIKorLacAF1j4Z8rbuo9wt+xSTiuxenajrwB6U3bNT87jJfodoIp/irUE0WfvqR3Rkaw5NuHU2pWa1pSVPvUbpHdvRrAfvNAS0RJjmFAoTHfbhoTorzVm2gbZ9+JkItTtShNydLgdrkINFk6Obd9Gylz5SfnUrwKhOba9+/NuUIEQgL9OJPQfp8+e+DB1s4VvFaZtsusP+TtQIRjFxsTThtiuInd4GI+GkSTCoGtcJ0cSXy/7dl1Nd7RFxouQjcaKkZ/OPRw89SKXFnyghhzn0sJsE0cQNNXdlIlE0adrYxohIaBU0/5NP6FR5DeWcLKO2yfFUVFmriCfThvagWbNmCcevDVQvwsWGIkE0CQXlpjaCKZrUidNKz686QN0Tayj+1F7KzMykmTNnUmllHR0prKI5z632udAp/bLo99cOC93Fh7gliCahAQ7RJDScw72ViBNNioQvCRY68oQQ0kUIIBdcZ23LuHnBWmorNrcZHTOp4OAJ2jx/LU2/a3azcCL7HaKJfIq3BtHk07/8h4ryC2j6A7coZiZv/+QpOtvYqPjTMDKHeUc4geUIMNrfTx0QTk6fnqtErOHINW7SmQOHaenTTfHbh105mQZe4u5r89K/vUFnDh6jqULUyfYwAg37euFIObWV1UHzmaKGcu49cZgI5zzTDUZbZSCa2MLkSSaIJr4Y92wbIb7ON9DA4ZuFOWB8848nj/2JCk+9QtmdfkTtsu9yxR6iiStsrgpFqmjCMBLjouhUwXF6Z/5Syj1dTh3TExU/FByi+PHvfE2YZSZSfWNwwgsbDQZEE1dT1FWhYIomecIB7K0vraPfXjuY+sQUUe8+fehsVFzzXNpXUE5PLd2rmITxCabXvz6Bemqcxbq6oDAuBNEkNIMD0SQ0nMO9lYgTTfh0CQsn+bsPKexlool+gBb86z3qOqgHDZ1mHFlE/ztEE/kUbw2iybyH/67407hGOHGNF85cVdFhyn03UIf+PXwgcZhhDuvLzk8vf/gbzb811NXTuw/9Vfnv60XknRjh68NJKj52ilY8/ZYIt1tD/YXJzwhh+uM2bZq7mHLXbqNR111CfSePcluNTzk+zbVMOMstEf3sNnIAXXC7uy/hss4c3ryH1v3346C2wX2AaCIbCe9+h2hyjmVd3Qnav+tSio3Lon6Dl/lAZsGEhZPMrNuoQ+eHXA0ARBNX2FwVimTRhIGIwyW04PP19Om6rdRd+DI5WVZNw0aNpVnjhlBCbJMvilAliCahIh3ckyYr95+mB9/bRrOHdKI/3zicqmsbqKq20e/iHnx3G608cJoevmwQXTns3Onx0FEITUsQTULDGaJJaDiHeysRJ5qowHcs30zlReWORJNasellUWT05RcoZjr6ZPQ7RBP5FI900aS6tEIJ66uNfLP1PeFf4/PNNGz2RTTw0gk+kA5t3EV8GqLriP408Y6rfH779C//FSdWTiqRZLJ6d5XD/TJHdVmFckqlrKCQ+k4YTKO+erntskYZ932+hba+t5R6TxwuTmvMCKgutfDKF0SY1F25SoQhdvwaFR2cr4yn847Rsr+/QZk9Oiknf4KVIJoEi6x/vRBNzjGprNhMh/bfTknJI6hnv9d8YLFpDpvopGdcRl16POlqgCCauMLmqlCkiyYx4hl/srya3nj/E0o/W0VtO3enhOyewlQnmcb3dOfs3BVoUQiiiVtyzssF86TJmxuP0N+W7aMbRneln84aSLUmYarf2ZJPf/50L00fmE2/vmqo84s4T0pANAnNQEE0CQ3ncG8FoolmhNgUpyDvOF1y1xUUn3juyLOaxeh3VrmRrAnwcdzY2CiqrfP/GhAJ7I7vO0If/PG/lN27M133szuUS9q3dgctffFD6jVqAM389vU+l7lm7hLatng9jbt2Ko2+YpLPb5+/tpB2CcHvgq9cQiNm+ootVqw++NNrdHzvYeoyqCdd9+CtVGeykLDDOzrqLNVWVNMxUV9KRhplCV8/gaYzR05S2ekSihX27B37dRP/a/6VsVGYNVGUs1M22v5VFJXRfx/8ByULR7a3Pfm9gLpuJetEiw0B/1MfAGujzoXGwj8gLCEvzJsvjkpVL+zZW3s6deoD2pvzY2qfdQUNGPB/PjhKStbTju1fo/T0sTRs+OuuULEjT06h8jXhqpMRUihWRJQ5K2wIGhoj967/5/ID1CMjlupO7KMhoyfQfa9tpq9P6kW3Tuge0lGMi40W4bgjm3VIgVo0xqx5TjNvr9OvP95Fr607TD+7fCDdMbGnafWHCytp5lOfUVpiLG14+FKvuxE29cULR7j19YJ1KLwph81Vh74jicJfIBIIQDT5cg7krN0p/KDspck3zxAbxVS/mWH2e2FZLWaRhAAvwpMTYhVHXZGYDohIMKv/O596jRtMF93RZHJSerKQ3v/1C5QsRIc5v/mWz2Uv/tubdEIIEpd86wbqMqS3z29qXT2E2DLlG9fYwvX5Sx/QQWGS0qZTe7riR7eIEKSpVFZZb6usUSZe8NRUlNMrf3uWMjq3o5S26QFFNyg9VUQlJwqFEEJCWOpCCcmJpn0bOmwYde/egxoo1nX/ueBrDzxJjWKDfctTPxRmTu7q4o16jOhJ41njjTqLgXxYpt7DhWGs6GuNiDBxNspdnwOCFsaFecEi9pdUIRxHtvZ08vizdCz/KerQ6W7q3PVHPjhqqg/Rru2XUUJCNxo8vCk6ldPEJ6g4VdWAtVN2TvOnJIonjHi8RPLHl2+9vkmY5iTSD2YMoDXCtOJH72ynm8d1p5/MHOAUV0D5U8XmmUMeR+rHm4DgeFyYT6tVC5OZQD7emHXpu29uptUHztBTN44kdvJqlb76/BpiHyfP3Dom5CebPEZqWh2HYK4UYb0hcgeXeGaa/4f04LaI2sORAEQTMSpsysM+UMwEE6vfYZ4jn9aRbp6jhhsePGuiEnJYTe//4p/ixEYVXfGLeyhZCA/Nf3/kacURKofz5bC+2lR68gwt/MPLSn4uJ0tsQsOmNOxHhSPxZPfoQLwQLywNTMxjJ36Hd4soPGuXU/vMbGqkpi+inPiaSkQ/z4oFaGJaihIlSE0NDQ10+PBBapuRSRlt21JVSZkwNzql/Ny2a7bf9Wqvr3v37jRmzFgSESqFUCG7cuvfOWQyh06+7GdfpzQRzchtSk6IohzBYffu3X5VsKjCJ028WhhmZWXRJZdcIsTF+oj+8uxmLGCec47a8fzHqPjM/6hjl0eobfubfHA2NlZRzvZxwvQtkQYO2+gGNcE8xxU2V4Ui3TyHodzxygaxcS2jBfdPpi+OlNBDwh/FxF7t6M83jHDFzG6htmKTw87Y+YQap5Y8aVIiIgjxO7S1pGCa59z4whrKL6qy5eD16RX76bX1h+nW8d3pO1ODE0WvpccU5jmhGQGY54SGc7i30upEEw5FzAKJ6iB27XufKaGJJ998qaFJjux3iCbyKR7pookabnj8rZdTjzGDm4FwWF0Orzvxzqup6/B+yt/LTxfT/N++qIgHLJoYpfe/FFWu+OU3lZMqZmn3p+uIBRtOqsNZDjnshWhSVXJGLPFq6P11H1Cx8ELfNUOY1CQkEftOKTx80qdLSenJSsQfTnV1tTT3zddpzNjx1Kt7LxGB57jy93QRnSq1XYbptaSnpyshKCtrzhKHFAw0rRChhwv2H2nm4rY+FkXSkmLo888+oxMnTvhU46VowidMZl9xhTi1Io7ahjCihFsuoS4H0eQc8cO591FF2Urq1uuflJruHx1u746J1NBQRv2HrqKYmDaOhwqiiWNkrgu0BtHk2mdWUUFZDb177ySqrmugW0Tkk64ZSTT3nomuudkpyGYLIvCxEva4tra2RUSTrl270oQJF1CFeK+1JvOJYIkm/N3moj8vVU6+rvjhNIrj44cWaeOhIrp/7hbqm5VKr97pLpKgnbnWknkgmoSGPkST0HAO91YiTjThcMPbl21WIpmw41Y2tdE6duVTIzlrdtKcn92m/P7O7/7jN0Zc5uoffFX6OxeEaCKf4pEumqjOWy8RTkfbCeejato5fxXtWrxWCfvL4X855W/bS2te/pA6DepFF93j6+tELXdObLlKiC39DQHnrdtBG99aqPw24dbZ1H3MIOXfvRBNeCFSduQI/XLZL+hrU2+ntavXUkpNCqXFplPpiSKqF1F+9KmT8KUSFR1N1ZVV9M47b9HwoSMoOzmTGkRY5ZR26dSmY3vLiTJj5kxKTEqjGmGb60Xa8MYCOrhhJ4396kzqNWFYQFXy/I2NbqAF8+dTdXV1c11mogl/3awXJjZxBn6RzDoyecoUYVaVRTV13lx/QBcchoUhmpwblNycq6mmOpd6D3iPEhKbxFhtys25Rvx+wPR32fBCNJER8u731iCaXPx/y8VzvZGWfH8qxYt3y+Q/N0V8+uxHF4vnanCcgasjJKyCqaykiJYvXxZy0SQlJYVmz55NlbXiQ4DHfq+8m4HBqSlYosmRokr66gtrqVObRHrnm77+4MyuZMbfxIdRYb7yPyHSdRFiXaQliCahGVGIJqHhHO6tRJxoEmrgEE3kxCNdNJn38D+ESFdDV4twwxxBR03Hdh6gVS/Oo+x+3Wnqt76i/HmHEFJ2CyFlkIioM1RE1jFKOxespl2L1tCAS8bR8Cv9vyRzBBqORMNpxNVTqf+0sc3VBCqa8EnmmIYq+tXcn9Fnhz+jkT1G0U3jb6Yli5dSv7Q+VFtSQ5WllX7dTkhJpJi4WCovLqUVm1dS3659qFt2F9KeQjGbKePGjaMOHTtTbaN3jrZUhoNnXkBDLrtQPkklOXjxXVFeQkuXLGnOaSSasOlSoXB6y/5UOKW2a+NjvmTUzNChQ6l3337iK2xwNxABQ2jBCiCanIOfs32scLBYTQOGrRPmYSl+o3L4wN1irq6l7r2fo5Q0exsLbSUQTUI30SNdNKkSJ0umP7VChBeOpmU/mKaA/aowrzgizCte+/oE6tXOf/56TT85IZr2791DOXt2hdQR7KUzZlBicpqI7uL1FYV/fcESTdbmnaEfvv0Fje3Rlv524yhbIH7xwQ5aklNAP760P10/yn5EQluVh0EmiCahGQSIJqHhHO6tQDQJcIQgmsgBRrJowuYqHz76DMUL56bX/OY7PjDUUMR84uDa3zZFcVHD7nKoYQ45bJRUUSSrTzea9p0bfbIUiQ358qffEicZ6mjAxUJUucpXVAlUNImPb6TFB+bTE2/8orndq0ZdTYPaD6btG7bT0I7DlAhTdTXGTn3rG+rp8y9WN4smMrOcPn360PDhI6giMBcsfhjVkzg9xw2hcTdfJp+kNnLw4jt3/17atm2bklsvmvAJk5PCwa8qmKhVZnbvoPh+MUqdO3emSRdeSOXVjUGJNGDjss6LLBBNmoapvv4M7ds5VTg3zqD+Q5pM8/Tp2OGHqaToA+rc7TfUJvNax+ML0cQxMtcFIl00OVFaTdc/u5qy0xJo3n1N4vWP3/mCVueeod9fN4ym9LV25OkarKYgO+xmE8uNG9YKf1tHQuIvavTo0dSlW3dxwqb1+DHRjlWwRBM1jPC1I7rQgzYdCX+0/Tj9dsFuuqhve/rjdcO9mFJhVQdEk9AMB0ST0HAO91YgmgQ4QhBN5AAjWTQ5nXeUlv39Tcrs3ommf/8WPxifPPECVZwpoZk/uYM69siivcs3KqZj/aeMVoQWo8TmL3uWrBdfkaOJT0qoicvlrd+hOJHN6JzV7CdFW0dMbIxyDNmNI9i4OBFZoLGCFuYuFL5IjokIOudMUSYPn0qVZdWUuzeXEhsT6OS+Y0qzfMKEo/ZUijC/5eI69aKJ1UmTdu3a0aWXXkplVd57fmfx4rNn/kdZfYXwJBzkepH4FE6acLK7fv06sfg+7Cea8CmT08KHS5u2vr5bktLZWW6mXxeSkpJo6tRpIqJD4M5kIzlkKYODaNI0faoqt9PBfTcLU7bB1Kv/XMNpXXD8/+hMwYuU1ekBap8tdyatrwSiiRdPC3t1RLpoknOyjO56dQP1z06jl+8Yp0D569J99NamI4pjTnbQGYrE78T0pGj6+ONPqLSsXNokR0TLO11BZ75U8zsLc5DumcnScpyhV69eNGr0GGES0hhQ1DlbjYVppmCJJm7mzinhT+ca4VeHzY6XChMx/tgRSQmiSWhGE6JJaDiHeysQTQIcIYgmcoCRLJqw3wz2n9F99CCa8LXZfjBUJ7Fjb5pF/ccOpAObvqDcg3nUcWBPS3DsxLRenObI6tNF+MZIIBKuLs4cPEo1lTWUkJrk4ztFrSgjI4MGDxa+TcTu3o1owvXExp4LM3p4yx4qKyhSzG7YB0tn4a+FBYNDhw6JnCKaDkcmEMIOJ/7347sP+okmadltDaPXxMTE0OXC3rtRhBYOhuPTchHmeP7vXhL+VNrQ7J/fLZ+kNnPwwosj6ixcuFCYQJT5RM9RRZNZ14qTLWIMGgUThWl8nKF/kw4dO1J0TGzAkYJiomOo7mxsSL6g2sTkeTaIJk1IS4sX0dFDP6S0NtOpa8+/GnIuPP0anTz6OxFZ52YRYefnjscCooljZK4LRLposv5gIX3/f1tpXI9M+qsIEcvp3S359OSne+nq4Z3pp7MGumbntGD79AQqLCqkBQuafIFZpd0nyoRgUuOThYUfPjFjlfgdzA7Ng/EhQNbncPo9WKLJg+9uo5UHTtNvrxlG0/rbP6V093830q7jpfTknBE0qfe5aH/hxMxtXyCauCXnrBxEE2e8IjU3RJMARxaiiRxgJIsmqo+SwTNFuOHL/P0H5IiTJds+WEF9Jo2gzkP6UGNZCZ0oPUWna8oswRUfLaBKEdUpo3N7Jfwwm+VUlVYom+/2vTo3ixVqJQkJCYoIERUTRwkiaoBb0cSqU1rBoLS01C9rmRAqio6fajbP6d2jF7Xv6d9XLnjhRRdRu/YdhB+P4Dg+bRQOaN958CnBKYpuePKH8knqIEeiiFBUXVkq/LwsahZNKovLqPhoU2jlYWNGUKpwJr1yVZP5RHxykhBHfI9pt2nThvikSaCBghR/KH36UnWEHwOHaNI0Qc+cepkKjj1JmVm3UYfODxnO2rKSRZR/kIWVS4Ww8pSDmd2UFaKJY2SuC0S6aLJ490l69KOddOnADvT4VUMUThsOFdIDc7fSqG4Z9PRNo12zc1qwbWq8EKgbKffAAdq0aZNpcT5lwr4z9KlNUhwN62wdjeqKK68U3xPiRQQ4p72LrPzBEk048tLBMxVKJByOiGM3Pb8ql/69+iB9ZXRX+sF0Y7Nou3WFWz6IJqEZEYgmoeEc7q1ANAlwhCCayAFGsmiy9j8f0xFxImP8LSLc8Nhz4YZVKqcO5Cs+SNp266CY0xxcs40uu/8G2pqzkwoKCkzhsalL6YkzQiSJU056VJdVCT8GMdROCCZ8ckGfpl18MaWltxULNm9CDpt1TBUMFomTFkaprLCYPvh4Hg0bPIyGjRrlJ+5wmVBt9D967FmqKiknWehm+Qw+l4PnMqfE+GixgT1BOTk5VCJO47CgxYnNkXi8+vbtQ8eOH6cd27cr/83/qIkFrpTU1KYTJi41Iw5f2alTJ0V8ag3+UCCaNM0ePkHCJ0lYMGHhxChVVWylg/u/RknJw6lnv9edTG8lL0QTx8hcF4h00eTtzfn0lyV7aY5wwPkj4YiTk+rnpH1qAn3wrcCddNuFz6IJhzyOEecbt27dQrm5uYZF3YomEydOFOZwHYUfk8gy/7DLV5svWKLJ1L8sF4JUUySmpDj7juO3HS2h+17fRN3bJtObd58zeXZzbeFWBqJJaEYEokloOId7KxBNAhwhiCZygJEsmnz6f/9VToFccv/N1E6cqtCnBuGw9d2f/k35Mzt+zf9iL03/9leoy6CuNP+TT6i21t8DaoPwaXJKmOc0Krvqc6l9r07KqQV9GjlyJHXr3pNqGqI9CTksG1F2iHr0yCHasGGDX9a6ulqa++brNGbseBo4yF9ECuVGf+lfX6czh47Txd+7SZzO6SK7LFu/R4uoJXyN7HeGF9+nTpykkuISpSybUcUmNAlasbGx1L1rV1qzZg3l5+cLLSuGLXYUESlRiCa6oRXOYxvorFgM8u/RQhyzSvHx8RSfkESXXX65iMwQJf5pMgOK5ATRpGl08/O+R2Wly5QTJHySxCjV1R6l/btnUVx8J+o7aLHjaQHRxDEyvwLsQ8NOSk1sMqurqg3O0QSuW/8esdMvr/K8uCqPXlydR1+f1IvuvrBXc7VqGOLF90+hFA5NFoKkiiYc/jctKZYWLVpERUVFhi0bmef0bp9CndsYh6wdNGgQ9R8wkKoQAU3hGQzR5LhwKjxHOBXOEmLb+y7Etiv/uZIKhY+a/941gXgsIyVBNAnNSEI0CQ3ncG8FokmAIwTRRA4wkkWTeT8X4YarRLjhx78lfI0YO4pb/Of/CNONAkrOSBMmN2U048e3C6ew2cI/QSEtX77MDyCfMOGTJvrUaVBPv5Mb3bp1o/HjJyhO53gjHmj0HPloNuVIiScRReYLOiCOOmtTg9j879ubQ+3bZ1H7LF+bYzZH4Y1+nRB3QrHRV/3JsK8Z9jnjReKTNjVVZTTvrbeFg99iatupHZ05c4bOxkQpwog2dejQgcaI0zYLFiygyspKxUQnXggmUeL/tHIYC2scDemsOD3CiesxcxLMZj2JiYl08fQZlJzahmqCZN7kBSsv64Bo0kQzb+8cqq7KUZzAsjNYo3T2bB3t2SZOeUXF0MDhXzgeBogmjpH5FGBxNJbqqE4I4uo9bVYjiyucp77B5ZEzi66y36hUcaKttCo4gowdSn8Wvks44gmbRLBphJpuf3k97T9VTi/dNo4GdkyzU1XAeVTRpKqmQTFhbairUj5cmI3R1vxiKq9pihfMzkMn9jL2hZGdnU3Tpk0TfkwaItqvlJMBCIZosvFQEd0/dwuNFGZd/3Rh1vXrT3bR/J0n6HvT+tLN40LjgNgJM7d5IZq4JeesXGsSTaZe/wDdfO10uu/2q5shPfPqB/TGvCW04t1zvtSGTLvTB+LAvt3pnRceV/7GdZwu9N3HzH32URq5S5TjAAAgAElEQVQy4Jx4ri2v/nbfQ3+hz9c1RahU0x9+fi9dOWOiUue0SSPpsR/f1fzbR4vX0ENPPEv6up2Nrv3cEE3sszLMCdFEDjBSRZPqskoRbvhfhuGGtVQ2zV1EuWu3K3/ijfOcP/1A+ffk+Cjavy+HduzY4QOx6MgJYe5R6Qe2fU9x0iTl3JeutLQ0uuyyy6iy9izx1zNOoRJNYoVIwF/rPv30U0U0sJMumT6dUtMygubHRN+HbR9+RjnLNtCwKy6igdMn2OmirTwlBw5S/qGDtGHjRkU0SclMo4JTBYaREvr17UvtRZSgpUuXUoI4iRIjHL9qt0fsQJejIXXo2IGGjxzR3D4LJ9E6L/+xscKhrDhlwlGHUlPThAPdpux19WdFBB5bXT9vM0E0aRq6vTsmUUNDqRJumMMOm6W9OydTQ30R9RuyXJx6au9o3CGaOMJlmJkPT7AovmLFcsvKWDRhU7uGIIgmLFDHxCW1qH+NX364kz7dc5Ieu3IIzRjUoZnFz9/fQcv2Fvj9PXDy5jVoRRPOlSRMLE8VHKfVq1YZFtpbUE4FImJcojj5Vy18ZA3okKacctAmPvXHnBuj4qi2LvJP/Nkdn2CIJu9/cYz+sGgPXTmsEz18mfOPIIuEf51fCf8643tm0lNfaXJKHAkJokloRjHcRJPq6nw6dWqx+IjWlbKyZngKwY5oYiRgzLn7lz6iiVZ4YdHl7y+9S9/7+vU+Yoxe9GDRhNMzf2jyRaj+zsJJr+4d6cZ7H/MRSIz66ikMXWUQTQKkC9FEDjBSRZPTecdEuOE3RLjhjiLc8K2mIPZ9vpm2vtd0okQbzSVafJJMTYymtWubTDjUxA5VOWqNNrHY0qF/d5+TJjNmzhQb8VSfDXOoRBPuG3+to8Za+uTjj8Wi33rXPkqcuOjarYdiQhSqtH/lVtry7hLFCe/oG4xNGZz0hf2jbHxrEZ3IyaPJt8yg07UldKr0jHL8vba2hgoLCw2rGy2uvbamWpzM2S5Mb3yPorPD2tqqaurStQuNmzBezIW1VF1dLU4JiPMowlTnrHBcyEeI+N/ZF0pSSgpltMmgej6VIv5/3LhxlJicFjIhygkvL/NCNCFFLGHRJDo6hQYMW2eJN1ecSKlRTqT8T5xIcbbBgGjizcw1E8W1tQdLNJkwYQJld+zc4v412OErO37lTSpvVtX0zOcH6NW1hxSTHTbdCUXSiybK+1hEQtu1c4fim0qf2A9GaXWdYpJzrKSKrps2zi96Tk8RXjgxMTkoJ4XMmLDz8HAXyYMhmjy9Yj+9tv4w3Tu5N91xQU/HU6akqo4u/8fnSrklDwifKOLUaCQkiCahGcVwEk2OHPk35eb9jerrmwIypKYOohHDn1EEFC+STDTZKdbAevFC365ZHSyc7Fz+cnN2mWjCGVmMGTqwl3LC5NEn/00nxR6JRRX+9x178pqFGi+uXVYHRBMZIcnvEE3kACNVNDkkwg2vV8INDxThhq8wBFFRWEqL/vSKCB98znfJyGsvpn5TmqIG8KJZOOWn+fPnU0VFkzNRTmcOHqOaimrl31kwSe/YTjHvURNvljt26uInQoRSNOG+8Ne608Ih6qqVTZFijFL37t3F5n68OOrcaHgaQz6D3OU4tvMArXpxHnUU4ZIn33O9u0q+LHV8Vy5tFCeGqoXD1+S2aTTp9iuo37BetGzZUjp+okA5vl0uQhCXl5f7tZOUlEiXTJ1GWzcLB50iXDP7LFGj6fC8aBDCCachQ4cIk6b2tHzFCr86EuITRJDnKMXkKVqIJ3ykvCWEqIAgBlAYogkpZjlsnpOQ2Jd6D5hnSfNI7n1UXraSuvV6mlLTpzoiD9HEES7TzGaiuLZAMESTfv360eAhQ8PCv8adr2ygvQVl9O/bxyknNdT08Y7j9MT83TRzcAf61RVNUXWCnYxEE35upyXFiBNBK+jkyZM+XeBwybVCoRjTvS3ll5+lr8y6iPJz91FlRdMzPl2c9ExKTgk4ZLyT6+4q/GS1E6av4R4tLRiiycPvb6fle08pUZg4GpOb9J03N9OWI8X0xDVD6eL+2W6qCLsyEE1CMyTBEk1qa09T/tHXHF3EkSMvNwsmakEWTpycOImPb09duxh/7JWJJtwm52mf2cZUsDA7AcImOaq5DdfjVDThMlwHn1hhASZUZjkqZ4gmjqaqf2aIJnKAkSqa7Jy/inYtXkuDZ14gwg0bRwHYuXA17Vq4xg/StU98l+KSmo76sp+MqooSWiwc02lTdVmF+KocTTEiWo42+kqfPn1o2PDhwizH30t/qEUT7i9/Uc3Zs4t2797td53p6emKCVFFdaPi9T6UqeTYKVr05KuK4DTrwTtdN73703W045MmUYjDRo+5cSYlpiUrUUaiGuto3vsfKidt2H9r4ZlCqq6paW6LN05s8x4fG0+jhcPehSLqkJnzQS504WQRDUeIL19s29Zsax8XJ1Q1caqkbbowbRImYW06Z1OPnj1bRIhyDTHAghBNSHEAy45gU9OnCDHkn5ZEjx/5JRUXvkuduv6KMtrd4Ig+RBNHuCwzsyiSGHtW8WukFcXVQmaiCUdwqRH2dykOv4ZnCVH1YhFJLVz8a1z3zCo6WVZD7947iTqmJzazUqOZDOqYTi/eNtY74BY1GYkmnJ3XJ7HRDYp/k5ovn93sQHeNCDvMz+9Jvdsp/lcy2mXR1JH96fNlnxI/k9u2bauEjJf5rfHq4kLpRD3QPgdDNLnjlfW0T5hMBeIHh0838Smnq4d3pp/OGhjoZYZFeYgmoRmGYIkm5eV7aN1644+uwbyy1FTxsXf8x4ZN2BFNuKDep4nW9MZMNNH/XSaaqGY9WnGET5i8/dEKuuHKqT7+TYLJS60bokmAlCGayAFGqmiy7r8f0+HN5uGGmczql96nozv2+0Ga9u0bKatvt+a/c0SaI4fyaNOmTZZAMzMzaaYwyymtFM5DDezgW0I0Yd8b/LVu5eef03ERZlebZgnBJC4+uUWOE7ODXnbUyyGar/v9/fKJqsvB5fl0CUc84qQXx5ISYsQpoSg6cvSYctKGF9hRUWeFnXyBWEw3CUTsfyQuLp7OHCmgjkI86T2wDy1avKh5oc1iWKywi1ei54gy7Ch2+qXThZ+b7ZSXmydOsMQIPyjRlCyOgEeJAymlp0qo39ihNPvKK6iyRviyCbEQ5RiiRwUgmghBToQa5pDDbdvdRB27PmJJ9tSJf9Dpk89QVsdvU/sO33Y0ChBNHOGSZmZRvLK8mD5d7B/JyEg0OVxYKcxBqoXPoqZnSP/sND+zEKNGeSN/+ezZ4pkQRQ1nQ2cGaQVAjZKjDxFbVFlLVzy9klKF85dFIoJOKJKZaMJtsw+a8tJi5eQgpwph/7LlSJH4IBBLo4XjUTbTYaFn2pgh1LdDOu3fv1+YZbLlpPcOfI1YsBN1HlsOZ6z6LwsFM7dtBEM0mf7UCnF6qoEWfm8KpYmoU25SzskyuuvVDdRBCHjvCSEvEhJEk9CMYrBEEzcnTQ4delY8f859nGMCoT5poqeuihtap616Z7Jcxs5JE70jWP1pEjvmQcGaFRBNAiQL0UQOMFJFkyVPvUaFh0+YhhtmMkYnTfiEyYwf3S4ciKY3w+MzIymJUbRl82bKy8szhMqnTnjhdFY4natv9D9loiz+xAI9JTGGCkv9QxnLR8p9Dh7juJhGWiDMjKqqqpSKxo8fLxycCrv6EPox0V/B+488rThavfrX3/5/9q4CvIok6x6Iu3tIgiRAIEjwENydYdyFHffZ0X/HXXZHGHc3hgEGd/dgAeKBuLs7/Pd26PDytJ/G3v0/fnZ41dVVt/pJnTr3HNjIiOhqmmnR+WwBMKmm2kl2shlN7JKAYaHtLmPQxNaKRALJJSMlKRHx8fFCmU5zcxOKi4sF+rY90bcZ2yq6kE0uS42IHD8KvWmNjh5r1aSwZcclttuQCU9PT0yMmoDttMmqoXIfawsr2JHFcEl2MRw9XHDN7TcRuOLQIUCUprwZ63UzaAIU5P4XpUU/wNvvcXh4L1eb6rKSP5Gf/Rqdjl9LbJOXtFoWM2iiVbokNVYFisuDJiVkiZqQ31qnLhtjgt1pY68eCJk8ZQpc3Tw7jb5RPW1wp9NGl8e9+/GpCnNifQnWmVj/QDQ82I7NyKEONOFb8xqlJicKwuziOrjbWyPcr/V7Oja7AlUNTXjlwVuRm5mOuHhFZqWxpjBj5swu5ZZmaNCkuJocCj8/CDdaj40PRuuV5mVkW5xP9sX6MFb0GoCBLzaDJgZOqIrujAWa6DJ6FoA9c/a+tkstLZ0RGfkbnKhExxAhqyEi9qfMPUf+XrIsEkNqmsjfxwyaGGKVO6gPM2iiOfHdFTRp25CrsRvm7Oz5dCWKzmcJiWLAhDVNQsYo1nGzI42zvZXKEo6J0dGkaeGLukbVZS4dBZrw3BhEqKooxa6dOzGAXGOGDo1AbZNycEfzU2OYFqLd88wnboFboOo6aLaEZmYJs39S9pFw79pW4V5v+u9R188msELRqUQETSqI9SPLtGHghIVfbcgaWKRvl+cUCXbTHNPmzUBWbhaSk5NV2lRz/vr360u53AVnBycUE1OFWSmzly2Cf2CfDgWiDLMy2vXS00GTitK1BJq8Q2VgVXBxWwz/oDfVJvBKKc8UQddEmzCDJtpkS1pbVaC4PGjCgqMXiq9oW4m99/N0EARJVUVERARC+vbvVJ8LBbQxvYo2qN5ONlh7n2L56j2/nsC53Ap8dmMkRgSqdoKSlmHNrTSBJmxW5kgHDizMfvRcCtJKaoScc+458oj949QnDH4BfTA3IkAps1LVKLjcip14asju2IVEzDgnUoO1q/oE9yUwTOoVHd/O0KAJ2z8/8PtJDPV3wVc3j9Jrgu9uS8La2BydBWX1urkRLjaDJkZIqpIuOxNowsOrqk4g95xtpIvoDD+/q8kl78ohrL4ZEctfZAVbmSEilsNwSc33f25up2ciMk3Ea1SV4ci758iDMfLuOcrmYgZN9F3hDrzeDJpoTn53BE0aqmux7sXPBRCE9Uk0BZfoWJPlrD0JJ8kyTOSvY0ealqY6ob5atlZ6yJAh6D8gVKMAXEeCJjwXO9I3KcjLQXBwMJUQNRNoYBr6sqr8sxAsC8JG3bkYARHtmSJ8DQMlMSTmK5ZQsdUvl8pwhE0ZheFLpqpcWhE0KatuFOrirYlpw4K+dfV1xLqhdSSKiUjf5tKbguRM6vsinJydMHPRbBw5fox87JXbNXNZz7CIYULbfbv2oigtD0Mjh2HK/NlEHdf0tHW/13syaFJa9LMAmMiGj/8zcPe6VeVC19eeQ1rKDeScE04OOiu1eiDMoIlW6ZLcWLRp30baVaKukVSmCWt/qGJjBAQEYNz48VSuZ7pyESmTTqZSiDuoFCLU2xE/3j5W4ZLXNsVjc1w+nps7CIsi/KV0qVcbTaAJd86f46zR9dUf/+B8fjFC3B3h59IKcAT2CUKhjT/e2pKEn+4Yiz6u1qRVc4VZqWpwDJjE51UKgIkY7sSsGejjqHY+XPnD36OjRo2mz/xLJhVR1yvRdLGhQRNROHhOuC9eWhCu1/D2phThubVnMZyAus8JsOvqYQZNTLOCnQ00MfasReBEvI+8fgizURJTM9sNQxZkYdCkuLSi3euyZTay18sKw5pBE2OvbAf3bwZNNC9AdwRN2N1m14rf4dbHFzMfV203rDk7ii3YkaaoMA+HDh4UXvT19cWkSZNQTWKqmkCIjgZNuNLEyc4StfXNVEKky+wNe82p1buQeuAUsXumkmOR4gmVKqHeMTfOVcoGkh2dLGjC/y7LtGF9E/l6dwZORLZJn37BGDgoTGAVieKDYt8snmtvZ4+Jk6fAm0p1Yo6SA8Xxs5i3cD5s/Hw1PgOGzWDn6K0ngyapCbPR1JjbbiF6Wzhh4FBFgWmxUXNTIVLip8PSyguh4a2sKanRnUETa7ZJ78Dg78KmhjpsJJv2i/R5IA+a8AabXVtkPztY94NP2C2ZCiEXDmRBPm/ePNJ6IAC4M3zgyoyP5/HYX6cxOtgNK64bqTD2Hw6n46sDF3DL2GA8MKW/0VdFCmji6mAl6FKVkuB2Tl4+nEk7w5oAcCvSnfLx8UEKAUFpJbUIcrcX3IBKCfRmZqW6YB0O1kiRDzdilVrIlWaKbfiowdHRGbPnzKHv/RaTWhobYiEMDZp8tf8CfjiSjuVkT72cbKr1CbFsjPvY9NAkuLJ9YRcOM2himsXraaCJabLa9e5i1jTRc816EmjCp/KFVGZSSza6/kMHqGVMyKa1O4ImGcfjcey3zegzchDG32p45WsHm16IjzuHDLKonUs/ipsvWqBRwo/ijgZNeN2ZZdFZBEqTdh/HmfV7EUqskRFKWCOqhHrnP3+3xudbHjThufMpZdqFVMTGxmr8ZOlH5Tc2JFK7b9++tra2VNLj5uqGwWQZ2rffADRd7E2idxY4f5yYAyeSMfrWxRr77Y4NzKCJdqAJ2y0lxEYIj8LgYWdIN0c6WNBdQRPen/ZqqSeQsl5gfHVUuLg4orK8HHv2HVAATcTyHN5MtxDVwIGESCMClAMmPP6Zs2bB1t6Jvhs6ajaq77s9oQAvbYgje1hvsokdqtBwZ2IhXlh/DlNCvfDW0tZn1ZghBTQRnHR6NRP1fDUaaqicsrFW0KliB7Re9B4qJ3SKBWEZSBkb4o4IsokvLi7CGXI7UxW1tDi8UZcP/p5kTSz+WzZY9NXVxRWz5sxFL0tblfplxsyVvn0bGjR5cX0cdiQW4EVimcwltom+8fiq0ziaViqwVpi90pXDDJqYZvXMoIlp8tzZ72IGTfRcoZ4CmjBgcpCcYERtDk6blNN4btcdQZO4LWQlvO0wBs8aj6HzlNsN6/No8Q811smoqKAfaLYOpJovrbfOAJpIG6lpWmWfTsLhnzYIpTlcoiMfrF3CGiaywSVXCwg0ES2hVY1UGWjCGzMHEhQ8HnMMmZntqYvK+hkWMQSFhQU4e/YcWRZbwIt+nPv5BWAs0e1r6lvLe7hk6+z6PYjdFoOFL90LO9p09bToyaBJbtZ/UFH6T7sld3FfAv8+b6h9DFLip6G5qQgDwtkiVfrGoLuCJpwsOxJhrlHhZGOK91Qv+oBgMW8bYi6wcPSF8ynCe5xL+dhi+ERmmfDffdzskVVWKwhfDrksRCo/vsjISAT0CRYcVTpjrDqZjfd3JuPqkYH498wwhSGK5TusGfLLneOMPgUpoAkPwpYc0dbFJKE46QTs0AAbcjSzsbYRBL05WF+jmr6QmQHk6+KAq2ZNxOnTp1V+3qsCTcQJMyuxVUi9N7EVreFNttGjxoyDN4modyUdE9kFNDRosvzn44JA8pekZxJBrCt944/jWVixO0UAYBiI6cphBk1Ms3pm0MQ0ee7sdzGDJnquUE8BTWTFMWVTJuVEvjuCJkd/2UR2wwmSgSNdHjOmkrNhQm2D9FNRM2jSPtOlGXnY+dFvVEblQ2VUtygsQw2xpja9/nW7fw+fMwFD5mi2I1QGmnBHrF3AgoJbtmxBZaWiE4bszaxp8zQ6ciROnDwhlOk4Ojphzrz5wo9lWbo9l4JxSdjUB8mquv8Vq2pdnquueE1PBk1Y/DU381myRN1LVAkL2DtEIjBkBVlRO6ldyrTk61FfF4eQ0N9hZy/9JL87gyacMHZJyUg7j1OnTpn8rTBhwgRBzLuZLIEZFD90kGza8/MF0CS5sFoQC/VytIG/qx25tZTDycaKtBcUN4khISEYGTkKtZ1Y6+Lbg2n49lAa7qKSin8pKangshW2kbWiz8u9T0wz+lpIBU1yy+uw/3whPFpKYFmWSWtDZbGXARNl5VODgnxxzczxVGq5TeHznhmXVXLIBwNntpYWNN9L5IBGgNlla2lOADNa+g0YCBb2tbWSLhZr9ORpeQMpoIk2UN+Czw5QHpvxz/1RcLNT77QkRUUtnUR+b/ruqEHceLRMjcGbm0ETg6dUaYdm0MQ0ee7sdzGDJnquUE8BTVgsMz0mTiFbUx+gTRw5jKiL7giaiHbD0x6+AZ59A/R8ilRfzswFFoSTGmbQpH2m6itrsP7lLwS7YbYdVhaHv1+H7LMp8OwXgLCpoxFApWdSQhVowtfa0ol2Q10VthJwoinc3d0wKXoidu/eQwyTCUrp9uL7j62P+46XvgHWdO+u8npPBk14jaor9yEr7QE4OI5HUP9vJC1bdtrDYBedwJCP4OQyQ9I13Ki7gyb8mcqg5onjMUhPT5ecF30bhoeHIzRsIOmPtG4XGRS3JfHoTZs3Ibu4UhAL5VdGBbkLrx/PLBXKN0YHubW7taurK+aQ1kVVHelGibt5fQdnhOvf35GMVaey8fiMMFwbGaj0Dku/OEhAUQNW3T1BAIqMGVJBk5iMUjy/7hw+um44ehWlEIMkq02UXZW70VUTIxDo44ltZBPPAu4MjLQCJkwRJbYggSRiGQ6zSPmPGM3UrpH+2JGGibOnL/oNn4BXNsTDhpgn08K8MW0gASmXHXyMmR9D9i0FNHF3sm4ndq/q/k30jB9JIwCLcjahn4fGYZYR8Mjgsqa48dsjyCitFcRgWRS2q4YZNDHNyplBE9PkubPfxQya6LlCPQU0UcY06U0/BOY+e5dG7YfuCJqIdsOLXrkPtk6tloSdIcygieIqrH7mI3IkasZVbz0CSzq5lY8tb32HqqIyzHjsJrgH+UleRnWgCXdiT4K+uTmZOHbsmNo++/Xrh9GjR6GxsYlONHsppdsnbD+Cc5sPYuD0MRi2cLLkMXaXhj0dNCkvXYO8rBcgpSxHXPP87FdRVrISvgHPw83zBsmPQncHTTgRopMNCzGXk76I1OASGtancKDSDGXCrKr6YRHRyZMnK4h5uzpYoKy0FO9+/zeJhTYjxMMBgQQeMKOhdaPYG+P7toIoYnB5T2/SulAikyF1GiZpx3omrGvy8sIhmD1Yud37w3+eEkqSPrhmBMbJzdPQg5QKmrAdLdvS3ju5Px6e2lcQ666qarWLTyM76ByyhZYPDwcq6Yweicqqahw6eqwdGMCACT8v6sLB3h5u7u4YN2U2tiUW45uD6SgmVzYx2D1p2kAvAURhy+I/qbxkX2oROfvYYfIAT8wfKv17y9B5VdafFNCEDxYa66uxhRzn1AUDT7E55UI5lDpr6qCgIPoeHSPZaejDXSlYeSILd0wIwT3R/UyRFqPcwwyaGCWtCp2aQRPT5Lmz38UMmui5Qj0FNGFNkz2frUR5TmG7jPEGjjdy6qK7gSYNNXVY98Jnku2G9XzEtLrcDJoopmvL29+jqrAUc56+A86+7U+qxPIcaztbLHnjQa1yrQk04c5IkgDnzp5Bamqq0r7d6Yfy7NmzyZ65SThVrqFaeWXMoizSZjmiRptFq4F3wcY9HTQpKfwGhXkfwsN7Obz9Hpe0gsUFX6Ao/xN4+twDL99HJF3DjXoCaMLz5Pdbc1MtNpGTjZTIpFPp3Ip6AjRayyX59N+fNq2agjUxGOhQJubtQm4tp4lREhN7Fukpie02hQcvlAib74n9PIm50HqX8aR11FW0Lh4l55wYctD54FoCREg0VVm8sTkBbCfLTBRmpBgzpIImn+09j1+OZeDeSf0E4KSupgLbySaao4KEYM/mtrfRFMfMS3T93MnIuJDS9nlvSWwRZ1v17izWVlZUsuWFCVHRBIp6oaGplVrKoNnu5CLsSSpElYyomZeTDYqInSMbb5OQ7mQS1O0sIQU04bHywUJ+fg6OHFbuBMauQxeKqlFBJU529H4dJce6EufLjnPMvqptuCRZhP4wvb/+/XcsBvs64dtb1f+G7Sx5VTYOM2himtUxgyamyXNnv4sZNNFzhXoKaMJpamluxuqnPyIjhl4InzUBbNfKMfp6KhkYp7pkoLuBJiUZZDf8EdsNK9fJ0POR0utyM2iimL59X65CQVIGJt29DL6D29sVcskZl76wG9TEu5ZolXspoAnTsHljtGPHDnJZKG7Xf286RebNFHpbC6fG/KNbVSUWg5Xb//czXPw8Mfup27UaZ3do3NNBk4Kcd1Ba/DN8/J+Gu9dtkpa0vPRvYqe8BFf3q+DX5zVJ13CjngKa8FzZ3r2wIBeHD7V+l6mKkppGQYhSPsYEu1PphXpnoqnTpsHJ2U2pmHdZfSNu+uYoXlo4GC15SagpLWi7BVv2ctkGu7SwW0tYWBgGhw9pK++RvKAd1PCOn8gqnSx6v7ttDAaRPa98pJCGy8N/nkSlUMIChHo74tMbIgVGgTFCKmjyHyrN2U1AxSvEkJlFDBnWwMnJykBMTIwwLFm2CTOB/FxsBRFfQY/GzUUATnbubP281wSaMBjm7e2DIUMjSMskDHVXyCXtUrA3pUgY0x4CUfiZkA8GTBg46SwhFTTh8bJTIB8spKSktBs+5/RUVnkbSMkvMstGmRDsLDp4sLVzonWQXsvMgsvTSVOHXQnX3hcFbyfbzpI+rcZhBk20SpfOjc2gic6p61YXdlvQ5AihyIWVDVg8wl/tgr2xMUHhdQcbCzymRO19Z0IhCuiL8aaxQW3X9CTQpKakApve+EYox2EBWNHOlZMRRRtOVVoQ3Qk0YcbNydU7kXkiQdDAmPaQdNq7KT45zKCJYpaPr9yGtCNnMeqamegXNbxdg+N/bEXasXMYTnbEYWRLrE1IAU24P3a/6XWpSTjRbibgUYyoqCi4e/rQj2DNknjNDY1Y89zHsCCq97J3H9NmmN2ibU8HTXIyniKb2s3wD3oHLm7SLM7Lin9Hfs4bsLIOQnD/r+lvadpLPQk04TcHs8HY3j05OVnle0WVloUmtsnw4cMRFNwXDS3KgZWXN8ZhW3wB7iNGw0NUCsLi0dXV1cI4TtKGkZ1XIvu4ISTQD1OnTiUdkxYSDpW+MezIN/9VXx5CQWU9/r43Cn7OihvS2388BgZOZIPLTJ6fN9gow5YKmsEh+FYAACAASURBVIhgzze3jEb4ZeciR9rYx8aexvnz54WxcfkUb+oZMOMyLbGcil8b1LcPxg4ZQOwU0rO6dFEt04SZhiEhfTFuQhSq6y4Kzknqoqy2EQs+PaDQZGQfVwFw6iyhDDRhxyFmFVUTSMYAmciM4YMFZ3tL7Nq1C0VFRW1TYGZXJjlIyYc8UDlmzBj4kNNQ40XNOibyfT275qxQ5vTsnEFYPEz9XqGz5FZ+HGbQxDQrYwZNTJPnzn6XbgeaXKCa051UR8sAx/h+7m3gR1nZUdIMKISPz6K2NWEq/NmcVqplS/1JXGopQmZdtHDtt7ePbrd2O2O3YHPsOVg7zsGby64g+j0JNClOy8Huj/+AR4g/pj9yo5Cfsxv3I3HnMdLd6o2p918nAAny0V1AEwZMtv/vJzoNvHLiOGLpNIRO7jw/VsygieJHbvy2I4jbchCDZoxDxILodg02v/ktqovLMfOJW+AWqLzuXtWHuFTQhK9nG8vSkkIc2L9f6G7IkCHoPyAU9c3qT6ll773hlS9RV1FNgOW/CLjU33axs385yY6vp4MmGefvQm31MUEElsVgNUVtdQwJxz6Eixdr2pqy446Ty3RNl/YopgknQ9WmTTZRqpgmrDXh4aDczaNPnz4YM2as4HCjDOfYmViIF9afI9DGAn8sH49Ad/t2pSD824TLEkaFeOH6ZYtpY96b/mgGWDUusIka8Ck+67/sfHSKYPUsH1Hv7VL4N2Zt/H2PZucyXaYgFTSZvWKfYCm8+aFJArOBgzVwnO2tsI3KdEpJg0ZZJORXoaSmtWxmUmQ4ubxYIfbEMaEMTFk4OTnCy9Mbs5W4pambnzKwaTk5FC1X4lCkS54McY08aML5fPCPk+1AMtkxKztYUKUfI/ue69+/P4YNG046JrqNes3pHLy3PUkQ231j8VDdOungq8ygiWkWwAyamCbPnf0u3Q40KaSTDQZOmGnCcU+UFdEkd9GfnXB1G4d+fR9ttya1tWntXv/m1HQMJYs/kU3CrydlbEFyxmY4u4zF/rwlPRY0EXUVAoeHYcLtV8An8SSfBVGnPHAtnH3a60Z0F9CEhThZkFM+lr7xkKBv0hnCDJoorkIGleAcoxKcoMjBGHcLlcNcDgZLGDRR56yjbk21AU24H/79nZKciJKSEqWikJqeH9YUKkrNwuR7r4HPwGBNzbvV6z0dNLmQtAQN9efRb+Aa2NiGalzb7PRHUFXRflPamyyKBw5Vrh0g22FPY5rw3NnJpjexwTZv2oSmJvL7VhKnyQKYN39iuJBWxWBiIigThHV0dMTcuXOplKa9dbh4LfMJrv/6MLLJ3vYZOuVecvmUm0tBsjLScOLECSoHat2E333tQgzo46+0vEfjg9BBDRgsYdCEmRi7H5+qdBQiOCH7ojEZE1JAE5HJ4WRria0Ptxfc5o39xeZ64Rm5KGMTLDt+3ugzwMYgyzUzo1BRnI/4+HiF+duSzg0Lv06bPhM29k5UIiJ9ofJIV+f1zfFC6QrHggg/PDot1GhlTdJHdqWlPGjyJwmufkTCq/LBABkDZRzyBwvKgEouhxod7Ca852T1wHR1kWIG2TVfHRaAyx0E7nXFMIMmplk1M2himjx39rt0O9BETPhvxzKpPKce909yBQMfZeWtm1150KShobDt9eyyOvx4diZW3DCiTe08tyQLH2/fjWsiClFe04Sd2Qt7LGiSvPcEYv/Zg9BJkRhx1bR2z/Yhsm3NIdtWFtpkG2IbR/u217UFTXhjeJru01RHNcL9+4DZHB0BStRX0Q+g9Ny2P8VpuUrfz1Jsl031QWAGTRQzzc8TAw5sDc0W0WJwWQ6X5wQMC0XUHYu1XiJtQZPe9EPPyc6CGNvswAGhllqbOLFyOy4cOYPIq2eg/8QR2lza5dv2dNAkOS6aNKXKETZkH5VoKRfVlF3k1ITZaGpU/Lzy7/M6nKm8p1cv1eKUPRE04dyxlEZVRRn27Nmt8v1yiA5jxBKKUG8n+JAop7KYTaKU1jYOVHqnvKsv9p3HT0czEEnClt/fTo4fl3U9mEfCGg+nT5/CtqNn4N4nlFgLQxHgpqgJ0pnf1FzGfNUXh0gnwob0IiYqHeo+0ul4du3Zdr8T3r9muFCOZIyQAprEke3z3b8cxyASB/1OiTgoa+AUF+Xj4AHFEhn5Mdva2mLM6EgcJpHTvLy8tpctaOPvTW5KI0ZEwr9PsPBdoEvc//tJxBKQ98n1I4XnqDOFPGjCgAkDJ/LxyQ00dpn1ZivwxIS4NqApiTRxiqpb2TsMmHBZDzO7RD2wS/Q5pi/76vYfY4gBU4WPSLB4jArB4s6UW/mxmEET06yOGTQxTZ47+126PWgiapPk5P6BhoYCBdBEXCB+fdPps8LrMwZ7C//M5TusecK6KH1styMxO00BNNEV4e7sD4ay8R1auROnthzBhGunI3LehHZNeCO49t1fkZucCf+wICx9+mYSjG0tPWCxs970/6TUYuckZmDzJ6vQUFvf1n8AnaovfeYWvVLG/dnYqxf6Ks0tRv75bOSn8p8clOW1F+5UNgDu8/qX/wUnz85RLqFNrvVKaBe6uLKoHD8/8ykcSYvn9v8+3Dbynd+uR+LBM5h002wMm6m9er4uueZrWlpa6Eef9vXX/N7j9+DwWWMRfeOsLrQC+g+V8CZBKVfFAa/+N+jEPVy61Ix9+wbR52hvYiip1t2QnUJc3P3EoNyudFYWFnYkPrlY+OPqOk6hzeWP7R6a6xYkxCcgLi5OIS8Mcu4n/QML/i4j7Ql2zmGmiXyMHj0aXJpjaaW8bCc+txKLL+tS/H7PeMFZRrZ8hx91BlhXbT8AK88gFNe04I6okE78hCoOTZwj52f9Q+1LImVbJxBI8fGuVNJ1yRfslnc8YbzTfi7DYsBLnWzI+thcPL7yNOYTe2MFbeiVxcWLLYg7dw6JiYka18TDwwNcQrJ16xbU1bVaFXt6eiE0NJTscUejt4XuordP/hWLtVRe8s7Vw3A1uQ91ppDP9Q+H0vH6xvaMG3YV4mcjwK29A1UvkkPfT2WsDDRlk6YJAydejjYI92dWV+tvyujoaPj5kc0yfSbqG+9tTcKXBGIuj+6L54ykp6PvGNVdL+W5Nub9e0rfzB4zhzkDZtDk8jOw88RXuFCQgbvnv9H2VKw7nSuU+cwgBXXUrkVZVR42ZywQSndEYKWuQcVRUjd8tnZ9sw6px+Iw7a5FCB2vWP9ZV1mDDe//hjICH0JGDsTs+5cJWeDvOSui6TY0aj5Z3/PDBiQfunL6JKbxxrcegJOH9sBESVYBTqw/IIA5jQScjFoUTX8mCVaOBedz6E82Ci7w3zng8cuGpY0VfEijxbd/IHz6B9CfQKx77xdwnxzWBJhEXTcTYVGdR7Wef2zzh3tjk+Zcd8NHVOmULtGO5Ov73hZeu/uLZwX3J47fn/sMVSRufPULd8GDnJC0DQvKM2+gtGWMaHsfsX366WRs++xvBEUMwNyHr9W1my55HT/TvSjXTVqyc7rkZOUG3diYj+Mxk2Ft7Y3RYzSfcPPlDQ055Ehxi/A3h4UlsSJ8riOR0bOorDjWdgd7+wFkd7oIXl6LYWPTqkdladn6/mjWwomiO+SZ59AKWFzCIXLTyclpzZ0YlVRrcyKzDA7WlqSh0CyUnkT192zXhjfIw4cTC6yXalD03l9OgFkW/Dvi1SVDhe8i+cMX/hzPKa/Fo3+cpnIEdzw9Z2CXSvGh8yVYTu45E/p54Dti0miKqHd2gUtj1j0YLbAJjBHMeGWwq6VFtdjq52Q3vIJYEXeT3fATSswAhGeEHhKScCMgcx/Z5eZrHGpwcBDs7OywZ/duODu7wN/fH3OodIvXXIPuq9q+eZw83genDsBD0wZoHIcpG3C5G8/v4mU08L1tSfjuYFrbEHij/xo9+1eNUNTA4wM2Boo3URnUqbRC5FEJDbO6Ai+DK6wHFhoaRoCTeitnqfM9mlaKO344Jjx3/Px1tbAh9hN/L/bEAwVTrhUzi81hzoAZNKFngBklKzb8F9MG9Mb44U+3PRUsxCZqozhf3IjKmnwcKbpKEJjlHzwOxOetoJKdnhJbPiQ3BgIf5jx6A/xUaCqU55VgK9nxMgARNnE4om6eKwjt8QdOdZ3mwt1jq3YiftdxhZQu/r874R7YygDSJrZ8QGNOyWx3iSvZtlYWluKinHWfA1GgvQkk8aI//LdnMJ1kKInM2NbaXEcCcXQZkzbj17YtWxxak+hobX3PAfOk5Oiv5z8XBHyvfvVeYgW5orKgFKtf+Rp2zg64/u2HpHSh0IaBQCvazNeaCDgtJ+bT2te+hbO3O5a9fLdOY+6qF/GPcAao6lTVO3TViUkYd20N0dXPXQ17h3CED10t4YorTcrLdsKCtEzsHQYLf3PU1aWSffF60tZZj8aGKyU8Lq5T4OGxEH7+rdbbUkBurQbTRRrz95VFr4vYvGUzamquAOnsxse2w2xNWkU1FXWk2zGSSguc7VrZAqLGQj0dDoibRfkp/xObgxfXxcGdSgzW0wbNi8pXeCOvDOQ+lVVGm7kYLBnuj1e7mEjllrh8PLP6DOaE++JdYkJoCs4J5+aR6aFGEzS1p98gTbSRVwe8iuN4cUG4WvYGPyO4SBo49IzU119hxaqaZ/jgwfS+q0VGegbmkvCrtY09LgoQne6x+lQOXtkQ1ymfD3sqs2lsYjDwIjaRY85z5FLD8S8Sq/2GwBMrOkk7/p+ZKifP360VZSV457u/BB0h8X3m6+uLyZMmC9bC+gBO8jee9N5usr5uEkCTYBJk7krhSJ8/fHgrhcndlebV2cbq4mAYkK6zzcs8Hu0y0ONAk8JLtwhAiKylMOuflBX+hXlDLNWW7ygrz+lJ7jlb3voOVUVlmPvsnXCijZuqKCbmBmtIcMnOoBljMWrJFDjTB05xRWttqroQ9Sdk27gGeAs6KdrqmpTnFJLbzc8qb+fi7wVPcgJiNyD+40ib6a4eZk0T5Su4+5M/wM+lqD/D2iCsERI4YiAm3LZQp2XXVtNEp5vIXHSRynr+fupD4ajzmv8+LjAvekr0ZE2T6sp95ITzABydotGn3xcGXXLuu6J8AyrLNrX1a2lJjjCeC2HnOB92Dle0c1paqkgnJQe2doMMOobO2Bm7vdRUl2PH9islTllUKpBBNqh93OyFDQqLSAbR/w6iTZaosYDe1rQxVz4jBlmu/+YIikmjQbQ45R/ifCIvaprIXrk/tRjPrDmDaGKzvLtMM/DQmfK46lQ23t+RjGUjA/DkTM0smb3EvHmO9E0i/F3w5c3aWb9LnbcUTZMHyOHlNAmsrrhupCA4qi5YA6emugK7du7UOAQ3NzfMnT0TxSVlsHVwok2//p/dMRmleJRKiVjPhHVNOlOImiZJVH5118/HBRelh4kNc+PoINz03VGkl9Tg21tHg51wVIW15SX8Ts6MsbGxiOrnCXs7WwKc5pGGCQEyBmYcvrg+DjsSC/DEjDBc08lKnTStq1nTRFOGDPO6WdPEMHns6r10O9CE7YIZBGH2CP/xdrYlqmVfQZOENU2YKcJlN39QLTEHt1n+43E8MTEBnvaVZtBEzRO95tkVaG5swtI3H4aVrfJ6bfHynLOpOPT9P8J/Ri6ZinGLoySBJiy8umvF722jsCUmwPRHbiKLVdVfrqqGzBbBa//zicLLHsQgib57mVBe093CDJooX9Gjv25C5okEjLlxLkLGDIH43yOXzcCAaN1EVU0NmvDMNr3xDWqopEgTcNndnuueDJqUl65BXtYLcHFfQsKRV8pHDbnGLS2VBJxsJABlI9nenr7y+UsACQvHXrpYj5Kin4idVyW8xoKyLu5LDTmETtcXO9lkpl/AyZMnhbGlFFaDBU5DvRxhbWmBuLwKOFEJ53By24uKioKXjz8xoVSXRX5I5RQrSQxzLGmYfEiikxzqQJMzxHS977cTRgUSjJX0bw+l4VtiFNxFVrjMLtAUDELN+GivsBlefW8UfOl3m6FDCmiy9IuDKKxqEGyPRVcXdePgZ+RCajLOnDmjdrhcjmNr5yCwbqvrDVM6y8YF131zmLR1bLHKSDbNuq6BCJrcSWUv/Bwz4+glYu9wvL45QWCf/JvKn64eqVqLJZ5YXcXVdchLPQe3lgpMnTYNTs5uRnGR2kjjeYPGNZEAyve6GEBpBk10fUq1u84MmmiXr+7autuBJvILxXbDObm/k/NADZ3o1FDdtjeC+vwLbmQ/zKHv6z2FadJIAMQ/BEAwWMKgiZRIO3oWx//cJjSddudCeEZoPnE6+O1a5MadB9saZ8cmwycsGJPvu0bK7ZS2OfTdP8g5l9rutai7liBgaOeqAdZ5gnIXmkET5Zk8u+kAEnccxZC5ExE+ezw2vPoV6sqrMPup2+FC5Vq6REeAJvu+/BsFSemI/tdV8Avvp8uwu+Q1hgRNaqtjUF+XKJSrdIWNf0nhNyjM+xAe3nfB2+8Jo6+fxaVk+l7cQC4h69HcVKTyfgMGb4WVtaImgdEHaKIbMJHLgTbFJ08cR3p6Orhct4Io/MyGcCH/cNFJ5/b5kzBk0EDUN6sWpRQBEB667Am7OtCEWS03fntEYLL8sbz1kKerxPs7k7HqZDYenxGKayP7SBr28+vOYVdSodFO+zWBJg0E2Ez7YI8AbOz/d3t3QFUT4GeEHV9ijh1FZmb7MmDxmrFjx8Lb15+clKjEkPo2VBlFMwFNk/+3W9BYOfjkdEk5NlUjBk1e+icOfx7PQl9PB8GJiDWAOLis6L87kojZ7YsX5rcCKcqC2UobzuZReVcEbOpKyHHIDw2UQ2ME2xsv+uyAsD67HptCZbfGuY8xxm4GTYyRVcU+zaCJafLc2e/S7UETYy9ATwFNKvNJq+TdH4SyHD7llhpJu2JwZsM+ofnE5UvhP6S/ykvzE9Ow/6vVYAHWKfdfh50f/goHD1fM/89yqbdT2m7T63Q6X1oBe9Is4U0zMw26a5hBE+Ure+FwLE78tQN9x0UgbOoobH3nB9i5OGLhS/fq/Ch0BGhyavVOpB44jeHE3gqbYhwau84JMeKFhgJNstMfIVvZXW0j5VKTvmGrjDhy/bsuyH0HpUU/w8f/Kbh73a5/hxp6kLUcrqrYgaL8z9FQn6RwlY//MzSeW40+no68AQsQO5FmwNatW7Et9oLAhBhDwqy8AUzIr4KloyvuXDafGCfWajfDD1LZxykq+7iZtNAenHIFsFcHmpST8Oz8T/YLAM3mhyZ1ZBq0vvdLpLWxPaEALy8Ygtnh0kS2WQfl1U3x7Zg4Wt9YzQWaQJO04hrc/P1RrUEq3mDbk000PyOVlZXtRjBgwABERAwj4WBDzuRKX9oyY4wzCsVe95DL1P9d1jH58qZRiAi4IuKfSO+bu36OQbCHPX6/SzUYyMwPZoB8TC5G08I8SUeoxaA6JvKjvufXEziXWyGUwnFJXFcJM2himpUygyamyXNnv4sZNNFzhXoKaFKQnIF9X6yCd2gQARraOXfEbdyPeKpN7U2UZr7Ws6/y08k9n/6JInKzGTo/GgOnjW7Tb7iW9BuE4xQdY/v7P6M8uxAzHr0J7irEXXXsutNdZgZNlC9JfgIBcl+vFphLAcNCcXLVDgRFDsK4WxbovIYdAZqk7KOa+7W70X/iCERePUPnsXe1Cw0BmjC7JC1ZkbXW2Tf/ORlPo7J8E/yD3oELlcoYO2RBE74Xg0wMNslHTyjR4TnbWJGGQkMNXvjkJ7CzRxQ5wnCUNVxCSOQkxOfX4M7xqktQ/qYT8/+RvgeXe/z5rwlkm3rlu0wdaMJClxP/2wrwHXxqup6yocZ+atr3/9hfp3EsvRQfXDMC4/qq1j+TvaqKSqXnrGg9YGGQiMEiQ4Ym0OTA+WI8TeK14/t64P1rhmt1a1vSwKmvrcQ2Ak7E8PT0xIwZM1BZ22wwdon8oLh8i1lMn94QSWKpnUOTLbmwCstJx4QZNapKcKYSo4cBSHXrfBuV9qQWVeMr0rhhIdgmOeF+rRZIQmOxpIxLhnjcXSXMoIlpVsoMmpgmz539LmbQRM8V6imgSXpMHGJ+34Lg0eEYe9M8rbLGVn8n/tqGxP2x5FbiiCkPXKsgJJt1KhFHft5Ip/9OWPDi3YLI5cbXvkJtWRXmEdPEkRgnusZq0mJpYS2WNx7SWkxW13t21HVm0ER55tuYUl5ucA30AT9vkdfMRP8o7X4cy/beEaBJHoE/By6DP/qUrXXU86nrfQ0Bmqja/Hv6PAAv3wd0HZrRr8s4vxy11XQC3v8bODgav0xDHjThCaYmzCYR2CtOO1bW/sTQ+bvNkcfoSejgG9TQ98eOkwlIOB2DSNrAcYyPnoyvYopIn6FQoPQrC7bRZfFXdgB5eSGxLga3Z12oA024v7kf7xdcPTYRiOBqYBDBmCm9k+yGkwqqhLKMQb6trk1S4olVsTiSVoL/zBuMBUOVu9dJ6UdZG02gCevNsO6Mrptm1jfJycpATEwM2XZbYt78+YJoacsl3Q98NM31lY3x2Bqfj+cpX/MNnC9N91b1OgMm7DK1hOyEn5mlvCT7gd8J/M8ux/+uHi7YUsuHWCrF/77vialgV0BjB7NMmG0S6GqHlXdPMNrt2EWJHZfc3KSBiZoGYgZNNGXIMK+bQRPD5LGr92IGTfRcwZ4CmrAeBOtCDJo+FhELtaMKM2jC7jn/fLASuaQvwhoSU8gNx8bBri372/77EypyizCSTs8H0Ck6h8g84c0hMwR0CbaZ3fQ6W8tSKcbLupdi6HLvjrjGDJooz3pzQxPWPLcCFvRj1sreBvVkiT3nmTvg7KP4g03qunUEaFJdXIbNb34nCCPPf77n2A4bAjRh95fkc4o/hgNDVsDJpXNpAsg+gxeSllB5zHn0G7gGNrahUh9PndspA004d4W576G8dDU5xdjRWNZ2az0T+eTtI3eXmsZGXCrJgGVVPoYPH46g4L64+YcT4HIDZiYwQ0E+3t6aiHVncjE51AtvL41QeF0TaMKAC7v2sKYJa5t0lbjqy0MoqKyXLKgqzmv1adK72J6EKWFeeGuJYr70mb8m0OQD0mH5i3RYHpkWihtGS9NhkR8POUmTKGws2Xb7w93Dm1xjiC5kxPhy/wX8eCRdENtl0d2Ojne2JZJ1dC7C/Z3x4x1j0dSkXPT2kz2p+C0mE8tpzMuVCAWLGkADfZzw/W1jTDatxZ8fIPHZRvxMY+9Pgs/GiNUrf8X6tX/h+9/WGqR7M2hikDRq7MQMmmhMUY9oYAZN9FzmngKanFq9i7QUTmHEVdMQOilSq6yJoElhaR32khVxcVoOvAb0wVQu8yFGyflDsUK5hLOvJ+Y8faVmP+aPLUg/FodR181Cv/G6WS7mk2jmfhLP9Kb7MVDT3cMMmqhe4XUvkjZDda3QwN6VGU336PU4dARowgNe9e/3qbb7Epa98ygsrMj3Us/oLVMuoE9XF4mObawwBGjCYyvK/wzFBZ+1G2Zw/+9g7zjWWEPXu9/kuGgSMi9H2JB9BPoZ5nRS3aCUgSZi+6Szo3GRnHQGDj2M3iSk21Pid9rgsTDll7dEorEoE2FhA1HbeAlf0Kb1h8PpuG5UHzw2vT2gxeUpXKbC8etd49DXw0EhXZpAE1FnQV4XorPnffqHewWb2R2PToE9la5IDXauYZ0OLmHaQewdawMyDDSBJk/+HSuI+zK4xSCXLsEaOM72Vqitq1crDKxL38quYUCOgTlm5TA7pyNjDQFe7xHgxfH3/VEIcXdAQ6Ny/20W/GXhX2aZMNtEPhi8YhBr8TB/wZ7bVCHqqLDuEOsPGSP++P1nbF3/txk0MUZyjdinGTQxYnK7UNdm0ETPxeopoMmh79ch52wKJty+SHC20SZE0KS4okE44d/7+UpUFpQKp/ysc1JVWIqWpmaMu3k+gkZd+eKP33YYcVsOYdCMcYhYEK3NLdvapuwnGuga0oCgMgwux+juYQZNVK/wjg9+QVlWgdAgeBSVmd2sXZmZfM8dBZpseft74T2jj/OP7FzcnazpRLCJatB1t8Ls3bs3baYv0UbSOO8wQ4EmwEUkxPKP9EukD7IYFWXryAp0oFBq0hnj0qVmJJ5h5l1vDB6u3tbUUONXB5pcSL4aDXVJ6Bv6J2ztu6+gtnwu2e2DXT/eu3oYFg7zI9vYFjSRJoN4Iq7M4UYsU+CTdD5RVxaaQJOnSGPjIGltvHsViVMO6BrilGJpBX/v73l8qtaP5f1UuhFLpRuvLx6K6QO9tb5e1QWaQJObvjuC9JJavVkGNla9SX/jkvB5aOwQgblRQW74+PqRxr6dyv7j8ipx9y/HhdcZ5LgjOgQ19B5RBZrkEwtpGbGRVIkcv0aCwJtJGPgpKu+5isp8TBU7Egvw4vo4jA52w4rrDJ/Pj6j8a9+mVXDMOUK1d/+hsqpwhHrrx2gxM01M83SYQRPT5Lmz38UMmui5Qj0FNNn50W8ozcjD9EduhEeIv1ZZkwVN+MKK/GLs/OBXASiRjVn/vhWuAVd+JGWciMexXzejz8hBGH+rbgKIJ//eifMHT2PE0qkIndz93UbMoInyR7OJLLN3k9Awl4BxRCyYRGCcfuyCjgJNRFvuqDsWC6K2+ga/P60sLmLL5s2oq6tr190lAlJqyZq5pbEZvejU14k0YZTFzFmzYGPnSJsF49TvGwo0aahLxoXkZbC2CUH/QRuQlnIDCTieE1xp2J2ms0VzUwFS4mfA0soLoeG7TTI8daBJdvrjJAy7HQHB78LZdb5JxtMZbiJqbbxHzhozSJekXuYEfSFZlZaSPcovd45DP7JX5fj1WCY+3ZsqsEuYZaIqNIEmr5ODyCZyEDGGxoex8iqyRbycbPDPfRO1vo2YO02WtNp2rAk0mfL+HkFsdCcxXOxI/LcrBJducQmXP+lwrDKiDoe6XHDO7iIdk/Mk2rpsZACenDkQbDmsDjTh/kTnn9+pyvmCZwAAIABJREFU9CxYrvTsFnIxukBuRt/cMhrhfs4mW4qqehIj/rhVjHj7I5PJclx/Jqc4eH4f8/vZI/cw3POPISXyUThS/9voPvqEGTTRJ3vSrzWDJtJz1Z1bmkETPVe3p4AmG18lUVbaPC144W6y7tXuS0weNOEN7Nr/fKKQ+YChAxB115K2f+cynt0f/wH3ID/MeOwmnVZq7+d/oTAlE5PuXgbfwR1f86vTJLS4yAyaKE/Woe/+QQ7p6YhhaWuN2U/eLmiD6BodBZrE/rMHyXtPCNpCrDGkKuxtpP/w5/doeVkJdu7c2a471gRqqm9o+7deRJt3oTI62Rg+YiQC+gSjodk4gAnfy1CgSUXZRuRmPkMaJrMQGPIBamtOISO11Ta3T7/P4eiknV6Trs+O1Ovq6+LJ8ec6YsOYzhpZHWhSmPcBSgq/JeHch+Dpc5/UaXT5dqK2yG8EgITIldmIwMZDUwfgpjFByKuop43sYRIBvaSx1EMTaPIxaT9waZDYd1dIJLun3PFjjHCC/uPt2gPTGaW1uPHbI3CyJavnh/XbUMrmSx1owvorrMPi6WiDdfdrD/R01LowYMFgD7s6HXhyWocM4/VNBOzF5WGov4vgdMMhBTT5v3/OYk9yEV6YHw4GyMSoo7KuGVTexYaJ+56YBgsDlY9KTc5Df57CycwygzOdnl17FqyNJAua8Jj4PaIP28RQoMnJrDICaPMF0Wp2YrqeSg7NcSUDZtDE/DRwBsygiZ7PQU8BTUQdhavfe5xq2bVTMpcKmnj1J52TB6/ojtRVVmPDy1/CxtEei1+9X6eV2kBgTx2BPfP/8y84eLjo1EdXusgMmiiuVnlOIbb/72eFF8LnTMCQOVE6L29HgSaiBlDfcREYff1sleN3trdEUWEB8vPzJc3Rz9cbOdnZJGTYWgZykVgmjTX1Ctcy4GRJWipWVlYYNHgwhg4bibomKngxIhvdUKBJYd6HtOn/BgMHkZjuZR2TmupjgjuNhaUb3DxvImtX1Z9vDAxdNOZE5bJdXbkfWWn3w8EpGkH9vpC0jvo2UgeasBBsXtaLQmmTf9Cb+t6qy1wf/d/dmDfUV3DAkbUM5gmcIdeNlcez0M/LAXdN6IuVJ7NwJrsCwwJdcF1k+41HAwljyj4/mkCTn45kkG7Kedw6Lhj3T+7fJfIVk1GKR1ee1qvEgUEXBl9UCezqkgh1oAlvGB/64xSGBbjgi5u6FiN1yecHUVTdgNX3RsHX2VaX1Oh8jeg4xL/x2ClJZFpJAU1+OZqBz/adV3ArYlcddtcZ5OtMfY7WeWy6XiiOa2GEH/5vruF0Yrg0509yaJIHTf6+J0qwI9c1DAGapBRW48E/TgqAiRiqxKt1HWdXv84MmnT1FTTM+M2giZ557AmgCeuQrH/5C9g62WPRK9qDF/KgCaecN7G8mZUNZZvYNrvgN8ku2NZGq9Vqqm/E2v/7WBDLZNHMnhBm0ERxlZlhwkwT+QgZMwRjbpyr82PRUaBJQXIm9n3xF7z6BxLIeL3K8bPAq5OdBQ7s34+8vDyN82QQZPSokTh9+jQyMzNxsbkZjcQKkw9LasfOV2FhYZg1aw4qapvQTDX8xgxDgSZZaQ8SGlSIwYO/QnxCXls5EjNOLrZU0BQYMLlIzjCB5FQzoG1KbCE6YsQIARwy9lxl81heupZAiucJpFhCIMUbxkxxW9/qQJPamuPEzLkDdvbDERL6q0nG09E3ySmvw7VfH8YnN47AcE8LlJaWthtSEzFKDqYW079dEspx0kpqCHgDxoZ4wJb0LcTw8fGBpbUdmi5e+TdNoAk7kbAjiakFMfXJuagLMWOQN15bNFSnrj7bex6/HMsQQIx7JvVrs3nWqbPLF6kDTdafzcVbWxIFxgMzH7pS3PfbCUFb57MbIjGCGAKmitNZBG7QRpvjRcrZXBm2iBTQhNkczOoYTODItzLgCAMLDDAsHR6Ap2crtyw25hwZQLj9x2PQtbxM1diYgXb1V4fagSbM6PiU1k2fkAKa2Fn3EsTjVQXrJqXSvOWDmXNWBIgZMshBvUuGGTTpkstm8EGbQRM9U9oTQBMWz2QRTdYbYd0RbUMZaMK0/72f/Qn+28rOBryB5VN//t+ysfXdH1FJGijyeidSxlCamY+dH/4KV38vzHryNimXdPk2ZtBEcQlVlYMxYMLPna7RUaBJbVklNr4mzUZb0Cvp3YItW7Yo6JXIzlvULnFzc8P4SROwdctmlBSVgP9dPqzpPerj64sFixYDFrakA6BrBqVfZyjQJDVhDpoacxAxgvQLGm2xfds2YRAN9cn037ntBmRp5SuUxXBMmToVzi7uVIIkfcyGaMmsGGbHeHjfBW+/JwzRpcY+1IEmzU1FpLFClHli5YQN2a+xr+7QIIZccB4lFxwWJf2YgBN5EJKFT5mp0CIj/BlMziF93Ozapt+3b1+MGBmJ2oZLBK1cCU2gCZcvcBnDFHJzeUuJZXFnzO/f5DL0vx3JWEYCnk+SkKe2wafdz6w5g1O0KReDSwUelXMnEl+TWr7Buea1qm9Q/MD6nZhCq2ncfJ9rIgO1HbLQXnb9depAx4te3hCHbQkFCmUuOnYn6bJa0vS56+cYZFIpFdszs02zbEgBTdhdiV2WOPY+MZV0tVo3569ujMeW+Hw8M3sQlgzXTj9P0uAlNLrmq8PIragzuKbKF/suYOOa39s0TWYM9MFri3X/DcJTkQKa8OFJQX4e0tPTlc7+LLHlKvhEQC7GBLvDxkCgiZOTk2DVXkaWziYka0pYbWlNzKCJtDx191Zm0ETPFe4JoElu3Hmw+KRfeD9E/+sqrTOmDDQRO2HQhDdh8mCJ+Hqb6OWdJHoZoZ3oZZuQ7IiBGH/bQq3H3RUvMIMmyletKDULe8juWozQyXQqt1S/GvCOAk14Dquf+UgQUl4qgYHF46yqKMUuOb0SMRfcT0l6LppJ7JUjNDyM9D2CsH3HdvQiVxxZ4IRZJh4+Xpg6dRppWviTrahp3iWGAE1aWqqQfG4CzckGgyJOwN6mN3KyMhATE4Oa6iM0T7lSpF6WpHESLfzQCwrui4YWw564SclcQe47KC36WRCpZbFaU4Q60ITvn3RuHLFyagg0OUDgielOtk0xd2X3WBubg3e3JWFRhD9eWhiuIJqckF+Fkpr2jCwfJ9s2nQIGImfPno2qumYFlpIm0OQUgTEPUtmIIU6kTZW/7w6l4ZuDabhzQgjuju6n9W1FpoH8hcrKGFjLw7p3s1BKqCmsifXDwEaLElbcOdo0FlTVY4ifi04lLlyybNHbAqQHbPLg8i0u4+Jcc85NEewww4yiyD5u+OQGRZcZKaAJj/OOn6gMq6AKn98YieGBrZ8lN393VGBrcbnPIN+OsTVn62S2UDZ0ThkQitmxBh75NO/IR4T5ygpI67J2UkAT1odxtLVAzLGjAotUPhggYuFd2bCgi9gS2hDB7nrz5pNweG9y6jPBIYshxizfhxk0MUZWu16fZtBEzzXrCaCJqKHQb8IwjLp2ltYZUweaaOqM7YLZNnj44ikIm6pdfeu5zQeRsP0IwmePx5C5XUfcTVNO1L1uBk3UZ4/BEwboZF2adM13R4Im2977CRV5RZj5+C1w6+OjcQpMz007n9KmVyJ7QVlWPuoqa9v1MSZ6LHoR2HLqTCxtkFvQWFtPwny94OblgTFjxyJsUDjZCxtP+FV+QoYATWprTlJpyW1klTuULHP/EG7hYE2aFDTHM7G/KgVNBg2+AePGjUcNMQRMqWUizj8n42lUlm+i0py3qUTHNMCvJtCEhWlZoDYk9Dcq0xmm8dnr6g3YBYcdXe6lMpHbx4dQyU0vVFeVt4GQR9JKSfS1/abdkjYJ4/u6C++ZefPmobeVHRqbFenxmkCT88XVuPX7Y4JWBG+uukJ8sDMZf53MxmPEDLlOBzFJUftBfq7PzxuM+UP9FFLA4Gd2ZjqOH2+1vFUVXGbANsDKGCGxpEFT1dCE4QGuggCttjGX1tiC1rgjNoRiCZehNThU5YDLprh8ip1fuKymj5u9QlOpoAmDkQxKPkwiyjdSKUgtAfczP9oniL+yCCxv9jsi9qUW4dk1Zw2uccNlfpUXTmGKUzGsxlwvADP6lt5JAU04h8zksbfpha1bt6KysrJdWpmBxVpEYjAYyd93suCvPuswMToanl6+qGvUDG7qcx9jXmsGTYyZ3a7Ttxk00XOtegJoErflIOK3HRHKZ1h3RNvQBzRJ2XcSp9fuxoDoERi5bIZWtz7843pkxyZj3M3zETTKcIJeWg3CxI3NoInpEt6RoMnhH9Yh+0yKYMXNltyaQtVJE7NICglIapH/tU8/VpfcejWSU1KQQn8aqmthbW2NkWNHY9LkKaisbTEpHd0QoElZyZ/Iz34Nru5Xwa/Pa0LKLC1Y98USmzf9gNyco+3S6OYehiVLHxF0TJroR2VHROb55cSCOUoisF+TGKz2n726jFkTaJKT8SQBOVsIyHmLgJxFutyiS10juny8umgIZg5qBShlQcjjGWWob25/fMobyhF0cj5hwgRhs9CgwopbE2hSTAKfi0no04PQvfUPRHeJvInlIi8tCMec8CuuKFIHL1qzyrdX5TLC+2p7Aj9jY0/jwoULKm+jCjRpJu2mY2lFaLnUG+P6e8FaS6H7cePGwcvHD40dwETjyR6l8rHHqXxsdLAbVlynyPqQmncp7Y7RvR6je3G8tngoZlDJmrKQCppsOJuHN7ckQNS/EQV52WaY7YY7Khrp855Lhxg42PBgNNz5AdMQ9qwb0q74rv0FDAitI40i/j28bGSgwDzbeK61JHQhsdgcdQDrWj+LLNBIAtMtMjUvJOendCS21LahrorKb7e0G1wasUxyiG3iRe5RgQSCsStTfF6lMP8AsrNmrSZlwSU9zApinS8XOyulLkBDhgxB/wGh9BlpeqampjXT5nUzaKJNtrpvWzNooufa9gTQ5PifW5F29BxGXTcL/cZrf7KoD2iSe45Kg76j0qDBVBp0t3alQdqexuv5KHSKy82giemWoSNBk7Mb9yNx5zGBQcVMKinBJ00Otr0FfZPS4hLUUmlcDemjXJLRYhD7sbS2RP/IcIwZFYmdu3YhOy0DAf7+WHbjDWiGlfAjzZRhCNAkP+d1lBX/oVDqYkO0/UstDVi3lpy26jKo3pqtgFowb8GtBLCMJR0E44rcqsvjhaSlpLeSin4D15AwrXblibqujybQpCj/YxQXfEnlWfeT9TAJ63bzEJ1c+FSdRSs5BBCSGA4xMcdwKiEVCfntT265XfTo4QgNG6h2s6AJNBEtZdmxZ9+/9SsnNNUy8aaaN9f6ON+wECcLcooxO9wHLy9Qrf3A4KezvRW2kUaRvFCv2Icq0CQ5ORkxRw8haMwsTBoUoFWaQkNDET5kKAGrHUSJoNEKuiJk0cyb27/uNh6wWk4b5OWkY8KCpprcnKSCJheISXULManYPYbLr34/nomPd6fiKtLDeUoHPRytFk9D43//HYvDF0oka8U4UPlLaXEhEhMTlfZcTFoeiQWVAgDDoBAHP+NcFubvYtfmPKTtHLjsrJm+oxjgcHZ2RmRkJMprmlTqhjAzKzc7E8eOHRNuJcsyYaCXAV+OMhJ4j8tjcXQIYAqDicwA8qfnjD+PSqgWTf5zj4GTCLKeFsOXtM8mTZqE6noCdZT8ztB2rh3Z3gyadGT2O8+9zaCJnmvRE0CT/V+tRn5imqBnwrom2oY+oElFXjG2vfcjnH08MOeZO7S69d9Pf0gOIC246q2HYWmj+aRAq847aWMzaGK6hTEkaMIbd20iLyEdyXti4BMWjEEzxkq+tLm6BtVlpVi7ajUaalt1GGwc7dBMR1Mtl0/LuT7fNcCL3LIc4Ec/eoL6BGDvzt2IGjMevv1D0dzLQvL9DNXQEKAJu76w+0tQv6+ItdHeappLLkqKC3DwwAHSPKhE+KBLcHWrhp3LUmLYtLeNNdScpPSTHDeJ1qUMoUP2wdLSXcolerfRBJpUlP2D3Mz/wNl1PgKC39X7fp29g1lULlBDp8RbHp4EZ1urtuHK0t2zCkpQWNVAZTqXaANki7CQQEyZMoVOk9UzsjSBJnwz8f7bHpnctqHpzDm7k3QqkkinQl9Nin0pReSgkwnWG7l7Yl/cGdVX7bT5M/Ricz2xxjYp1ThRBZqcjU/AmRNHERY1B2P6K5b/qLqpl5cXpk2bpnGNjb1WjcQKmPr+HmFDu9+IwNpza89iL63JOCo7++CaEe2mxRvxFirjFMOeSju5HK2ZxqYpWAOHN+63ka324bQSAUiYGuYlAJRc3qZtGEpnS7RTnj2YADuyGpcSDlT+coYYT+fPn1dozpohrB0iKxJdQ4K6rFvEMZZEV/m3sqaYMJ6+7wkgEaF8dskTDj4oV4GBgfTv9D7QgPPzbbgsNTU1FVX1zVQ200xlhxZwJtBDNlist1JOIJbXhEvYakhQOZ7AYnkwRBSPtbW1BZetNV/kZ0Hzc6Bp3h39uhk06egV6Bz3N4Mmeq5DTwBNtv2X9BNyi3RysOH06gOaNFOd8ZrnVpDgINkGvyvdNri6uByb3/wW9q5OWPDiPXqucte53AyamG6tDAmauDpaoYysTGtq22uLqJpNY3WdUFZj7WAL79AgjZOur6hGdUk56km7JIiAlrqmBuzcugsO7s5tIsy15VWC6CuDJWzTLUZ0dBRsSRQ160wa3AcOgJOXm8b7GbqBvqAJi+CVFv1JPyYbhfKc3r2vOJuIY+UfkmVlZYKGi4vrRVqPXbC26UsAi+G0JJqIxtykolRDPmeXLjUj8QxvTnpj8PAzhk6pyv40gSZ1NaeRnnpLO20Ykw3OxDcqpdPUhZ8dEMASBk3kQxnd3cbGRtgstMBSIyNLCmhyDdmU5tLpPrMImE3Q2WPZl4eQX1kvMAeYQaBPsBXqU6vP0AbaifQzxmjsys66N4oK83Do4EGFtspAE97EnotPRFFqLPoQ02R4sLdQZqAp2J6dhS35vcxlPR0dXMLFpVxr7o2Cj7N+ORfnwi5Gf5KrEOt78OdWOpVhuBFL4jtiXMnfg91ZSkuKkZGRIVzOv/kYQGQNGU0RR2UgZbWNAkiSQfeopY36SGI8OFxmPGi6Xnydy0cjIiIMxmrIIAbPjcTg4edh80OK731l42LgytneEjt27EBJSUm7JqJuzlBiYrjKPGMMMBbR2gXSeztERRmMbEfhgwcRZnIRp06dEv6ZbimwStzcCXSxtpHE6HBwsMewoUNI7H0nUrNaS4T4M44ZW7LBUk3ldYrqxvwZ5+jk0lbCI3uNCJpMJUDRydnN5I5zUp8XbduZQRNtM9Y925tBEz3XtSeAJute+AwNNXVY9Mr9tKFSFP3SlEJ9QBPue/1LX6C+qgYLCfywIxBESuQlXMCBr9cIJ/GT77tGyiXdoo0ZNDHdMhoSNJEtnZEXaVM2I2ZQ5SdlEJjYGz4DQ1ROurasCrVlFWi8/MOHT6WWXHcN/PoG0mYhTjhpUhfe3t7klDMVmaeTsffnLYi6ayk8QkxvA6kvaGJrWUPWvVvodC1VgWUizp9P0CyJRNOL/q+xqZbEPo8IL9k7jiaQxVHvBys8PJxsi+lHpETtg+amArL3nQFLKy9yNNqt9/2ldqAJNGlpLkVy3GT0tnDCwKGHpXbbJduxFee9v54QNnRcnqMsWN8kLyerje6ujT21FNBk+c/HBRo8azyItP7OnMwZpAVRRxvfHY9OIa0R/VlpMz/aSwKhLVj5rwmkt6AZNHKkEsS4c2eRlJTULk3yoIlYXlBdkImS82cQOHomlcDZC05FmmxWJxOLyNXNk9zDNIMCplgrfkb5WZV1odH3vsoEeW8jIeT7SBBZPpgQ4kBsk5Mnjgu2ttqAJgxOZJXVCoBgTnkdgQC9EKWDa8uMmTNh5+BMrAZ9Z37letHJ59MbIoXnQkqI5Z7MeBLZN1w6c4hKfTh4bjxHMZjpEZtTLvzb2BB3ofRFU4wcMZxccDKEUiBu7ujoRKLc9nQooPlasW8/P1+4e/vin/UbwFiJWJYje28uD6ySo+5YWFiCfxeUEtCVXVbXbqhiec6IESPQJyhE8nedpvl2htfNoElnWIWOH4MZNNFzDbo7aNJCImmrn/6IfiBb4Or3HtMpW/qCJrtW/C5Yok576Hp49guUNIbkvScQ+88enQRkJd2gkzYygyamWxhDgiY8alUibapmlJ+YTqyIi/AdFELvzyunncwWYSvvmtKKNoFX1iixd3fBlNkz4B8QiOZLRMWlE7GdZENcXFys9BZ8cscn5hd7WeHgjxuRfjweE5cvhf+Q/qZL8uU76QuaVFdSeQtSkZ3tiAtpqt0x+IcrE5/55I61RJoaswm08IatXbhecx4wYACGDo2gU1TpP2rZoYadamztBqFv2Cq97q/NxZpAE+4r+dxE2hBUUNnQXiobMowtpTZjNFXbrfH5eIVsQlkAloVgVQXrRJ47ewYODg5a2VNLAU0eX3UaR8mhRx+NEFPli8sspn2wR9A/2PPEVIPcVhSWfWRaKG4YrblUjk/7mfmwd+9eFBQUtI1BHjRhLZBM2qzLgiYW1rYCQMbCu6qC2Qwhfft3qg3hSxvisD2hAC+S+O5cHcR35efKLJPZK/YppGByqBfeXhqhNDWiqDa7s9RWV0pmmjCbi8s8eNPO92XGw7CAK7oYUh6ikSNHIpA36c3SP1+l9Ltidwr+ILbNbeODCSyS/r3HjKfionyh3JOD9WC4zMzJxoqslRXnJtqWO9D3NLNQWDdEHXBnZ2eHMaMjcZAYVRUV5WBbc66uvSQjBqtpfvxetfXwhSuV2sSfPk4HBoqMKe6PWUCy4e7hRZ/5lgLriJlamaWtwIkDlWSFeTshtF8IRo8eQyWNrd+j3SXMoEl3WUn95mEGTfTLH7o7aFJTUoFNb3wj0PjnP3+3TtnSFzQ5+ssmZJ5MwNgb5yJ4jLTa0hN/bceFw2fIcWc6ASfGVZTXKSlGusgMmhgpsUq6NTRowrewpx9buTlXRNpUzYaBkaLz2WimYzV7Nye4+nvR/266LO5aQWU2rVda29vQ685CmVr//v0xbNhw+jHT+hqfiPUi0dNNGzeSkJzi8Ryfprq4egj02pjftyA9Jg5j6D0YIvE9aMiV0Bc0KSn8jkRgv0d4+Dc4dbocOTk5God3iUp5aqqYSXGJTjBHwMJC2kmjfMeenp6YMWMGOQ41S6JOi9dXV+1H1oX7iQY9EX36falxvIZqIAU0SU+5EXW1ZxE84CfYO0Qa6tadrh/WW/jmYJpgNcyWw6qCN+oMgDTR+6imXro9tRTQ5OWNcdgWXwBd3WhMmVTWdVn6xUFBOPKf+yca5NY7EgkMWB+HyCA3fHK9tO9y/s1h2btF0DdpaGjVbpIHTdgdhE/LtQFNAgICMG78eLAcVEdYkKtK6Of7zuPnoxm4J7of7pgQonfeVYEmzLZg1oWqsCFdjBZi6e3YulkyaMJsBnYAEm1u/UgUtT9ZbEuN4OBgjBo12iibdNGZKNTbEezepE3YEe6WnJiAhIQEYtLUIaO0BgE0t75K5paYX4XimtbnlIMtyzUxnrxJU2dg2ADBNaqmtl6r7xa+h6ixcvPcaGKjFiI+Pl7p9GTZJs4uLrAiYNGVflcoY8SwEO2cOXPo/cFlqF1fx0Q2IWbQRJunv/u2NYMmeq5tdwdNitNysPvjPwRK/vRHbtQpW/qCJuc2H0TC9iOC3THbHkuJPZ+upE1lFibfew2VLwRLuaRbtDGDJqZbRmOAJjx6FpM7e1mkTdVsyrLyUUf6JGIw21f2VIfL6BjotHFsLafz8PDATKIvs80h2wOKwQKopSWFOLB/f7tbDRs2TDhNrb98che7bi8Jzx7HsMVTMHCq6a0g9QVNcjOfQ0XZevQd8Am8PKYJDkI1NTUaH5bGhnTwHwsSYbWz1945jE/k5i9YIIjhaauFV166FnlZz5Ot72Ky931T41gN1UAKaJKb+SzlcwNZN79OGjFLDXXrTtfPa5visTkuH8/NHYRFZAuqLgQhUnpraWNPLQU0+WBnMv46mY3HpofiulGamRYdmUQW8WTnmwFejvjpDu02marGzaU+M6nkhz+12HZZHQtEtg+WxKiuLMfu3buEfxZBEz5hP19ULehIcMiCJi5OjmDNCWUbQmYRzZ07V/hM1GaNTbEea2Nz8O62JCwa5o/n5mi2oJcyJnkHI75mOYnxLidRXnXBLIvyknzsP3BQkqYJ9xWTUSqIwXL093SUrIXjQpt43qRX17e0+16TMj8pbfh5vuOnY23frVLmL/bLpbDMeOLv1p0nkwSAbpCPMzwd27OYZN1rZMfk42Sr1MJXts38+cQEbW7Ctu07JYF4rDOTSyVQxXRywhbIHFGhfpgaNQaHDh9GXl6eyrRYkl6Kq6trqzivCgbJrNmziRnp1KGOc1LWVZc2ZtBEl6x1v2vMoImea9rdQZOs00k48tMGBA4Pw4TbF+mULX1BE7Y7Ztvj4NHhGHvTPEljWP8y6aBU1mDBC3cLJ+09JcygielW2ligiXhqzWJyykpnmsjphlkmyoJZJw70vFvZ2bS9bEGldSxaeJEKVJovKtKX7UmTITkpoe2kiRX4x40bT+r4V07ME3ccxdlNBwSnnogF0kTxDLkS+oImacnXoL4uESGhv8LdNRI11eXYsX27hCFSqROxTdiGuFdvW2KbOMLGZoDwv6VENNktunt466R9UFL4LemwfAAP77vg7feElNsZpI0U0KSo4DMU538GT++74eUnXaDbIAM0YSf3/XYCZ3Iq8MkNIxHZx/ACyFJAE5HtcicxCO4mJkFnjuMZZXhk5SmMIlbIxxJZIVLm8/SaMziQWoxnZg/CkuHSNZXY1eV8ShLOnj0rgCZFxIThjXAD1TJY0OaPdTSy088jLe4Exs5YhL6+qjUlZs6aReI/vMIoAAAgAElEQVTHTgbVzJAydyltjpDrzBOrYsEinB9d197ZRsr1ytqwtfA9vx4XrGW5VGTp8AABMFGmfSF/vbujBU7HniHNjfa6MsruwyUezHoQg7//+L2mSVeG288hEMvCitzflHyv6Tpv2ese/OMkuduUt+uKy5O4TElK8G9fa4uLeOmzX1FFIL0okip7rSrQhOfP5S6qhImFkqQ+wXBysKHv7kTKd6zGIYllQLINR1KuQ/x9EEasFS6tqqtrr1PCba0I/PciHRM+cFFVAjRmzBj4+PqjkQ4IumOYQZPuuKraz6nbgibZiRmoKa/GwPHqyznSTqfgwqkUNNU3wLuvHwIHBcM7RNF2TlV/3R00EbVBQidFYsRV07R/wugKfUETdgnZ+9lK0jMJIF2TGzSOoZGoiv88/ynZDFuR3fAjGtt3pwZm0MR0q2ks0IRnoK50hkWRSzOv1OqLM7ZzcYBboI9CAiZGR8PTy5dsBZXTZflEjMUTuf6aRWjnkY4JuwzKnqZyqRuXvPUbH4FR1802XZIv30lf0IRdaNiNZmDEMRJ1tQdvpjLTL+DkyZNq58LX1NbEULnTFeo0yEnIwWG0RuBk6NCh6D8glHKpW519Qe475PjzM3z8n4K71+0my7kU0KSibCPZDj9DtsNzyHb4fyYbm6lvtIicc3jTaEhXEtk5SAFN/j6Vjf/tSMayEQF4ctZAU6dAq/vtpFKaF6iUZsZAb7y2eKhW16prvO5MLt7emoiJ/T3x3jLpjC8WyWSB0mPHjuLgmSTSX2hl57EeQz8qk7CjcpLU1GQcPXwIV119LeztlZeFREZGIoA2qIbWzDBUgkSnFxbKZcFcQ8U9JDDLWhycc8691PBwthY217t27UZhYaHKy5j5wEBbM9u0yIQUlsW4cePgTZt0Y62JyJqSH7w6XRdlE60gIdUjpD928vA+AUyUD87BaQJm6lmUREmwxgu7Ffk4XTkICQoKatMN8XC2Ecprjxw5SuKwmSpzLWtvrCzXfUOCYW9niz2kBSQfLPzaq5dqK2P50l+pz0lXamcGTbrSahlvrN0ONCnLLwEDIWkEhAQQADL+qslqs3dyyxG4+XrAlU4YCtPzcXLzEcy4c34bcKKpv+4OmpxZvxdJu48jYuEkDJquG91WX9CERS03vf417FwcsfClezW+G1g0lsVjeQM584lbNLbvTg3MoInpVtOYoAnPQlXpDOuZ5CWkK0zUPchHsAuWDd649+s/gH6QqbfFFE/E2PLYysZe4TQ150wKDv2wDgERoYi6c7Hpknz5TvqAJizoeiFpKdkHB6H/oE1Cj/JuD6om1NxcjPracwov29gOoNpu1aLUfn5+YLCquv6iZIq6/E1yMp5GZfkmKs15m0p0Fpos51JAE9YzYV0TU4vUmiwJdCMuC2EnGEOKmsqPXwpoImp6zBhEQMQiwwERxsilsQAe0fqZx6ytK082MRkaaVP597oNqKqqQrC7A/rIuPAUFuQjLu4coidNAVsJy0dISAhGRo6icobOK2wpCvByWdG+f+t2uKXseWAxWNY32fhgtAA0SQ13Ak0amy6imaztt2zejMZGRdta7osBA2bJyAezWUaQ7bCqCA0NxZAhQ7US1pY6drGdKl2X+UP98Py8wZK7W306h4CdZgT0KkN9/gWl11XQKQWzQETwiAVjne0sBWZU42VtEHbY8yXwJDTQG0sXziftpIuCboiniw1qyYGH8D+BKaLKfU8VaOJBTBW29OaIIBviErKOjpVhrbhRSY6NrS1ppiifsqrSX8kJ6iINzaBJF1koIw+z24EmzC5hoCM7odUvXhNoIp/fLZ+vQeDgYAyd2ip2pam/7g6atImw3jwPwaN0c5DQFzThdVj15Ad02nsRy959lPQFVLtfcFsWrGThyqDIwRh3y3wjv4U6V/dm0MR062Fs0IRnwqekSYnxCiJt8mwTRw8XOBP4Kxvabtzt2B70UovAMpEPLgfa8+mf8OofiKkPXm+6JF++kz6gSWX5ZuRkPAUnlxkIDPmobeyybg/l5e0p2GIjVaAJAyYMnCgLdjbgcqhG0j5o1FbIRKbDzPPLqYzoKIL6fU02yYY7Pda0eFJAE3bOYQcdZu0we6c7RirpXtz2wzGEeDjgt7vGGWWKUkAT1nt4dOVpjA52w4rrpAmhGmWwEjo1ZinRw3+ewonMMryycAhmDVZk1Ckb3p8nssDWubOH+GBBmDMyzxwmBxP1vx9k+2ENB9bMkNeCkpAKkzcRWVFr75sIbxlWgq4Dya+sx7IvD8GdnIQ2kJaMNsGgSQ3pjPQiRfLK8lLs2aPaMp2ZJvIsiyA3ewS5t+pxyYcXCaBOnz5da2FtbcYvtn127VnsSylqd6m2pXqvkvvW/tQirLxnPApSz6plgzB4wi42DjJW3QUEnBTQWlRetv6dPnM2Shp6E/DnKFgUM2hSWdNEn8W9UFdTge3btimdKjv4xOVWCu5wssGMK38SqOVgDa7Ro0YKoAmzVljHx8nJSSVg0psEa/m77hI57BmrREqXdTPGNWbQxBhZ7Xp9djvQRFyCc3tOorqsWivQpJG0Ahg0iZw3XijTkQ1V/RWW13e9VddixDs//hNcHjP9wevgExakxZVXmjJC7kj2pmVVyk8bpHS64fVvUVVUhgX/dyecfdRbXMau34940mCImBeFoXOlCcdKGUNXaGNNxw12tNGuqFay8+0KE+hCY2SAiuuOK2uNl2t2FOBSkgNUOiMv0nappYXKChvRi95fVrZXqLucQmHjPm+uYC1sCNHCirxibHr7B7gQMDP/uTtNvkp2tNHhU9QqZYiOhtEU5K5AYf6XROW+j0pdHm7X2prEO5sbarFxYysDRT64PKe6sr1ILrexse0vMFeUxcyZM2Dv6EKngPqlKSV+CeqJJRM6eA0xOsL060yLqxmg4qih00t1kXBmEtHCSzEoYhed0EvbxGoxjA5vuie5CE+vPoPoAZ6C3a8xwonsRfm0vY4tqlREUkEVbv3+GMJ8nPDLnbqxPY0xdmV9chnRn2TR+sTMMEn2wNqM6/eYLLAo7uxwH7yxZKhaO9NiEnn97/Zk7EpqLQ25emQgXl8ajoyMdBw9GiP5tiy0aWFl2yU2hMt/Po6zpL/z9S2jyNZWN6cv2cQcvlDSBtZ9dqN2Dlkujlb0TF8ktkkL+OMkJSUZ584pMvb4fhV1jYJukBis4RHu5yw4yMiHIKzN4qekz9VySbeyR8mLf7nh1wcu4McjGQIA/viMMNw4RjsxZgaessk9Z819URjk5ySIkKtig6gbWyV99wUMjEBCpRW+PpiJVxcPhhvlqr83Madc7QUohAGXLHrGY44fb9cV/wZg62AWqhZF4/lvLk9zJFaLLIzCQOGIYUOxm4AuKytrwZVHlXVwdPREeHj5dEqdH23XWVN7b1dpOmaa+jG/3rUzYAZNZNaPS3UK0/Iw/c4FsLZtT0VUBZrIOlF07UdB+eh/fe5zlBeU4qY37oObn3qwQtX8+cOZN3/84atrrH//d2Seu4CFj12P4GHKT3jFvjd/sgoXSK189n1XIXSsbuwYXcfZ0dcZItcdPYeucn+ul2cleX2eaylz5TVtbmrCZqI5KxNpU9YHW9y6ubsLdciGiNqKanz/+Eewd3bAnR8+ZoguteqDcw36I1f6LqmPc+fuI8rxDrIb/gheXgsUr6HTULYgPnTokNL+mprKiNZ/RtBEISETYuMQT5n+dnYeSQJ57TcnLM4X0jeETuykU9lVTeLQobFoairFhAlHYW2t22evpATJNRL3Kppyffr09aioOIHhw38lVwXjMDF0Gb+hrvn2QBre2pyA26NC8MIC43yPCLmmr0V1X43sdjH5vd2Co8j+p6cbanpG6ecJYsSsi83F/64djiWkwWLIYD2S6f/bQ7bsFjjx/FTSSrNRupnbfC4PL5OuSkl1oyCi+dKiIVhM4rEsMMraD6dOncL58+c1Dm08WQuzxXBvC+nMFI2dGrHBY8TE2XAmz2C5/46stt/clIBbxgfjZcqhNsG5Zkvmts02fWYeJneW7GzlAuZcllJGbAmB/UcoizLAhO8/efJk+PgQQGug7zWpc7qftF22k+33ChKEnh+hqHmoqh8W05307i6wLsnJF2YJgEVlRYUAnGgbAwYMQAS52pXUtmAlAZNOthboVVuGhPg4IV/+tKkPIIbOyKGDiZmagKSUlP9n7yrA4yrT7om7u3uatqmlqVE3KrBQirsVWy8sLIvsLvwssiywsCy6LM6ipUhdoO5tmrRp3N3d5X/fO51kJjOZuTNzM00n933+PvuT+ey+3x35zj3vOQJDhOfkUiPWmHGwtRHy20cfOPb2dvDy8ta6DNZMGT8+QVjncL8hJk6ciLj4eAFYGQvB96YccgZk0OT8PZB5+CzpoGRh/o3L4eLpqnFnDAeaWHp5zrePvoaerm6sefY39DTbuA9HKcpzTn69E7kHT2Pa2iWInaeborzt7x+giUq0lj90KzxD/MfUu9yBnhy4kM1dXZPxrJ4xlTATLtYc5TnK5XHpTEtzPXaRo46+UKrqd/ZKA5jwfH306+ubh1+h36rWuOYf6/UtQfLXTSnPyTm3Ct1dxYge953AENEWXK6fTroGWVlZw669v49YhSQC29WRS2BGOf2YtIOTyxSiRSu+LyIiIjB9ejJaJdA+6KcyqYxUZjdYYfyUNMnzqWtAMeU53L+s+HE01n1HtsNPke3w1WZdozkm+8eOTLAewfqlcbg2ybCny2LXJ6Y8p4Oe1i8hbRVH+mzf/fuFYoe+IO3Wf5WCIwV1AjNndpT0QN+6T44jNsAJa5MdMSkwnD6XHNSYdEp7Zr74+cQQepCYASyiyeFFVq+sD8HswO1UwlBXVzdsjuLpMDh+wkSjRZwvRPLf3JuLj48U4r750bh9dqTJS3iOhHd/IAHePxBraC0xdQwJZXlOZ5eCbsfORY62/aKt3rXNJehzkbB2h5HC2oasf2hbZW7XzY3GXQSiio1dGVUkjHwGc6J98NLVCraaM1kyl5UWkTix+LJGX19f8IOQpraegYc0fISvb+/AnkNHceJMxsCS4kL8sHrRHGyje7y2dlAvxp4AE6XzEQMp/v4BhNdaaQUeFyxcCH8/fyrRKdS6zsDAQMwnAKu5vddozS6xORwt7eTynNGyExd2HTJoQvlnQIQ1UIYDTHiLxiJo0tXeie8ef10ASxg0MTakAE0ydx9D6o97Eb+IqKdXLNK5lK//8DI9DO7H2hdI/8Tu4nhKZGxuh/aTQROpMql/HHOCJrwaemiKgvxcNZG2oavkJ0QzZsykJ0t9Ounr+q9Os8XGx14XXMbW/O3XapbGxoxlaB9jQZO+vlZkps0SAI6EyaeGnZafjLoR2Pjzzz/rdHtQDtDRnk7snyrBQcfJeQo9sQsUtA9aqI5fCvYhj52dvgS2dn6ImzC8HoCheRTTXixoUlP5Nqor/mV2S2Qx1yBFGyUAYKhziCFziwFNeLzFr/xMYpJ9AmjC4Mlojbs+OoYMKid679ZkEpd0l3yZO8idx8mxBy8c+QNWjZuGR+b8kUQwgZSSBrxMpUFZVc3CnL9eFIubZqiXzzFowgAUP2Xv6+nAls2b6f/XVLdkp5BFixYJB8KRZhFKmaBvCeB7kYC+KyYH49EVCSYPfR+xK9LIOed1so5O0uL6omuCoaAJt3Uk4L9NtNW7+ujBwcG4ZO5ck4S1DUnIUE7BlrMVYBBpOYkxP7laPOvsXz/n4KuTJYJV8+2zBkv+XRyskJp6mpybcvQui0uSVpKjXW+/ZkkSsx9Y0+TzDT8inQwQWIeGY0I0ueuMjyJwcBt6qYyXwXcvZzuBGcvhTSxUe3sHrff3ZGKzRERGgx+68MOEM2mpaut0JFFY1jHpptdN0ezSe+GjrIEMmoyyDblAyxlzoAlbBzNAohSIPfztXkHsdf6NyzRKclT3ZCyCJszWYNaGm783Vj5qvI6BFKBJyeksHPrwB3LviCX3jiuHfbs0V9Vh6/Pvw8XbA6ufWHeB3lYXbloZNDFf7s0NmigdX04cP0a1+Qqha9Vwd3fHypUrB1T1pc7E5r/9B621jVj12N1w9TW9Zt6Q9RkLmrS3pqAg5xbSBJmAqPgvdU7J+ibW/d063R5UB2AHmd6eWmKauGDN2kfI4txTMu0DBmXys667IO40YkGTpoatJLD7Bw2BXUP2dTS3ve4/VE5AWgQsAstisCMRYkGTNW8dQBUJQrIuAtuxjsbgEoDr/nMYDaSd8PW9cwbEJaVaKwtdkooTrv/iEaRWpgiOH/cm34JYt6W4/b8pwjQJ9DdmlyQGe2hMqwRN2jtJZ8POCrU1lYLNumrY29sLB9SePtI66ru46PiHyIXmoa9PC+Kg/7x2qslpN9Y5hyfWBprw31mfq7gwHydOnBC9PmdnZ+GQzjqoUuhziZnY201hmayMZtJ3YmCOmRrTwsR/93Ef7juJ7kdPAi2Uwd/ldsT82EnM0ZqaGp1LmjX7Enj7BtD1ay9v9/d0QENjMzYTCNjZ3UNAVxM5PfVgwfSJ8HCwISviQ8L4Hk72QokaC7u6kLV2r5bhQkNDMWvWbLR2ErBI18/t+TNKdZ2LFi+Gm7sXgbhiMmk5bWTQxHL20pQrsTjQhO2G0346KQgksrArl9qoCrsy+JF56Cyu/tOtwuvfPPexRv64zxXrFQ4R+saz5PKcyqxC7H3ra/jHhWPhA9cafZ9JAZrUF1di5yufwDPYD8v/cNuwayk7m4sD721EYEIk5t9reZRxfZsggyb6MiTd6+YGTXjl/GTJlWqZ2VqwkWqjVWMFASa2dk7oHqEf+7v++Snqiiqw9Pc3wTs8CHXVH6Ox/jt6ktUkHJwDgv8oXXKHjGQsaNJQ+xXKS54iy94ryLr3Wb3r48OUPreHwUH6yK0glUpyYuHjawsHtysFAEWKaGneh+K8B8g1Zy6557wtxZCixxALmiiBHQfHOCp9+lb0+CPd0J7IhVKUn//veJHA1rohOUzQ5DIm+L2oi3kkFjS5/cOjyK5qwQe3z0C8v8IedDQFr+1Xn5P4/vmTVIyfK/5+1WRBh0WqsLfvxWdnvsZj294SDnTC5yGVCz48h8rEGsNACg/43ZK4YadTBU24ET/tZz2IjIzB0gYuS/Dw9LkoD4QFta246b9HyFXFGV+sm21S2tmt5SojnXN44uFAE34XuTha4dTJk8jPzxe1xmXLl8PR2c2sYqPMiulsb8a289ojSmtkG/oc4FIbMcH36EES0+W4hPoM/QwJohKX8LAQbKXvctbaGRouBBbNueQSRETFkrvQ8KW2zDTpoPddRUUZDh44gPyaVpSSzTbH2qVzUFNRKtzjHqSr4uzkCG8fb/pMIimlIequ7JSzmsApttZWBacc6GGCFT1M2LxpEyZNmoTQsAiBhTLWQgZNxtqOa79eiwNNzL2tlgyaKK17I5InYOZNq4xOrRSgSRdxcL974t96S4Uyf6Iynh/2Im5BEqauWWz0mi/WjjJoYr6duxCgCV8d/6Dr7mwV6OXKmDlzJvwDgtDVN3LU/X3vbkDFuXzMu2ctHHz3o7LsBbVku3ksIUvf10ZkA4wFTSpLn0NdzafwD36IVP7FseXY5jk7K2NYtwfVC4yNjaQfvrXkDrGeAI7Zgj2woFhrYjTWbSTNkCdEgz0mTqe+j+R0xtFM9fO6YrD0yZ5Kn05KuQSTxuL3R193u0FPs4dO2NHdh+NFdaTDYCNY/RoabMU5Y8YM0tAg0EQHiCkWNPntl6fA1qyvXjcVMyK0izcaukYp2ytBHdUxVycG4YlV4yWZxt6uH+dq03D1/x4cAGaUA7vZu2LbbR8gzMOfnrRrltso2w0FTfgpuiuV5O3bu5cOnBXgsoTIqBg6oJr+/pXkog0cRKl9w26Fex5cZGBv9eaHibXyILFWuCyHy3MMjeFAEx5HafXOujL19fU6h2Z9rrCIKIFlYu5gVkxZyaD2CFt/c4kcv/9YF0dfsMXvGSpvciN3mimhmswn7h8bEy0ItQ4VIbezoz50P86acwma2vt06oYoLYftbPoFXa6z5zKQUtwg2Dh7uDrj+pXzcfr4UTTX18KPSs/6yXVICTqqXoMucMqRdFg6Wpvg6uomiWaXvtyNxtdl0GQ07or51ySDJibm3JJBkwyy7U3bvB8JS2Zi0uXzjc6UFKAJT86gCYMnVzz9ABzoy0BbHP9iO/KPpCHpmmWIuWRkbCKNToQZOsqgiRmSfH6KCwWa8PQsJldZWYZD5PjCqvqJiZPQNsICeUc/3YLCE+kCgGrj+xaaG3drJHv8FO22kqbuirGgSWHuXVRHfxRh0W/B1W2eqGXwE0FXR2uB1jyc2wMP5OfnhyVLlqCusRR52Xeiq7OQGDfSAEe1Ve+hqvwV0gu5E/5BD4lat1SNxDJNeD7WXWH9ldjx22FnHyzVEkwehw88JUUFOD7EelPswMoDD7uvMLXe0Jg7bx6xj4an1CvHEwuaPPn9Gewi+9ynycVkWcLos3e+5EXNzwJmmXxz7yWGpk6jPT/pbu9txAOb78eurFLN1+kAe0fyfDyz5Bm0tPUNq0MyFDThgfi3ia1Vj6ATlZQ0faAsweRFX6ABLn9jP+pau/Dd/XPh56ZuQ88sINZ84UN8nL+m2YHqkj8nd5bXfsoWrJofIiFYQ0MXaMJj8Z72ErDJwP9QxoNyrsjISEyblkTfa8yKMHQF0rRnNlLaee0RBkD4c2FikIegD6Iviqm0r7CuVShTi/YdnoE4bepk4XsmPT1dGJIhu3ASFV992eWC6K0+3RAlaML6O+4EeLMuV2VlJcqIbcIg4uTYMEweH4cTxO7pIlMHbU5dSUlJCAkLJ1BoeDCIGa6dVCLUzZY8YzBk0GQMbrqWS5ZBExPvA0sGTU5t2IWc/SmYetVixM1PMjpTUoEmO1/+BPUllQPlAdoW9NO/PkdNfqlQTsRlRWMtZNDEfDt+IUETvkr+QVeQnwd2elBV1R+pDKRs/AnZe09iypWLYBf0HDraB2ntyjnjEw/Bxkb68gFjQZOss/NJd6QesRN2kjVioOjU6HN7YHE+rrNn7YPefmt0duSgKO8eAhCqiR1yOZUCPS96Lm0NK8v+TuVPH1HJ0x/g7XeHSWMZ2tkQ0KQw9w4CpY4jPOY/cHE1rSTA0HXqai+UAdD7IyXlFPLy8gwemgUVc6pbEEjOK7FUamJICC4fMbop9crxxIImLPDJQp/GOJkYsnZj2179zkGwvapqLIjzw/NrJhk7pNBPYCXQQfCRHY8gszYTh/Pr6D2nfmhTAluXx12OGxNvJqcs7QdabaAJz0EyFeQ4Z0/Crz1m08wwKSk6Ot9D7kJny5vw1k3TMTlkEOzj8qlHN6YO7BGDJh/ePnPYkZ4n0dPvyTmHARMGTgwNfaAJj+dEwH91VblQUjI0PD09BWFt3hMphLUNXb+yPbORGIjYtWsXjpAeYjkBEQyAMBCiL9JpH+pI3ychwB2+JEI8XLCw6ozkJMGSuby8nETFvQTAxN5JXEmSEjRhcEUAAa17BTCqs7NzYMqFCxfAnkwRduzUBDejoqIwTQAMdYvHs6YQiyiP1ZBBk7G68+rXLYMmJt4HlgyaHHz/O5Sm5WDO7b9A6BTDnzYoUysVaMJCsCwIO/vWyxA2Tbs6/Pd/fgOdLe24/C/3wcnDsB+7Jt4Ko6K7DJqYbxsuNGiiFGlroieL9HtpxOPcjsM4s+UAxi+bheAZ+aO+PKenu5KYEEthY+uF+In7DM6PLrcHtlv09PYTnrwpo70tFUW599APy1Z4+VyPwNAnDZ5T2aG06I9oqt8kgC8MwpgzDAFNyov/goa6b4Rr5WseTcEHbnd6IqzPXlbbmlkfoqShHZHeLgj10n9AUo4RFBQEZpm0dOim1CvbiwVN3tmfhw8OFeAesjy90wDLU3Ptx6vESviC2AnKYMHM56+ahKQww0ubVNfs6NhHOiaf4vvM74Q/19Jn3bmKpoEmrGnCgrAMnHCsn70eM4PmorNL88qHA024JVu6t5+3xzVXzoabx9ne+PKg3VlVgqbFonh/xKiwG749XSowUFQjjrRxFpAts7b4IY3AjNwaXJYYYrBzDo8nBjQR8k5lVxnn0pGZmam2DBbjtWF9LoVj8QUNpabHe599g8yKBr1AKuufMEhV19pJlr5AFO1DiB6QxY8shePjY6lM54DAeAoOjRStG6IKmnCiGARsaWrATz8pABJ21EtOniEwTPJys8m1J3Ugn6MFnLqgGyxychk0EZkoC28mgyYmbrAlgya7/vkZCT+WY8lvb4RPpPHUa6lAE9YqYc2SSZfNQ8LSWRo719nShu///KZgh8q2qGMxZNDEfLt+oUET4QcS0Zx11fFLmY3cg6dx8uudiKayt+lU/qZkQ/Ac9g7RiIz7dERYJjy+MUyT1uYDxP64D86uMxAR875RqdDm9sBMgpi4eDpkaQ7Z2nJYAE6IUC5oqLCWijFRlHs3WluOCBopLm5zjBnC6D6GgCbKMiJvv9uJFfOw0XOOVEcxZQBD524kCj6zTNrpxMauOaGe4kATJycnwXnFECtOsaDJFyeK8erubFw3PQy/1yF2OlJ51DfuDe/RfV/XJghestUw65mYKgLLQIaVTTcaOtQFr1vIjYSf+HME0WHU1VGhwaOMAFd/1DdrimDoAk30XZ+5XlfqfaSlpaG5WWGfbEgU1LYR2NeGCAL7ws6DfazDwXocQ4OBramh2p1gSnpc0QQnLE4Ihjf7zhoYYkETpdX7nj17hJISjlmzZiEgKOSC6JgMd5ksEJ5bVIK3v9okAHS6SvbYppk/Q1SD3xM+LrrzOG3qFEREhMPaxo50Q8SXJA0FTXheJwLe8nKyBJc9paMeM7RcqWzx2LGjKCoqEpa3ij6vrEcJOGXgLWb25jJoYvaUj8oJZdDExG2xZNDkx2g+QUUAACAASURBVKffQXtDMy578h44e7kbnSmpQJOBQ9vsSZh+3aUa66k4V4B9735Dzh6BVMJzs9HrvZg7yqCJ+XZvNIAm5rtaCCwvZnsx64zZZ1yek591jbAE/6AHSX/jrhFbjqGgCa+tqvxltDYfJKbGlcTY+JtRa1OWeZw6pXB7CA4OxiVz5+pkErDWS0nBb4X5/AJ/Bd+ABwyeOy9zjVDyEz1uAxwcjWf5GTwxdTAENGlu3EHXuh6u7osQFvW6MdONeB9dZQBDJ2cdgDx6Um/ogYfbL1m6lHRzPIe1BtV2oWJBk63pFXh6UzpWTAjEXy6bMOI5M2SCT44U4o29uZgQ5I7/3JJsSFe9bflQbWjw031tZQQXA2jC18pAH/q6BLeS3l7DqBblVFaWO6SsTOn8MjSPPi4OAktnaPgFBqPTOxqv7c7HZ3drPpwSsx9iQRMei63ebdAjWL0zK2LCxEQCLA3fdzHrMqVNP63xi52HkZOZIdg6a4tWYiudKtYUtx0u18oxuESHAVdbG1tyr+kzqCRJG2jCbxvWIOnoaEe/ld2Aox6LBDtT2SK7702cOBG+/oGkYzL6cm3KPo1UXxk0GanMXlzjyqCJiftlyaDJ1w+9LIh0Xf3iekK/9auFD5dKqUCTigwCRd75Bv7xZIF8v7oFMust5B1KJXGxHji6OQt2w54h/ibu7sXXXQZNzLdnYw00qcouwp43v4IfCcst+uV1BEgcEnQ8OLx9b0FAyKMjlnxDQJO2lmMoJtCir3fwSS27+rBIqzGhfPq7l1w2GDBhJwdVS0ZtYzbW/4iyIkU+mIHBTAxDQqnFEjdxD2xtxVlcGjK+rraGgCadHVnIyyQ3JWIaRSd8L9USJB+HhX3PnknTKAMYOhE71LDrhGpwCcjsKN2ONezyYYwVp1jQ5BBZlz70zWlahw9evmb0CJzXk2bDNe8cElg5f187GfNitJd7SL6hRgx4sYAmfGnMbKitqcSB/fsNutJ6Uk09W95IQqX2JFiqeNClBFJUB2LrXAa5lGVNytdcXV0xa8FS3P/ZKSrzsDHKOUf4PnC3R2tHL5VJiQN9uKSko70FXqRl0tzeO6yYr0HJkLgxa3qcLK4j8fX9iHDsIu0QTbDBUIBKucRFixfDzd2L3LbEM0yUfbWBJvwa63KR4pYGKMJlp1YEysGKBJZHITgl8bZJNpwMmkiWyot6IBk0MXH7LBU06WhqxQ9/fUsAIH7xlOFPSlXTKhVo0lxdj63P/RcuPh5Y/fi6gSlKz+Tg4H8VNc/KGKslOjJoYuIb2oDuYw00aSyrxvZ/fASPIF9c+vDtaGrYgtJCRUmGm8elZDf8sgHZM6ypIaAJszyGOvtYkzjtOBKpNTb46S8fZFj3oEu3E+/AFPW1X6Ki5GnhvwND/0KaH+pA73Br6e/vRUYqH4ytMH5KmrFLNrqfIaBJX18HMtOSyTbThmyHTxs950h31FYGoG3O/aTjMDT0gSb8dHzGjJlkhatbSFHbfGJBExaVXEcin0zzf+9WadkcpuT+5V1Z+PpkCRaS6OtzJoq+mrIOMX0vJtCEr4e1TTIz0nHu3Dkxlye0aaPPp5PEdHCys8F0sguuJOZJNjFPOPxcHQTnE3aAUQVVVAdffumlOFnehd98kYK1JADLwsPGhKGgCc/hwsyIzm5BWHu0xt9JkHlJvDcqzx6GXb92H+SUkgYNW2xd5TlTp05FWLh4DZOhuRkONNGVQ/4+7aB7hR135BCXARk0EZcnS28lgyYm7rClgib1xZXY+conAltj+UO3mpQlqUCTPvrC/+bhVwRPtmv+8SD9UFcg/QyYMHAyNHjdY41tIoMmJt2qBnUea6BJe2MLfnzqbTi5u+Lyv96H+prPUFH6rJAzJ+cpgqbJSIUhoAmXDI2Esw+voZX0FAyJ2uoPUFX2D6FLcPgLVCp0md7ubOHLVr62tr6Im/iz3vZSNzAENOG5c84tJ8eScsSM3wJ7+zCplyPZeMM5S6hOoE2PQBe13t3dfUAzwBgrTrGgSSmJ0l777iHBtePre82rcTPcBrB97R0fHhNefv+2GRgXIL1rlmSbTwNdbKAJMxvcnGywf98+wVVFTHTRb6SjBXX0E8kKAe4OYBcoDqWgcQfpmxwnfRNtQGBycjICSUvk6S3ZJjnn8HzGgCZs9d53obyFxSSX2jy9OV1gcNwy2RPnThzU2ksJXPGLrBvjT9bPw7ntKEVaW7v6jbZVNgY0EXm5cjOVDMigiXw7cAZk0MTE+8BSQZOys7k48N5GBE2Ixrx1V5mUJalAE17Epv97F231TVj1+N1w9VGImB35ZBOKTmran65+4h64eBuvxWLSRV+gzjJoYr7EjzXQpJfKFjY88k9YE2376r//HtUVb6Cm8g0h4Xb2QYgdv2PEkm8IaFJW/Dga69SZZ45OCYiK/3rE1jd0YKZAK4NdcBobNgv/6RtArl7Ok3Wuo6uzmER2n4ctWSR7+T9mtjUrJ1IFTRiXVr0WZRt6kD0QLU0H0NNTRYK1c8nWWX9JZHfP8E832QVKX+mTKQlROkvs2bMZrq6HSE+hAl3dgWhqWiwMy6KZ/KRe+QSWDz38lNiBDkraYsXKlXTvOwu0emNCLGjS0tmDS1/bSzbKZBv62wXGTCV5nz9tTMOe7GpckxSKB5cax0iQfFE6BrzYQBO+FP7tZGfTJ+h9tLcrxG+HCy4NSSlu0Cgvi/B2JlFY54FuSiZEYrAHPM+7DkVHR2PK1Glo6+zHvZ+dQFppI/51/TSBrWJMGAOaGDOPuft8eLgAb+/Lw7u3JMG3txanT2uy62paupBR2SQI6HIJ1HDBgCvbKnPOjQFclePKoIl57gIZNDFPnkf7LDJoYuIOWSpoMiC6Omcypl+73KQsSQma/PzGl6jOKcaC+69BQHwEyohhcvijH8EHOtUISYzFJXddadK6L8bOMmhivl0ba6AJZ/bbP72GHqJQr3n2N6itfZHYJv8TEj7S5RmGgCa9pGWSl3E5HeRrhbVxaU4YaZqwi445QqmBUlJaiu5uBYW7sz0TnZ35nClaR7JOnZKe7hp0d55GZNR0dPZPNMeS1eZQBU24JKm/rxtF5MKg9vkaHIj6+nqUlZWRdkwLCW+2U55dYW2t6TSjWvnPDjNWpBGijRUeEhJCQIY7+qzU3VDEJqCLAA8xD6rtbVpwNnUd3R9nBoZm4KSy8pfCf58oqhc0Opg5wWUM2rQLuN3MmTMRwKKZvcaXE4gFTXi++S/9JIA5ex9aPOyaxObK1HYHqIzp4Q2pVLJmg2+I+cJ5Gu1xMYImnFP+nmlurMPuXbt0plibiDF3mBHhrQb6KR122BWK3aG8vb1xKZXlNJEeSk9vP1YQONdMIN2Pv5wHbz2OL8MtyFJBk5+zqvHYd2lYlhCAl6+dhBPHjwkONarBls+lJCit6mCkLU9cCuXo5EZArWklMjJoYp5PHhk0MU+eR/ssMmhi4g5ZKmhydssBpO84jIkrLsGEFabRgaUETfa/swHlGfkImzoOvtGhOLVB8UMieGIMuju66F8n/GJChXWzrslYCxk0Md+Oj0XQZPMz76K1rgmrn1iHhuZnBF0TPizzwZlLSbikZCTCENCE56+v+ZxKh54hV5eFVBbz/IhZIQ93rczO6GhrwnZyKVAGi6Z2d5XRf9IhmykcpF1iZx9K7jixasP0dFdg9mwfYqTYUinU1SORTp1jDi3PcSGbyuysDJw5Mwgy2NvbIXl6Ek6ePInCgkwCTdrokuwoz650bSo0lP4++juDGTYkdOgGdonoGQJw82IiSBckaXoy6hsbtTqf6EuCGwlY2js4iQIwmuo3orToCY0ha2pvpHt6nGDPqk/HJDY2FomJk9BmopCiIaDJ5W/sRx15kf5Ah1l99qX68mXq66yvwjorDyyIwa2zIkwdziz9L1bQhJPDFrL5udlITU0dNlfKw/rQBkP1NNgOl8vQXOxtMZ0AFXZtgbU9evqsUNXcgTVvHRRAsE2/mmf0vlgqaMI5vvn9IwJzZ8N9l5AOi7XgRNNIn1vKOF3SSKBTN1SZPEMTOWPGDAFw7epT+aw0MtsyaGJk4gzsJoMmBibMQpvLoImJG2upoMnxL7Yh/8gZsvZdjujZuunk+lIoFWiSvfck2CVH40fBsllIXG38F7y+9V9Mr8ugifl2ayyCJjtf/gT1JZVYtv5mNHc9gdaWw4KORVdXMZW/fElPzkbGDtVQ0KSy9HnU1XwC/+CH4ON3p/luCpWZ+KBTVlKEY8cUug8cbS3HCRRQCDMqg8twuHxIGRMmeMHTPYdEHZvIyvkhs699KGjCWgPsPnP48CGUlJQMrMfb2wsTJ8Rjy5av0NzUNPB3G1tPAkpsBfYJgylM/2CGiYeHP+rq2jR0C5Q09dOpacReaTD4egMCArBw4ULRrhuqZWWqkzU0rEJeRRIyK5t1Uut9fX2xlOyFm9p6TBZSNAQ04cMaH9o+uXMWon1dDM6TVB02ni7F37dnCgfHL9bNlmrYER/nYgZNGGNlC9ljR4+gqKhIa66qmjvBOjNqny3E6poW5qlRXnY4v45Akj78+vrVCAsOIbBRwQc7Qnoo679KQRL1ef2GJKP3xFJBE2Z6MeOLgxlfrqRz1dXRIpRPcTCD7mCeQkz6kmgf8Gfn0IiJicHkyVNA+KckIYMmkqRR7yAyaKI3RWOigQyamLjNlgqa7CNGRwUxOljPhHVNTAkpQJPu9k5soqfc/L+q4RMRhCW/u8mU5VlUXxk0Md92jkXQZO/b36Ays0Cw9G63/oMguOrskoS21pMIi3qdmB2LRmQDDAVNivMfQEvTPnL0Md5qWIoLcXWworr3FOTm5grDMcjUT44zakEAg6ubAvRlYcDEiS5IT78DPgEPEOBzhxTLMGgMbUKwLH7oaNuPrVu3orW1dWC8wIAeeHsFY9eu3QN/syIrSysrRzpAkAYDASa2tiSG6O9HmgwF1Nef/m6ntp7ly5ejpraOAJlS4e+szcDaIi4qujDDXYC9vT1WrV5Nxpp0eOkmQRQRwfcsiwUPjarqO5Fe6o9yotZz2QKXLwwNvhZ+Mt8HO1qniMn0NDEENPnl/+ihATlz/JsOs3wQvhDBe3P1OwdRTQf0P6+egJUTAy/EMoya82IGTfiC7Wys4UyfJ8xsaFIBKVWTkV3Vgkpii3AwW4rBNRYiHRoMDHqGRGPprKkI9hwU8P3ieDFe/SmbnHNCyDlnnFF55k6WCprwtd343mEUEvj78R0zEePnSi5H1igvK8aRI0cEZ6IzxOJxc7DDlFAPjfz5+PiAP++UpVBGJ1ilowyaSJFF/WPIoIn+HI2FFjJoYuIuWyposv3Fj9BYXi0455jqQCMFaMIlAVwaMDSkcPcx8RYYVd1l0MR82zEWQZMjn2wm0eVzmHXzanQ6/Ro93ZVw91qNpvrNZKv7Z7LVvW5ENsBQ0CQ3YzW6OosQPe57Kn8xDfQ15YJY38Td2Q7bt28nlkWdTtBE6cSSV/ASCcG+S2VFz5Hbzi9Mmd6ovsO553DJUXtrI3bQtSijpXk/pkxejI4Oaxw/fkLrfH5+vsQ4qSM2UhUJxUahqXnwEMc0dUdHJ2RkZgl9+Wl5HrEp+Ck4R7y/m9ZDn3KihYsWwd3Dm0AWwy61suwF1FV/fL6TLRoalqO5ZQ5OkZBmK3lKTw7xgLujOrjDjefOo9IY3wB0dJumQ6BcrSGgiVJ49dkrJ2FRvJ9hFyxR63f35+H9QwVIIoHQ10ko9GKKix004Vzze7CzvRnbCLwcLrj8hsOWQJZhgUdnT/jHT8WWM1X404pBltvz2zJMds7huS0ZNHn02zTszanGM1ckYsk4hfA1S/qcPZOG3UdTCVBpFdxyhrLBrAnEYoC3n8oYuRRKqpBBE6kyqXscGTQxT55H+ywyaGLiDlkiaFJw7CyOf7mdSu77sPCBa+EfF25SlqQATZhhsvHx1zXWwXorrF8ihyIDMmhivjthLIImp77djZx9pzD1qsXo9VhHRIIucoS5l1x03hGcYfwCfzMiG2AIaNJPWiEZqVOEdSRMPi2I1F7IcLCzRm93u0Dh7mjPIzCnQG05NrasXzIJSieWnKx1ArgSHv0OOdKY/7NNl+WwM+mbFBfm48QJBUDS3pZCejZNmDfvemRm5gmMGmaagNgz/X1d8PT0IKCkh0AVhViis0siXb8jARSkgRMXB9YGOX7ilPAas0sYtFACJsokDRWyVP59ypQpCI+IEqVjMnT/eQ9ySSyYw82NBHe7HkRGVg6VJ9QKlHqm1g+NxMRERMfEkjuJ8cKvQ8c0BDRRHmj/SIfcKycHm/2WLm/sEFgmHKY4q5h94ecntATQRHgP0XuQy/6OHj1qVCodHByw5NKV+NXnqWD9jd2/XwgbsjfmuE8C5xwex5JBkzf25uKTI4W4Z1407pwTKeSN88fv5dc+3oCsojIkBLjD11VdHJkBV1+/QLR3SUBRU9l5GTQx6m1gcCcZNDE4ZRbZwWJBk8N5tahq6sQVU3X/uPjbpnMaG+tCauW/X6aw0Nt1ror+VaKFnj4FuDliEj2BUh3T0kAT1gxh7RDVMJVtIgVowuth1xx2z1EGs0wW/fK6MSn4OtynkQyamO9zeiyCJunbD+Hs1oMkDj0N1oG/FdxSAkIeRXnxX+DpTaV8Yf83IhtgCGjS2ZGHvMwrSBg0HDEJCqvfCx1OROGuqa7Agf37SQy2hFgXJQLgRMgCuck4YtHiXyEwKEwAAPIyr0JnRzai4zfAwcn8Vq66QBM+Wrk4WuEUCcDm5+cLpUYM8LBeybx512H7jh0kitgjiMI6OnTBhQ4SbW3MIukXBIOdXabBjkpcrAlYmTt3Lo6dOInmZoXGy3DuH/zElp/cqkZoaChmzZqNVrLr7BNjmTPkBmhq2I7SwgeFvzq7TMG0aV/hf9/+iAPpBYINK4s4qkZQUBAuofUK82mz/jHyBjMENHmTDmsf02HtfhJfvW0Y8VXWnhmpSCttQEl9O5VzOFF+3OnwN1Izjcy4lgKaCPcsncfPpKUiJyfH4GQtWryYRJm9cOsHCjHff1w9ZQAkXPEvcs7pMM05hxdkyaDJpjPl+NuWc1gxIRB/uWxQw4vB8X2ZZVTCuBnTQtRtyidOnIiY2DhJAVflxsugicFvAaM6yKCJUWmzuE4WB5owtZdBDgY7Zkd7D4Af2naulTi97EevGor+VXjv9mThz58dLYIrqYwnUn1iVVMH/rkzG/fMp1rQ8QpaniWBJsOxOUy175UKNOF8c5lOdW4xXLzchbKhseiQo+tTSAZNzPcZPRZBk5z9KYJjVeyiMDhGPE3uL8EIDHkSrCHi4jaX2BFvj8gGGAKaNDfuRknBb0lfZT7prLw5IusxZlAX0iM4l34WGRkZA93b204jKtIHk6fMBeynC3/POjufLNTryY1oj05rYmPWIKaPLtCE+ystlbnkiG2HOdjxJzg4FOFhE7Bt+05y0bGBv58fWlqziFlSQuCaC5wIMGGBWHs7O1x++WqhnKeoeFBYtpaUEc9VDArKKtca4O6IONIOUIaLiwtWka4IVyF0GyksUl3xL2JHKe5Ve4cITJi0BVllNXj/iw0I9XBEuLfzwHwsYsu0+q4eK/on7VNiQ0CTz44V4fWfc3DTjHD8epG64xIvlskCLBaamnoa5eXlYrZadJsmOkinEmjCcf2SmRgXG035l67EQPRCTGhoSaAJMxvcyV1rF9kQ19QohEeVYW3dQfdCB9kHa+reMDsrIjKaDu9WePcAlVodLMC1SaFYvzReKI1b89YBk51zeB2WDJqwZsm9n55AQqAb/nvroI0968lsOVuGRK8+9JSmD+wHA67z5s8XhKqlBFyVE8igiQkfCgZ0lUETA5JlwU0tDjRhYIOBD2aacCgZI2L38LENaQJActNM7SUpzEyJ8nMZeH0sgCZ+MWFY9CvjtQqkBE3E7uNYbSeDJubb+bEImhSfysDhjzch8hIXuMa9LrjlMLskP+tq0g6JIw2Rb0dkAwwBTWqr30dV2Uvw9r1FYMGMluCDjquTDfbt3YuKigphWd7eTpg9y42eGP8N3v6/h5vHsvOlRVYYPyXtgixdH2jCi1KWHG3ZvJkYM4P6HvFxsfTffVSmk8PcEnR315H1cipsbL2pBEnhwsYHCHa8YcBlNx36lMEio6eK64UynaHBFqhRJM7qTJoOyy+9lBg4rgRgGJ+ekvzfkOOPwgXDxsYD8YkH8E1KMey7GtFedFZgmyhjCTnluLh6GKybImZ1hoAmm9LoCffWc7gsMQiPrxqvdXgW7HUm1yYW7G1uVndSEbOe4dqcJUZCfVsXZkyIwc1XXIqWjr4ROQCaskZ9fS0JNFG+B636u7F50yay8Va8Gdzdf4Kb6yECKTtofxxJYPlGdHZGCa+FhYVhxoyZ5MrF7CwQCNaI+6kchwHCz++ePeCcwyLDLDZsSlgyaMJMHGbkONnZYBeVNinj25RSvLgjE2/cOAW+3dUk5p0uWKwz4NpNDEKpAVflvDJoYsqdKr6vDJqIz5Ult7Q40ES5WcwQYQDFENCEgZZ39+XjtRumwsXBVm3fmZHCr+dXt+Lxy8YPvG5JoAlfMIutMptDNUzVDZFBE/N9hMigiflyPRZBk8qsQux962uEziS9ivGfCuySkPDnBXaE8vA5EjtgCGhSXvJXNNR+TQyYx+Hle+NILMfoMfmz0NG2D9nZWeglzaj4+HjS+8hHAwnpcvmKh9ca1JNVMjMzfPzvGnYetggdiaeWPKEY0ITbOdpZCSVHBw8cUFvn5ZetotKdApxNP0fX2ETisSfp2jyE0hzWBWGaOrMU2Akkn8CV06dPD/QvI92MvJoWwSnE39WB5rBBSUPbAJBy9fIFmJkYb5SOieoic86toDIpduthtkQ/IsanYNmre/HYyngkOjUhK1PBBpo6dSpCwyLQ1TcyujiGgCb7cmrwx29TMS/GF39fqwCgtAWLhXa0NWE7uazoiv7+HsH+uq+3Rbj3bGy0O/LUtHQho7IJ7q4uePL+m8lmeeQOgEa/sUR0tDTQRPkerK2pFMr+IsJraD9fG5IJZ9rXNwTLb76XO3v66T05CHI+R8KvzLj+7eI45FS3YDOVnsyM9MYVRmjmdNPnWc/5sS0ZNOEEX/HmAdS0dGLDfZcgkJhwHE9vTsfWsxV4klylbpgRiv3792H8hAkjBrgqN1oGTUS8+SVoIoMmEiTRAoaQQROVTWSWydLxAQOlN6r7y69VEn1xEtUqqgIxnSJtDi+We6W2uBIbX/gY3R2KguXgceFY+atrYO+s+GIwJpg2zEruI4W0G7MmS+3DIobEjCfaujTuDpaaJymui5kDfG93q/wIlWLc0TxGTVElvn76PYTOqIbnhB/h538Fxo17iQ7OifSDvZN0H1IFnROpg3NNt/bAj3Jd46el3kK6GkeQOOkDEiKlspdRFHwNdEql0pRjBJZ0wMFB8bna3HyaWBm1sLXzolKXenoPu5BOyCyNlXPZCx9+SAmF2qgD+1JdJpffcCgPQLrG7evtRvrZsyQCmyk049r9+HHjBN2SvcSoKS3NFfaCrychYQ3pnswTGCgDn04k2nuMBC2LioqE/mlEfWc7WxZSDPZU5IYZKDlEfXfwDkRUwiRsT6/GwySGGus/WLJjyLX39DTg8KEZwn1qY+NIea9Hn99m3PNpDpbT9/+bN0/Dnj17hKfE05OTSXNmZPLMa+ZcM1GnV4ROysmietz47mFMI+eaz++ZrfOSaVQUFuTj2LFjWtsxYNLSeo6Ao+qB1x0dw+DsHKfR/mhBHVroYH3P9VdiSmyoQuj3Igw7yjWnWUyuL6bL6+/rQVFhIb3P/knOVJquOv19DxGzi0BtWzsBIlSNtLImlDe0Iz7AVQBPSun/H0dlJ+Feg+VpYnLh5eUFT/pnbaNgaNnZWlGe6aNOxH0tZvzR1ub2948KD1Hfu30G5sX6Cstb/soeFJEV8cZfzsUE0vyxIsZdNzGAbGzVBWGlvhYG4nso2RaaaqnTZfR4zK6UQ86ADJqcvweUgq/Prp2k867g8hx/dwdB14SjhsRmLS12vvY5KrOLsWDdGoRN0fwRZej18lNDflLcQDXrcoxsBuzpUOVI6vpNbQrbQTlGLgPM6uEfLM3nLR5HbqbRM3JrfRM2/vltBE3PgU/iPnLMuRUhYX/CubQVpF1RjITELVSmEyH5gp3o6TkDJy1EjdYX6acX0UG4CuMn74Q9aa6MtuAfXy2Nddi5cycdbRXHmL7eNrQ0sxvGINjp4BhFuYxUW/68efPh4+dPQN3IXZUzCaFztHXqn4RBWmcSud2zdw8dpq0IFJkv2PGSuyasCRDZvHkjaqp2E8vEE9dd/wx6+q3UwBjeUxbJ5XKSxsYmHMilp+WEIsyK8oaD7SC7gw9l0+YsxPovU3CsQKGjsp7E2m8epoxWV3Y4z7mZd9AT4KlU1tBIorvkBtT2Bt7Y34M7yA2Dx7VBLwFYtoLTxUgesl3pe5HHb+/Sn+sKZs7S9TOY9Op1+u1+6S2D0ymnBEejodHdXYO2Vs3yL1e3GQQkDYJRlfT7ppiYPrOTk7BqDuWr/+I9OLhRyRU/uOkcyTfPyL0thx2Z34P8Hjp16mFys/peo11JyV30fowc+KxRbcA6JhmkI8TlbwxwNHZ0C3bbnqw0KzJ8fX2xlErY+PNC+V5hm/UOeu909ei/r0VOM6qaPb81A1+fLMFDy+NxI2kMVdJ787LX98OVGOo/P7RIWCt/zvP9ZoROtUHX6ulij1b6XmSmjxwjlwFfOvfJIWdABk3oHhDoiZ+nEIMkTnDH0RVc9nOGbNqU4IqllefwtX//5zfR2dKGy/98L5w83Ux+l8jlOSanUPQAcnmO6FSZ3HAsluf0dnVjw6OvITA5Bb4TTwkWw2w1XJhzOx3CTiAi5n04uw6K45mc31S5FgAAIABJREFU5PMDiC3P4VKDzDOziR3ggIRJClvc0RisO5GfN1iawmUSbS3HNZbq6JxIYrCKJ5mC5S07MIywAKfY8hzlYu3pcGBr1UsHMz4kDIqlcoVra3Mtvt/4FJYsWQT/kLVadUi4nKSzvRn/2/C94Obh5miHKee/hwMC/OHr40NlTATeE+OjnZid/IQ3s1Kh1xFKT8RnR/nAmw5pYqOq8hOUFD9P9p/Xor09m9x/UlBt908UNkcLjhgRpPFAOL8QqueQ7j51wEfsfLraiS3PcXWypafWpF+RUiiULi2K81MblgGroWFD7dxcncGCvXV1dWovd3Tkni9PUu/l6EgsIfsA4Y+sVcPivOEREVi2YC66SJdBtbRDius35xiWWJ4z8B4k8L6/pxipp1eopbS9PYTAyNvp3tHOFGYW1+F8hf6fLb1/2e57FpXn8D0mJpj5xpodfbCjvoM9LL085ysCTF7ZlYWrpobg4eXjsCuzCk9+f0b4LHr5GoXdvblCLs8xT6bl8hzz5Hm0zzLmQBP+wcX/VEtshgIhqpvGDBSlUw6DK8w0URWKtTTQpKO5FT/85S3YOzniyr/9SpL7VwZNJEmjqEFk0ERUmiRpNBZBE07chj++ioDkvfCOz0Rg6JPw8rme7FsfRlPDFtI3eQHuXpdJkl/VQcSCJh3tZ0mU9nrBqpcte0dr8BmXnU6OHT0ilKawDXFnh6Z9qL1DJLm7RJIzTbBgeWsOAU5DQRPOsVICjL4i1cKZWG+VpRtJOqQMrt73EBtFuzaIwFY5lY4fdu0VQIuw8+UBUZERiCNx2ezsHDX6Oets5Ne2DGidRJEtccgQW+Lh9r6/7z0CBPYSsHYbIQNp9P+fQmbVXahtmygcemy55m5ITJ48mVgWxD+RmGkhFjRRWD1b419fbROsnlnXREwEk3NHcHAgtpG+SR8diJVhY91MLCzWdFGPzq5waqcozWgjpV0HZ1fceP318CA9E9KBvajDkkET3hj+Pqoo/RZlpY/Rfym0elqal6OhaYGaWPPQTWS9PmaYcDBYwqCJ2JhL5XY+vgECu0w1LB00OUIla+u/SkESlcq9fv00vLo7G1+cKMY986JxJ7HVzBkyaGKebMugiXnyPNpnuWhBk/r6I+jqqqJazV+o5ZhBDgZB3K3TYNNfi/r+RVRKE0X2wz5Cu/8dyUBm/gZcM6mK6sn9yZZyEdZvtBbEXbWxTJ7+5hM49R0i+qOtUDfoQRTPRROmIyriZmE8SwNNqnKKseeNL+EbFYzFv5FGRFEGTcz3MSCDJubL9VgFTTY9/Q58p34H94hChES8DHfPS1FZ9iLqqj+Ef/BDVD5yp+SbIBY0aWrYTADOI+RCsxyhka9Ivg4pB1SULSpKU+rri0gwNUVjeEenBLh7RGMlWex2EovDWItdQ9ZtDGgy3PgMDvV3bEZW1l8QM34H1fdrFxvl/vtzq5CXeQauHTUCzZ1jHOmjTEqciOycXDXBWH6NSwHya1vBZSscqg47uq43wJ8eCtiXoar6brg4n4SLyykcyVyGqvrJmBqqub5Zs2bBLyBIYFpIHWJBE56X9U/SSZB105atGOdJ7B4t4I629bGjUR/p6Bw6dEjtZXu7UirFUXfY6en1oNK2ICG3je1duOKKKxFNwFUfAUYjXWYgdW6HjmfpoAlfb2fLVuTl/oF+2yaQa04GgbHBqKi6X2dqWQBW+R5yIMbKjAhxoAnrF7Goc0eP5vvC0kETztfatw/C19Ue3z8wD+s+OS6w5F69bqro/El1v8ugiVSZ1D2ODJqYJ8+jfZaLDjRpa8snX/rd9G8XCU/NQnTU79RyrO/10rLP6QfqYaFfZ2cV/Rh7FlMmvysAKNqC2zc3paHPcbnwo4zV/G1tXeDmlig0tzTQJOdACk59swtRsych+bpLJbl/ZdBEkjSKGkQGTUSlSZJGYxU02fHSx/Ca9CFcAiqoHOe/VI4zUwBMGDjx9rsVAcF/lCS/qoOIBU1qKt9EdcW/yXnmHvgHqX83SL4oCQZUlqZsI+CkvS0FvSRSqgx2NHFynkoWu6vg6OxmksWuIUuVEjQRviMLH0Bjwz4CTbYSWBGqdSl84GD3iWeuSkRT9kn6fq8RbIkXLFhA5bN9glPPCRLPLSTBy6GhwToha+IQz+HFiENDniLGSy+J1D5OFq0/03f5AaTkzUNT01wwY0U14uLiqCxqEkZKjssQ0ITX9fLuLCSHOKEh4wi5MIkHcZKmTRFyl5GhcAVShpMjC/j2E1ASSBoulcRP6CedFy/Ut/pg+oxZmDyFnQSdLEIvYSyAJjUV/0J15dsIDFxH76FvaS9rUVV1Dzq7wrS+71pJSye1tEFNt8eRtISSI7x0fmQEEYOJmW+tnWRfrEWB1NJBE07Oslf3EPuqF989MBdXkpsOx26yIOYzgjlDBk3Mk20ZNDFPnkf7LBcdaMJABwMj9Q2HhdwOBU30vX469R6Eh62DFwEuHEVF7xGDpEVjHOXGMWjS2Vk57OuWBpqc2rALOftTMOXKRYhfOF2S+1cGTSRJo6hBZNBEVJokaTRWQZO9b30F9/GvwsGzAdHjviWx0jihNIdLdNw9VxD75CVJ8qs6iFjQpKzoUTTW/4igsGfg6b1G8nWMxIBcmlJWWoSj5CLDZTp9fR2CGKcNaZlMnz4ToeGRRH8fiZm1jyk1aJKfdQ062jMQFf8VHJ3Ga530vYP5eO9APv64YhyuTwrEzh07CCy6lOVY0UU6Jsyy4HImZuU0NTVpjCGWdWJHwEBgwL/pMOmD8orfwd1tH7kU7cC54unobFsFHxJVVAYLXC5btgyNrd0jJgZrKGhy76cnMC3MHVfEOeHsSRYO1h+NJFTdTXm8dOFsnDx6GNVVlUInK6tuEg3PJQaJLTo6Y0mThhyK7EuE1wJCZ2Ji0pVwtHekQ6B4vRj9q7lwLcYCaFJS8Ds0N+5CdMw/0Np6FpUV76OlZSb9Xr5ca+LZ7aWovk3jtWlhXnBhJWEtwfbFrGOiql80tNlYAE3u+vi4UML2119MxF0fHsP4IHe8d0uy2W9wGTQxT8pl0MQ8eR7ts1x0oIkyofrADG2vM6DCoIkqs0TJWklI+JvWvVIyUwIDrhDYKEqGibJxRZ2CGmwp8ROV5lRlF2HBfVcjKCFKksuyoydi/EO8rukiL4qWJBsjOwiLMrrQ4aK+2YynrJG9pFE7OrsU8VOlhpaxletDH/0I57i/wtaJ7Ckn/kxPqP0EEdj87NvIJWUaouI+kXzPnOme5oNzU6tu95y8rBuIsZEmrIHXcrGEE53Vz6SlIidnUNckMjKS7IWnEf1dYUtrrnB1VhyWWtqkcb4oyLmDxFaPITL2fXKsman1Mu76+JhAb//H1VOwdJwvWXmTaw3ph9CZZCAEN4qOFgE4GS5qWjqRV9NKpUyKtQeRzon9eQtlfzdHeHucgbfX1yQAOxG1dTdQac5xeHl+h9zyibDquk5ww+KwJcvk1XQw7Okj8VMJdUy4XMlWRWSTP6sZ8GGnETHxT2KanC5pwCvXTEJNcc6A1fNwfdm+mW1kOSJDAzF78jjs/2kX+khU1sq6jUCSIgLpnIiJoHC8srFpQkhwNxYvWYzssiLEhCnKkC0hPF3J0YWcczqIuWSpkX1uFbmYFSFu/He0rz3kEnU1oWNOKCl5lC5Zk5mUV9MycH+o5mRCoDt8XLW7hSxZsgQubp46mW9ebnbEQumlEnrLzfVTP55FcrQbovzs8cGBKgTR58v6pfFmv7UYoGpuI/ccVSVes6/C8icM9NYupmz5Vy5foWoGxhRowgyVM2d/j+lJn9GPAwUNl7VRior/IwAp2oJBlaZmhTVf13mWCwMszs4KQIHtES0p3vvdq2hrbMEdL/0abj66nYTEXrcVkX75x6Kl5Urs9ZuzHeea/4+dD+QY2QyM1Vz//PFW9IX8ht7T/Vi0KIP+l1xN2otx+PBiODqGYM6cPZInXsg1Rb+KJa+2SfbtSyIWQRNZ3x6BnZ1Cx+piil27dgmlKZ6enli5cuUFeR+LzbXYvKal3U/XtBOTJr0JX9/lGt3K6FA/74WfBAAy7a+XCtbSChlLzegnMdMCKjNhVs5w0Uttsiu1HwZXTD1BwMkBegq/lP4tISZLKoL8v0BFHTEtega1eObPn4+gwEACFsSXwIjJB6+/o7OT3i8KIEMpOTv0Wof7/E4pakAxMQNmkGBtbLAP9u7Zg8pKBXNEWzBo0qvyXTA+PgZebi44cvAA/QZqJHConEAbD/SQjgkHeSDh8isuQXvzv9HQcAAJCc8iKOg6MZc26tsIDkOUaH2fIaP+QoZZYC/Zlu/dO1kQW160iMuuQDbEN9I+HqPPkdtRXa15oG8hCtuRfHVnJSd6H84ky29VcE855dSpU4l1HUUOS7otiS0915yPPVkV2Jy1B3uLNuP/Fr9AGkOU93HqrlbmuJfYcprf4pZ6X5sjh2Lm4DzLIWdgTIEmvb2tOHHyJjXQhEGRisrvkTjxn6LuBtZA4YiLZYVyy9I0YZththu2c3TAmmd/LSofYhrJ5TlisiRNG7k8R5o8ihllrJbnnN2+A9YB6wkFdcb4aYrDa39/FzJSkwQAJWGypqCpmHzqaiOmPKenpwbZZxfRYdAD8YmKGvOLKZhJYdVPtrKbNgmlKda2jqQlYf4rkLo8p6zoMSqZ+h7B4X+Dh9eVGhf0bUopXtyRiUXxfnj2yknC6/wDdTiQnaTFcPZMGjnqZOtMDjtcdKt6BlPrJZO/R4BXAWpqbyTgYjyaujMxMepTNLaEUonZvcJ4grVzTKxWgUtTd8OaACE3Jxvs37cP5eXlYBYmX6dYK18WvmXmSBTptiTFRyAqKkKwFO4kIGZoMPBSr8XyZuWyxehsbUF6+m4CTWqEUqXuHsVhb8rMuQiOHoe8gnfh0vW28Dcut+Oyu4s9LL08p70tFQXZN1EJXAKVwn0tbFdD7dcoL/krMaRnISv7StprTaZeWWO7wM7iYAFmdq5SLVNT7nt4eDiSk2eQvg8dz/U8k7H08hzWojpXU4DlH9wqfFYtiVyKN9Y8DJteBz2wvvTvIrk8R/qcahtRLs8xT55H+yxjCjThzTh67Eq18pzKyh8EJokSBNG3YdyehWSV5TyWpGlSnVuCn//9BXwigrDkdzfpS4Xo12XQRHSqTG4ogyYmp1D0AGMVNMk6sBm9ro+gv9sPE5J/GshX1tn5JGRaj7iJe+gwJi3LQwxowiVChTm3k3jqFETGfSp6H0dTQxY8RV83+ulpMbvlXIgQA5rYWvcPlLLoW2Nx0bOoqvwUYeF/gn/ALRrNt52rBGsrzI/1RUKAm77hSHvDiuxVbbFzp4KVwzqU2pgZ+3NrNMZaM+c9csJrJT2T9YLgaVFDHuYmfkDsD196Ev9bYlUEgW1UR9Lamb8P7Wz6sHXLFmJ4dBoEmpTUt6OgrhWhdLCNJGvm6KhIKhu2J4bBXq15Yz0TZt4ow97eAWEhwVgwewaxbjeTlk4aacYEEmjjiei4BIybOgNfnqzA/QviSFD5NdRUviN0DY9+m0oy5urdm9HcwNJBk4a6DSgv/jMBk5cTQPm8sBX9pI+UeXYu/W8ngkPfx5HDxcNuUQ+9kYZzZHJ3dxeYb60dfaJEgS0ZNGHXMyeq1LjxqwewK+eskE9bYqR9cM1jmB+2iESVFc5f5goZNDFPpmXQxDx5Hu2zjDnQJC+fBAwdAqhu9wb6odBKT6ueJcrwUvq3RNgrLtdhkVmlwCz/t1I0VtnezX2S0J/DkkCT3IOncfLrnYiamYjkG6R7siSDJub7GJBBE/PleqyCJvmnNqLD+gn0toUjcc7mgYTnZ11Ngp+ZOgU/jd0dMaDJ4KHhCjo0KBiBF2O4OdtRjfqF08kRA5o40ZPWnq42pKUpSld1RX//Bjq9fU8spLVUj3KFWlN+Yn0wv1YAPWZGepP+iLhyGC8qX/L28sABKjPhWn5tT77TyhrJNncwjwyWMGjS1eOAw1Sm29LZQzbCDcLfenpdqIzhr3oFLvVdq9jX+bOjubEO+/b8ZBBowlanbBEb6O6IWD9XYbopkxNRUVGOM2cUBzjVYGeTRirB4PxaWVnD188flVSyk0APRi6d50nA0/fEuvGCv38MZi9ejq9SqjE+0AOzaC84KkqfRX3NZwRUOSE85j8CIHmxhqWDJpVlL5CL2cfkGrae3MPuHtim8uK/oKHuGwQF30OisCuIYZRu8BauIMDE1t5ZNPPNUkETrtBwcOjDc3tfwdtHN5Hm0SAg6eFkh223/wehrtGkUWQ+iqAMmhh8OxvVQQZNjEqbxXW66EATLqcpLfsfPdFspR86rYI4q6objr7XlTbDDIDwGAyYhITcMKBxwsKvlRXfI4l0Tzi4HIeBE56H27OWSVzcYwPtLQk0OfXtbuTsO4XJv1iIcYulUwGXQRPzfW7IoIn5cj1WQZPi9C/Q0v1/6KqPx5RFdCA+H8X5D6ClaR/Cov4NV/eFkm6EGNCkqvwV1Fa9B7/A38A34D5J5zfnYMyk0Gbjaa41iAFNeC0sYlqQl0O6Cad0Lo0tfT09tqG5eS4aGtXB+Fry8j1X0QR3RztMDjFMQ2vZsiXkNtSFPXv3a52/k8CUtNJGKrNRHGCi/Eswe/wGVDWEYNdpEsikYMHZ6xe8TqCCNcaN3w8nF3ezWTs72VuhpDAXKadPiy7PqSLAI6uqGZ50QEsMVuTLnvQlZiZPxzGyZC4pUbjfqIYADlEOggP80UflcwwmcfxyTQGcnZKxa3c1Vl1xA1IrO/FDWhX+7xeJav2V5VUs+Bwe/R9yy4ox160o6TyWDpoU5d2D1uZDGp+/bS3HUZh7B2k8BWJ68s/Yv19RGiY2Zs6cCf/AYAIYxQGaPK6lgib2Dr3Ylb8dj257lcBHTROIX0yYgLd+8S9ikNmZTZhVBk3E3smmtZNBE9PyZym9LzrQRKrEM3hia+syAH7oGpcBFm7PwIlSQFbZ3pJAk71vfY3KrELMu+cqBI2PlirVAo3b3cUONY2addeSTSIPJGRABk3MdyOMVdCkLOdDsmF9EW3lkzB95f8GEl5e8lehhj4w9M/w8pFWPFIMaKK02wyJ+AdpMKw0341gYTOJBU34qasLOUidPHEcBQUFw2bBxYXEV72+I+HV6airV9c0YdYEsycivF1IS8FJdCZjYmJIWHYyrG1skXHurM6n5wzMcNlBsN8ReHtuR0l1EvalzxuY65q5b5O2SCfsA7ciJiBU9BpMbcj583a1xeEjR5CfX6h3OAaBzhDg0X5e6Ib1Jxg44Wvz8fbGhAkJgr5JS0uL2ljMtnFydkGQryeBRNYopFKo0oYWASwKDb2b7IhvRKe9O+7/9BS58pDQp69CJF81lO8te4cogXFiZxegd72jrYGlgyas58S6TrHjt5NQa7Ba+vOy1qKzPQuRMa/Bz2cJtlBpmFKMWNc+xcbGksbPJLR1G1YqaImgia1tL8paivDIroeRTxowpaQFMzTYqnlZ9Dw8OPshtHcMr8sk5XtDBk2kzObwY8mgiXnyPNpnGbOgiVQbY0mgyY9PvY12cs5Z/cQ6uHgb9tRPVz5l0ESqu03/ODJooj9HUrUYq6BJeeEbVMrwBhpzkzB77UcD6ayueIM0EN4glsf9xPaQTkiaJxADmuRlrkFnR86IlAdJdc9cDOOIBU34WtgG2s3JFtu2baN7okHr5Tk7nYGPz5doY5vf2uvV2hwrrCPtlj5MDfUURCjFhI+PD5YtW4bm9h5Bz8SNGC9inp77eH9DTNHTyClZhWO5cQNTXTX3Uzja1qLc9iMsmZgkZgmSteGDvBWxXTZv3oqmpiad4w4tN+LGAWRzGuevKNOJCA+Dh4c72IFJNdp6reDh6QUPR55L8UpZUxFmTfgP2rq8ET1pO5787hxKyJVn4/3D6Zb0oyh3HVlHHyEAZhIxTt4lwEox78USlgya9PTUkgj2QtoTN4xLPKSxJbXV76Oq7CWhvCo0/EFybYrDrp07dW6dr68vli5diiays2VbbEPC0kAT/g1rZduFX23+Jera66BkyKnmxNHWBtPCPAX3rxsTb8TlcVcSE07cZ5ohuR3aVgZNTMme+L4yaCI+V5bcUgZNTNxdSwFNulrb8d2Tb8CWROWueu43JmZFvbsMmkiaTp2DyaCJ+XI9VkGTipIXUV/7IapPz8SC2/47kHClU4On91oEhT0t6UaIAU0yUqdRmUU3xk06ShoMzpLOP5YGMwQ04bzwZ05vd5vg+qMtHB1z4Of7ETo6YlFdc5vQhNkP1S2dAsuEDxvJEV6iUmxjYyPojvSD6O/n5QT4+8WehFX1PT0PDPg3MSQqUVJ+D/ZlKVgtHh4eWDXja1h1n4Nb0AcI9ZeuLFXMBXkQA5NxjMamRmzbulVnF23CtkNzN5HYJgy+nDx5UjEWoSR2rl6Cjsk4/0GR3dbedNI1+RwdmIy9dX/FF8cVZT2v3zANSfS0XFv09jajKG8dOtrOwsV1DjFO3hVziaOmjSWDJq0thwVQy9klCRGxg0C2MvnNDTuoFIwcz86Hk3MC2cP/GampOVr3x9bWFitXrSK7alv6ZxjLhAe0JNCEyyVdnazwZfqXyKkdzFdZYwe5DilYXaxnEk/vLwf6LFLGTYk3IdQtCm2dI6tvIoMm5vmIkUET8+R5tM8igyYm7pClgCY1eaX46fXP4R0eiKW/v9nErKh3l0ETSdOpczAZNDFfrscqaFJe/CQJC36L0oNzsXjdv2Fjp3ia1tK0F8X5v4Sr2zyERb8l6UboA026ukqQe26lULcfO0H3E1RJF2aBgxkKmnAKnOytySGnDIcOHtTIiL19CQL830FXVygqq+4VntJmV7WoiSiOD3TXanM6dDB2tvHxDUBHt/qTbxambWmuH/bpuZVVL0JDnhKGKyn9Mxra+oU1zF28DP3NjyPAIYW0IN4kLZ75Zt1RBk16etnCtQ9lJUU4elRh4a0tjhfWD+izKF9ndg6zdJRhTS4eydOn4dy5c8jLy4ObpzdKGrsExxPOsTI6+g8gLmwb6vouxcM7Lx/4+xOrxuO65JBh19DX10a6GQfQRyXLXALi7DrT6HxpczxiQd82srQdibBk0KSu5hNUlj4vlEVyeeTQyDl3KbEeytT+7Ot3Ferq1qCwULM0bN78+fD28dd4n4ndF0sCTfia7ex76H2qYtesgiPxe4sddbRFJ5XS2VtplruJzaOYdjJoIiZLpreRQRPTc2gJI8igiYm7aCmgSd6hVJz4agciZ0zEjBul1QOQQRMTbzIDusugiQHJMrHpWAVNivN/QwDJTyj6aSkW3PkMnDwUT7A72jOQn3UNCUXGI3rcoECsiWkWuusDTVqa96M47356Aj6LnoC/J8WUY3YMY0ATTpazPZB+9gyysrLUcmdnW43AQBJH7PElq9/fIqWkQXCuUQ227JwdpXBsGS4SExMRHRNLwIH2Awo97EVhQR5SUlI0hrC3LyPg5i2yA/VHRaWidGzWrFkICApBXu6jaKz/kRyXniO71l+Ydd+VoElrRw/pw1ghLZXKh3K0P/3XVhKgDWxie9gZyUlkL3sYFfXNlO9G0otxJt2YQfaVf9AhONhswab8K7Ahe5lwzQzAvH3zdEwN86AcnkJlZaXWXPT1taK99TQBPV0EUgbBwWmcJDkbN24cAmk/Og0QHDVkYksGTcpLyCGn9hsEhjwOL98b1dLCDKGsM3M0UuXolIBp0zYKpXWNjQpxYA5+n8XExpF2juEME+UYlgaaGHKfmbutDJqYJ+MyaGKePI/2WWTQxMQdshTQJGXjT8jeexKTL1+AcUtmmJgV9e4yaCJpOnUOJoMm5sv1WAVNCnJuoUNTCvK2rMbc2x6GZ7CfkPTenjpknV1AYtmeiE/U7mhi7O7oA03qaj6lJ63PDfuk1dh5x2I/Y0ETruV3c7LBzz//jKqqqoHU2dg0IzjoRXKIcUVZ+SM4nF+nxjLhhvpAk6CgIDDLpKWjb1hnIaUw7QlykRn69NzF5SSJ0W5EW9sk1NZdSw54cZg4MVEQuKwse56sWj9BQPAf4e13q1m3XBU04fy5O9sKmiQ1NTVa18HuOaUN7Wjt6oE/6ZnEn9czGdp42rSpCA8NxUvvf4mKxjaMC3CDn6uD0IxBlZjo7TTHZrybdhsOlycLgMndc6Nw/fQwEsW1ppKpfmylcqHW1lat6+jtJUHattNkJU1P2e1DCSiNNSlvISEhmDV7NpUyQLBgHomwZNCkIPtmYT8iYt4n9o/m77dzp9UdkTi/LOo7cfJmdHW0YCsJw3KIeZ+J2RsZNBGTJWnayKCJNHnUN4oMmujL0Nh4XQZNTNxnSwFN9r79DSozCzD37jUIniitpaAMmph4kxnQXQZNDEiWiU3HKmiSm3E5ujoLkL1xLWbftA7+ceEDmcxITRKeQI+bdJx0RRxNzPBgd32gSUUpWcPXfEYH34fp4Hu7ZPOOxYGMBU2Eg5idNaxJV4YPYV1kB8xhZdVNpTH/R/eFHZXGPEkWw81UoqPupMaaAJPOW+gOzbmTk5Ogr9BNDIQuEo3VFSxM60rCsEOfnnt6boGb6yF6or6cDvhrsWTJkgGBy5rKt1Bd8bpgU8121eYMVdCE53Wg/KGvC1s2byZmjjobR7kuJePEm6g9E4IGS26Ur7NOy4oVK4SSnO8PncGefftJoNILLlTCxLFi5Uqyir6bAKQ0+Ed8iMLmaLg52A0IynIbR2rb3tqIHeTGM1z0EEja0ZYqvGzvECn8MyZcXFywivaXZG5G1KbVkkGTzLSZBCa2IX7iftjYDpZrKfejsW4jyoqf0NgeD6/LEBPzAoGcFUgh6/DVl12GTtoHfe8zffssgyb6MiTd6zJoIl0udY0kgybmyfNon0UGTUzcIUsBTX58+h20NzRj1WN3w5WsCaUMGTSRMpu6x5JBE/P2SixtAAAgAElEQVTleqyCJlln5hJroBHnPr8RM66/BmFTB+n5OaQr0k36IjEJm+kQNQimmLor+kCTorz7BK2FsKjXSZdikanTjen+poAmwoHbzgpNDXXEOPlpII+sJ8K6IiWlfyGdBCucKm4YYJswyyGORBSVh/qhyV9MAIebu5dofQU+8Hd3tgrAgzL8/d6Hg0M+WR7fjqXLHiRAwYoELhVlPvW1n6Oi5BliKV1PehBPmnXvh4ImPDnrw9RUV+DAfu1sLXYbYtch1lGYFalZ0sSgiK29M2mD9GH7uTI0lObCl9xVuNhi5syZCAgMxplUtqetQ9yEn2Brp2CKDQ1nspMuLszHiRMnhs1JT3cVleWlC68zc8HaxoX22VZgm4mNZcuXw9HZjQ7qYnsY185SQZOurmLSc1pF+xhA+6nunKSaKS6fbG7cLfzJzs6fGFYvEtDSCnv7MBJWJt2brkrSo5oBv6A/gkt3TAkZNDEle4b1lUETw/JlbGsZNDE2c5bVTwZNTNxPSwBNuto78d3jr8PG3hZrn/+diRnR7C6DJpKndNgBZdDEfLkem6BJH86dniwk+cyHdyLp6mWImTtlIOmFObehrfUk0cQ/IJq4dE4k+kCTQbDmB+HwJofxGTAVNOGZXejAnZ2VgTNnzggLCQl+gZhHrSgt+yMd1FxwtrwJ9W1dpLPhgiAPRyrP0a6fMG3aNISGRRisc+FMwEN5WTGOHDlyfv7naf42hIV/BR//CfQ0fbAEpKlhK0oL/wB3zxUIiXjJ+MQZ0VMbaMLDOJE+THZmBtLTFYDE0DhaUIcuYpIkh3sTSDWo8cI6LX4BQfSaNbKqmvHot2l44epJaCtIhZubGyZNmozmjlZkps2ClbUDEiYND4jwjrg4EsBFTjz5+fnDXl13VzlZfWeqvc52xE5OiTSHbrZZUlISgkPDhfWOdFgqaMJASEnBb+FCAtzhBghwd3Zkk3D3bwSQWzWGsy02ZH9k0MSQbJnWVgZNTMuf2N4yaCI2U5bdTgZNTNxfSwBNagvKsPu1/8ErLADL1t9iYkY0u8ugieQpHXZAGTQxX67HImjSQ0+ss88upBICV5z5+FpMXDUXE5bPHkg6Hz75EBoS8Xc6hK6WbDN0gSZcDsRlQVQIgvFTuFzAeAFDyRZ8EQ8kBWhiTQIjro7WOHz4EEpKShAU+E/Y2taREOzviOHgM6BrMiPCW82mUzVt4eHhmDFjJonG9lFpj+EJZWHVM2mpaO+ogLfnl2hoSMfU6fsFpotqKO1aL4SI8HCgCducsj7M/n37UF5ernHx6QQ61RHolBDgDl9XQlgoWKclMXES6Z0omm9Lr8BTm9Jx3/xo/GphJLEL7ISSpLa2TORlrqUypWgSbP5eZ2K53MnNyRbbqUynvr5+2LatLYdI3kS95MqWnKx0MRYiIyMxLWm64JZjzP4aekdYKmhSU/kOlZe9Bh+/O+Af/AeD0lJW9CcSQf5Bo89w2ihiB5dBE7GZMr2dDJqYnkMxI8igiZgsWX4bGTQxcY8tATTJP5KG419sR0TyBMy8aZWJGdHsLoMmkqd02AFl0MR8uR6LoElnRy4duK6EVV8w0j5egbgFSZi6ZvFA0ivL/k6imh8JP975R7xUoQs04SemeZlXCZoKMQk/SjXlmB1HCtCEk6cqKOrq8hKVAZSR5fD9aGgJwMniehIbtUFyhJfWPLNY6UoqM2kl4VfW5jAmWFjVkyx9a+tyCLApQmXFVviF/E1DSHbA9YlcYKLjvzFmKqP7DAea8ID8vWlv04ctpA/T3t6uNkdRXRuK6tsQ6umESB8X+Pn5qem0cOM39+bi4yOFuPuSKPx6SSx6yP60m1LZTM5XJcQwYHtltlnWF6yz0tvdLpQ7abMJ5v4tTT9rDMMsExfXQUBVtYGnp6egu9LczlauRiBi+hat5XVLBU1KCx8moHoLgsP+Bg/vKw3KTGXZC/R5/bFGn9DI1+DmscSgsVQby6CJ0akzuKMMmhicMqM6yKCJUWmzuE4yaGLilloCaHL6u5+RtecEJl02HwlLZ5qYEc3uMmgieUqHHVAGTcyX67EImrS1Hkdhzh0k9pmA1I/mIGL6eMy8eZBRUlf9AdXK/4PEWG8jUdZH9G6Gh4stOXDoPzTxAdiK2As9Wg7Q3aSr0E6ClLa2vnB2map3Tm0N+vr6qWzBuMO5UROO4k5SgSZ8iawv0tbSgNMpN8PRIQ/V1XegsCYE2VQ64ktuLgnk6qItBF0OOyc65BvPGmI3HSeHLry8bz2IY4E7k9aT5gYzktSju7sCOenL9GpCjMSW6QJNeD7+jGlurMNuctRRDWaZMNvEkwR0p4b7CAKeLJTb2z+Yr0e+TcX+nBo8c0UilozzH+heV/MJOU09T9a0N5BFraY4qLbrZJ2V6qpyHDxwQGsamK3T39eh9pqtnS8xTTRdW7jRqtWrYW3rSGseiaxqH9NSQRMGjBk4jor/gvI90aCEdneVIufcCrU+zA4KJxceGxvt700xE8igiZgsSdNGBk2kyaO+UWTQRF+GxsbrMmhi4j5bAmiy750NqMjIx9y7rkRwomnWgdrSKYMmJt5kBnSXQRMDkmVi07EImjQ37qT6+d/DznoOTr2fgMCEKMy/d+1AJpsaNpM+xCOi9SFYbLKirESn2CQPbkNlAlzy0a3FPaWrq4hsM/PI+jSMSg4Md/6aMGECIqKiNco2TLw9LtruUoImnATe4zOn16Gz8yBqam/AmaJwlDd1IIoYEiHElBgaLFbqz7ocfQq3F2PDyqoSmzNew3sn3xaG+O2sh7Aw9j463KuLp/bRYT8zLVmvxoex69DVTx9oosifFfJzc3D6NFn8ng/WM2FdE7Zq/sNtV8Lbx19DKPfadw8J9sSf3jVLyLUylOwCQ9lgTnb9yDiXjsxMdf0SHrenp4acdBT6NUKQGKyTc6JWQdjZZC3sT2K0HeTSYs6wRNCkv7+XShMVmlIJk08SsKwo1TIkmGnFzKPu7nISS45GWPSb9FkaYsgQGm1l0MSk9BnUWQZNDEqX0Y1l0MTo1FlURxk0MXE7LQE02fR/76Ktvgkr/3QX3Py006VNSZMMmpiSPcP6yqCJYfkypfVYBE0aar9CeclT9AR8NY69EwDvsEAsXX/zQBrbWk8QE+V2YnxMQ0SsJu1bW75ZeyIt9TRycnKG3Q5doElne6biB79jPP3YDzZoS4ODg3HJ3LloIZYJs03kAKQGTZj7UFX2JDnCfEvuNWtwIDOadEp6MDnEA+6Odmopj42NFXQ52obojhi6L3Z2fcgq/wIP71C3EP735Z8hwmcVOrrUKQ6ZaTNo/9vJKvsYCcZqAjmGzi+2vRjQhBkzbKN8/NhRFBYWDgx9vLAekXEJuGZRMlk9O6hN2U4UjqX/3ANmaO17aLB8jhuxaCiLh4ZGvkIlGMvFLlUYi3VW9uzZg8rKSo1+fX0tJAKdQsyxHjgR40ubg058fDzGT5hI9sLGM4hEL3hIQ0sETTrosy8/62pB/DomQVObRGyuaqv+i6ryl6mk8k4qrXxIbLdh28mgickpFD2ADJqITpVJDWXQxKT0WUxnGTQxcSsvdtCku6MLGx/7F2xsyTnn79I753B6ZdDExJvMgO4yaGJAskxsOhZBk5qqd1Fd/irc3W7Fwddt4eLjgdWPrxvIpNL+kp9Uxo7fJirDfBhzd7bFLipBqKmp0dpHF2jSTge13t4GOqhNoYOaeNDX2dkZK1etQmePdgaLqMVbYCOpQRNOUXX5C6ip+hgdnWvx7eFQIWuXRPsSe2gwgb6+vli6dKkgVtprAoDF3zdWtl24/YvJJJZapbZDYR5R+M81x2kdtOcqpV4555aTi0g53bM7CHgLMtuuigFNeDFsL+xCwrrbtm1DY2OjsL4mazdEJiYJgN+iOHXbYC7dWffJccT6u+Kj29VLbvmQzYftqPgvqZxjgkHXak/6JjbowVbSWensVBd+5YHYOauvt4nei0n0XnRXG9vf3x+LFi0iHZNek/bXoAWrNLZE0KSx/keUFT1K4NelBIK9bGxq0FD7NYHhf4Wnz9UICn3K6HGUHWXQxOQUih5ABk1Ep8qkhjJoYlL6LKazDJqYuJUXO2hSW1iO3a9+Bs8Qfyx/6FYTs6G9uwyajEhatQ4qgybmy/VYBE2UQq++fuvx8z8aYOdojzXPDj7NZweNjLTpRBO3+3/2vgNAsqJa+0zOOee0s2lmNkeWTWzeBZUooEh4qCiIgImkqL8i7ykICCISFFSygLh5YTOb44SdnHNO3ZPD/53q7Z7u6Z7p7nt7wvbc8966bHdV3apTdW/f+uqc70O4+HmLJ4PJJh0Ge2nnjh0I9e8zqjcaaKJuPwZalB5Ibi7HdQ1P3EfrwLr167G586Ue48tZ3G97LDgmoEnNy9RQ+wr5Bd1Lr37iRV7gOpkX7a9znzNAewawBsA+YiIDy2I3s+qMh/sgPXP0d3Q4/2Ujng2Wwt086xG6f/EDAE4cdXQ6xXk3A0jIBpDwIYCEWRZfT25BS0ETvg7zw/R0qQRgwYDf7KWr6cnPsmlGqA/98Jpkg67syKim3+7Opo2zwuiX1xryXORmLgOwoaLpqV8C2PCzeghuoCFStbXQgQP7jep2IkWnH6k67kjNYY4hrbFyD/OYDOC50MNstBNg9gia1FU/T411r1Nw2PcpJPz7kr3a1rIXaZWPyAZftB1QQBPJU2F1RQU0sdplkioooIkkt9ldJQU0kTmlVzpoUnIqk06/t4diF8yipd+0nUSovlsV0ETmIrOiugKaWOEsmUWnImhSVfY4JCo/o8jY39K+3xZhUzpAN/7+IRBsDvFP5GVdjY1TCyWnHMLGKchiL7u7OFBTY52QWR1upkATTgfo6S6HKginCjiQp/dCpFZ4W3S9+fPnU0xcwrjzKljUuQkuNBagCSsqMeA26HELFTRfT5U55ykpeGiurl650iQvh7Wu8PJwoLzGHMqqzxLkmEx0qTPwbDDJJW/m54XPo2CPcHIc8BRflxXdS+r2ExSb+JoA38bLrAFNuE+eIGStqiwjH6gLVXU60ddfO0lzAT69cpshwe2fDhbQu6fLhNzwncvidcPp72umvKyVuF99aEbqccnDZJ6agrwcyszU4zFBa7pUOSgRubgMReysWr2a/PyDENUl+ZKyK9ojaFJefD8ArENWp1oNd6a6/TjugW8LtaPYpNdl+1oBTWS70OIGFNDEYlfJKqiAJrLcZzeVFdBE5lRe6aBJ+n8PUe6BM5S69WqatX6pTG+Yrq6AJmPiVpONTiXQxAMnr+NlncM4EPi6UxE0KS/6Hqnaj0Cq9M904NlL1NWuput+eR+5+w4RTRYh/J83T1JO7T3AY5ifm0OXLl0ymNrhoMkgeBM6Oy6IE3OdYVPs5cWEnu6jLov4+HiaP38BeDMsEu4ZryU2aa4zFqBJS9PHVF3+CypUrSFHv0cpBIpHzVUlYsypqamUmDSNuvocZfuA70k2Xhe1Vb8XPCWCkNQ5ADw7Cw04bzjiQZsGVFn6Y8i27qaouN+DxHiL7H5Y2oC1oAm3yxxArCJV195HW146Qm5IRzrw8BqDSz7y0UU6UdxIz3wtjVbppe5wJEhJ/q0CPEqY/pGl3TQqx6TM3kgXOnHiOFVUVOi+7+4uot7uMnJ1T4TEdKz4fM6cORSfkIT5HX8eE/2O2yNowso3DAwynwnzmki1ro4sKs7/ukjX4rQtuaaAJnI9aHl9BTSx3FdySiqgiRzv2U9dBTSROZdXOmhy9DW8zGYX01V3f4Wi0gxDfGW6RlddAU1s5Unz7UwV0IR5MHjDUVZWRp2dneYdc7nEoAXytsMb4002K3n09RsShU5F0IQ3XLzxik9+hw6/dI7aahpp40/uJL+IoVD8IWDlZfL2XW3x3HBBTq9gskmONqmurtbVHQ6aGKl1XC7p5j4NG2MNZ4Yp8/f3p40bN4IHot9oPq3qqB0XHgvQpL11HwhIH6aspgX0bv599Nn9K+jM8aOYb0dacfXVNifiZYCGgRofv2twCv+i2dmqqfwNNTe8BwneJyDFe5vZ8rYqIAU0cYaSFD/H+FF299tnqLK1k165dQElhQwBl9/8+ymAKt305h2LKPqyQhHTxLS17EEaxo/gl3XwywuyhuECsAaKx7R7925SqTTgZW9PBSJ8CsQ9yPdidHQ0LV26jNTdgzQg4dkrq4PDKtsbaDLQ3065mUhJdIR0d9pZWa7qAdBVmLMVQFcMJc3aJastrqyAJrJdaHEDCmhisatkFVRAE1nus5vKCmgicyqvdNBk529eJ3VTK21+9G7yCTWUYpTpGl11BTSxlSfNtzNVQBP2BPNgDPZ3066dO0EEaqiGYd5TlpVYvHgxRURGmzwlnYqgSUH2ZrEx4hfrY68do/rCClrz/VsoZFqMzqHV5U9hw/pvEAo+BWLBmy1ztF4pfl64Og3QLnA3aAGx4aAJn65y+sVw027WRroo82Y4OruDN2NiT72tdso4VhgL0EStQvh/4bcpu2kG/TXzIdr/8GpydugTaV09iEDokUNkMsw3qrYjVF78PfFp4ozPsHlPNOu9+pqXwLnyF/BC3A9+CE3d8TBrQRNetd4eQxE5TPhaC/nmmeE+FObdByClD7wwXnS0sEVIdK+erkcQC9CkpOx1oZISGHInhUX+RPYQmWelU91K+/buFW1xqhxzwzi7hFFQ8CLaCh6Tjp5Bk1Lhsi9uZQP2Bpp0qM9DqewORIekIDrkfSu9YVic0yk5rZI5bpjrRq4poIlcD1peXwFNLPeVnJIKaCLHe/ZTVwFNZM7llQya9HX30iePvYgXV0fwEjws0xMjV1dAkzFzrVHDUwk04cEzD0ZjQy19efSoRU7mTYUD0jgssaSkJJozdy5OSU2XnoqgSW7GUqQ8qMGHcIJOvL2fKjPyafld11H0nOk6J9VfJv3kzSdvQqUY+7a9tYn2Q1GHTR800QAmLE88TCIY8ypSMZyGCEb1r7106VIKi4hSeEzMTMhYgCbatJCStljaV/s7eu6muUgr0cygrYl4telhIeEPAgD5jkXLr6nhn1Rb+QwFBn+DwqIes6iOLQpZC5rwNb3AJ5J/mU+ksqWTihvVND2wnjydhmSAK1UR1DUQDr4TDdHr8uXLKTg0nEpLEFHT+D7G+DjGersthkDMb1JeWkxnz54Fl1ETItHSRTrUdV/9MQhhfWw+v1I7bW+gSXPjB1RT8WvyC/waRcb8RqpbRL3BwX7KSZ+L/3KkWXPTZbXFlRXQRLYLLW5AAU0sdpWsggpoIst9dlNZAU1kTuWVDJoUHrtI5z76nHzDAmnTz+6W6YmRqyugyZi51qjhqQaasAOYByMvJ5uys7NHdDSThnZ15ug4MMylcQQGBoo0jjYQXwxPy9FeZKqBJqxQk5O+QKeMc/aDfVR0Ip0W3ryBEpfP0fm+pfFDyFf+ivwDIV8ZI12+0hPcDcWFBXTx4kUBmgyCn0KtLhDqHGxOLsGINOoUIA40Zskd6QDOLuEm10BycjLNTkmlzl4lwsTc02gsQJOe7lKE/2+j2o4QKhh4k+5dIZ1/YbT+s0IPg3asgMOcOpaaVrrVN2AbRcX+r6XVZJeTAppo+USOHz9GlwpKqKyxnBJ8y4z6Utc9hxJDAmnWrFk0fcZMsfbLi+4DJ9FRcBJZnzo30mD5jmKelQsXzlNBQTp1qM7QwkUraPqsm0H8Kp+nRraTLzdgb6BJTeXTSCl7h0Ijf0xBIXfJdtOQqtJxPG99ZLWngCay3GdVZQU0scpdkgsroIlk19lVxSkLmlTklJK6RUUzlhnK8Q2f3eIL+VR0Hiz8Xd0UmhBB0TPjKDR+iBX+SgRNeju76fS7u6kyk09rNbb4ts0Uv3h0X0hd+QpoItVz1tebiqDJSDwYWu+ZJA3Fl8NlMbXlmWeB5THJ0ZV6R8n6mWqgSR/IO/MvXQNgIoSSZx+gjB1HKOeLU0Yk0qzmwKoO3j4rKSbxFesX8eUayC4Qp+pnz5ymosLjSNXB82pwAKCNq+BLcHYJtajtkJAQWrt2LbV39uuIPy2qOEULjQVo0tfXSPlZq6mtx4f6g7bTVYmWqypZOg2crlWUe70oHpv4KlRwVlhaVQAJDChwHa47XiYFNOG+aflEtu/YSRcLz1OU9xD/j7bvHYNJlJq8kNasWaNb+4U510FxqhhpS5+Ke8hWxjwrPh7OtGfPf8nZ8RLNnTebnD036ySdbXUdOe3YC2jSDy6Thto/U0vjvwEYdwjAhIETuVaQvRGpl1U0bdZeA8JkKe0qoIkUr0mro4Am0vxmbS0FNLHWY/ZZfsqBJs0gLmQgpBhASBQAkGXXrxp1Zs/tPkEB4UHkHx5IdSU1dG7XCVp391YdcHIlgib5h8/RhU8PGI1765OQnAv0tflKV0ATm7t0xAanImjCzuA15gIejN16PBhaJ/X3tyDv/oKRzzgqgVUkhttVV12FUHaEt/cOS/8YVtDeQBMm1x3NuqCIU5BzA3w2nabN/ISKT2RQ9ucnKWFpKs3asExXlTkNCnJuQrkZKPfxiE1qlUtGvehAHbk5NdLOHe9Qa2ur4ErgzZ6DAxgoLTBnZ2faum0bOEwcFR4TC/zFRcYCNNFGKfUNOFPMjNPk72nZ/FnYZVFMK7/KPDrMp2ONDanKyOeHsOa6UkETvgarh3WAT+Tlt1+jSM9io8s6esyh226+h/rJmVgpiI0jxXguZqSdBgmvhzVdNVuWOaaovwuRYKeoqOg5ip028r1vtrExKGAvoElFyYNIXdxv4CEmO2bSYzlWDNUzfsazqpKp30Vr2lZAE2u8Ja+sAprI85+ltRXQxFJP2Xe5KQeacHQJAycV2aViZs2BJsOnf/crn1D0rDhKXbNAfHUlgibH3vyPQZSJdozDCR1ttfQV0MRWnjTfzlQFTcQmYhgPhtZbgwNdpFadMHKeKdLQlJQUSpqWbJH8qT2BJr7YxA7091J3T8+Ii0zVjs1Q4X3k7b2YEqe9Kgikm8tqyDPAlwLjhqLv+sBrcClzPTk7+9PsVMOXe23jLi4ughyyF6pEIxnn7NdV/R8FBq4gL8+NdORIOTk4WRZdom1z5apVFBAYYhYAM39nTZ0SYwGa5Na2U3fVKnJx7IXSxxmzstDWerul6VNIGj8puDSSZm4XhJbWGJMbM8mxi2sUTtr3WFNVVlk5oAlfmPlE9p64SKWZ/yAP5y5dXzii5/qvPkRhIaG6tc8krfmX1uG+DKLklEOy+j1SZQ9XRyor/jE1NOwUhKLWzsOYdOpyo/YAmnCUSR4Uc4abpSpRo/m3tPBupFadprikN8nTe4msqVBAE1nus6qyAppY5S7JhRXQRLLr7KrilANNtLOXefAcqZpVVoEmPV09xKDJgi3LRJoO25UImmTtQS70nuNGC1mJNLny7+2pDJrw7Hm4Mg9GPqWnG5LZdajP6PhMxCybIA0NDw+nlStXCvlTS6Ig7Ak04SgTb0j9Hj50iGprhwgl9e8IT89MCgr8AOSda6ml+VrqVndSS1U9uXl5kH+knkoHKoWGPo8T7QGqq/uBUVSIh6enSJfhSB4GTtj0/c0h4rUAS9pbPxff+QZspRnJv6aa6iY6dtwY/Brprk1NTaXEJAbAFB4Ta55sYwGafHKhkiJ7byJf13Zs2A9i4z4kUW1N30yVHehXgS/lWmIZaubQYS4da43bYE4HR0cvRGGctLa65PJyQRNOYatr76TtB46Sr2onOSCuhC0yeTWtWXaDwdrvUJ+D2sq3QJY8R0iGj5Uxdw1z2CTN/C+5uo0Nd42Uvl/JoAmnPHJ0SXvbF4jkaTEavieA7Likv0lxi66ONoKFpahZklqOKaCJHO9ZV1cBTazzl9TSCmgi1XP2VU8BTcyk5+hPN6fq1BVX0zV3byNXd7BPwjq6+q64FdHT0U3bn/sXNZbX6fqeum4RLb9l/ZiMhTknONqkq2dsZGHHpNNXaKPMx+Hi7ICIganrayfHQTp16hSVlQ2RIw4O9FFbOwMnHZhZAATeqThVHtrou7m50dYtWyFHi4iLgdHTcrRLwwmqUww29IxGfHIFrSO+Twf6emnnrp3U3W0sGeTpeZJ8ff9L8fGvIvc9Gi/vA9Sl6hDqWx4+ngYjbWo6QU899S+65547aP58w1PLsLBw4kgTngdh2Pk5we+DcHtt7QdQ+HgGEtJqbKx9ca3HKCT0Bvw35KUxhxcvplN+vrHU8HA3R0ZG0lXLr4L8KghkLZvOK2imxrarzJfBpgW0bHG1Jz7NpEVe36NwrzqaN383eXjYbjNdXPQrqql5h/wDVoH09DXJ3T1xPBVrpZeWLctAJIzm932szRUpLfy46cO9ZCY7bsSu1Km6IevbQ2e+eJpaWlopOjqKFkEqPTh4o0Gd+vr/UF7eTykkeBuIYZ8bsT0H3I+WgMYjNZCZcRu1t5+jlNR/4XmxaKxdaHH7ri5OYlz9/RqgdjIbA87NTV9QU/MX+PtzrI92XXcdHT0Fl4m+xSc8ThERd8oaUkHBY1Rf9zEiLZ8G6G098Kh/cTekjvX2D+L3dvL7WpbTJkFllv1myXZL31smQZevyC54ulumunhFDk7ptMUeUEATC0GT3BNZ4EHJo5W3bSAvf2+dg1vUvRY7e7IVvLT/jAixD0uOpdi5yWPWPWe8DbojdULVeeUBTGPmlDFq2AWEfPwiru6ayqCJA/hNBkFKuIfa2tp0nu5QZ2OzXyMkh339VxrMwNo1a8kvIIj6By2PSnAFOOUCwEDdbT++dnIYpNbmRjpw0JjzyMf7APn47KegoF+RSpVAx748JqJNeJPl5u0h/tZaT3c+HThQSPPmzaKwcE1UHpufnx82zB6IVtGUTYWijUiH6m2gitJnsEHYLT4PCNpCMbGPAdjSpOO4YSPPCjp8ic8//xzh/xoFHVPmiUgWBsD6Bh1lbf7G6HfmR5sAACAASURBVBad9M26I8WCravHdhueG/9yjG5L/BUl+JXSzJQPyMt7SG1JjkPa245TXrZG+W1W2ifk6TlLcnPp51ZSb289zZl/WLfuJDdmYUXmJeHNTi82l26QT2dAUP+ZZUkzDArWdbfSnNhmOnz4PK3fsJGqq54HcL4B98wQYNnX+wnG9yF4gb4K0PLrJptm0uSoqGjq6bf8OTi8ocK8BxCJ9jklJb+IqB9D4MaS8YxVGS+8g7Cfe/rGDkV1crD8nhkcjuZC9lelygRw/A789wXWRafOFZ5eKQAF14k/rm6RkHh+mhrrP8H8+lJk9AMUGv4t2W6rKP0d1da8RdFxj+KZfZes9rzcsZEHjw4DJ4qNrQe8QcDchXeQPgsPe8a2N/bbur+X7Xm47Ndb9jsyBTSxADThVB7mQBkOmPCyuBLTc8Z7OSucJuPn8amenqP1NJ++dHW00V4AJ1rr6syiPmyKRKSJ72rd5/PmzcMGPZ66+62Tx7Sn9Bz9FcopTkUFeZSRkWGwcAP8dyBC5yQ1t2yl5KTvUH52joHMs6uHOyJ1nHBi3kU9PYW0f385LVoUQiEh0wFe+JAnwBJfP38AU3iRxv9HRETQiquvpqrq7VRZ/mucSrZjE+BN0bGPUnCI4Uknr2sEUYnoh4G+HtqxYwdOX02DsBs2ANj29jULgPHp3Ehy0uN3x06+K9k6Pacd0Zib/nSYfrzozzQrMAfqNH+FSs1VNhl4Sf6txCSuwWH3UUj4A7LaZOUdVuBJnPEJyIbH7hBBv5P66TkMdjtRnyCzNhXpNdrgKtsv0o3rPMnNYyWl510ib6fnqaMzhRobh8CRwIBPycvrHDU3f4VUauMIEEtk1i1xMMuNs+x4ePQvAH7eYkmVcSkz1uk5LAXt4+lEOdnZ8HujwZhYwa2vtwaRTH2IzPPWS0/DZheAMaeWxcX54nCpjioqNYpjHp5zkSazFr9V12A9Jo65j7Ry3ba4l5T0nDGfLt0FlPSc8fG1kp4zPn6e7FdRQJNhoAlLETNAoiWIPfHJYSFNvPK29bqUHP1JVUAT80tcAU3M+8hWJRTQZMiTTJJYWV5Kp0+fFh92dlxESkmz+G9vX440caLY2Fhs7BcjvB2hxFYeitkraMJpAiz1e+rUSSovL9c5NCjwQ5zkZ1Bj003UXjudll+9jI4cPQLeEk2aH0eauHu7kZtbEU5MuwCaVArQJCrKC+DENIAnsdgMNuNPMdrxoW3bbqK6hh1UXfkXUd8/YCOAlIdwTbXR7cBRJrwpYdAkKCgAc6mmo0e/NCq3YP58nJKGU23dyJEoXCkqKgobTK9RiWhtdU9eae3YGjQ5WdxED390gR5d9g9K9j1NUXHPIdJLfgRCY90bVFf9R6GmxBK6cq208C4QYZ4R3BDMETEeNpzTxB3RJm0tTXTQRKTXaP1RDxynmbG7yDfwCXp7ZzV9bdmbonhl1c8QseAl/js05G+4N4upvuFO6upKMmiO712tzHrfgPQoE260vuZFSOL+VYBYvAGfLDbWoAmPk1Pb3J0HaReAr44OTQqNKcl7RycfPM/cBFjClpCQQGlzEqm65r8AFFeSN5RwXF1jxtV1TQ3/otrK31FA8O0UHvW4rGsroIks91lVWQFNrHKX5MIKaCLZdXZVccqBJiw3nHHgHPWC1JWJXTnVRp/YlaNKco9n0Y2P3SG+//fv/mE04VznKw9rTnAU0MT8/aCAJuZ9ZKsSCmhi6EkvNwfKSL9IBQUFkOc8K6IZ2Lx8liPfPpg2b94sABMp/A32CppoX/49EXGye/du8BNofBYS/Ba5uxdi0/UtKr/kThEAJ1IWpNHefXsRWaJR3fH0Q5qBayXq9BqAJrxJ4FDy3p5KUW7tNVdjM3cBgMtnQvo0LPJn5B90kwBr8vNyKDMz02Ai9UET/mLe3DSqrKykS5cu6crFx8dTGshfT589D96CkVOmEhMTae68+dTRPcgBL4oN84CtQZO/HS+h144W0a9Xf0ZRbp9LJmvV7yYTjTL5K4csxST8CSDoWtnzWFHykCAfjo7/I074N8huz5IGTBHB8n1XkJ9rdA+M1p6j2z6KCjlCuZUr6FzBQvrK4j1QnMoFx8lWaldp5MAjwp9DhEMLNuY/xGY9yKC55cuXI7orHNF28gATbrSp4Z/YfD9jk823JT60tMx4gCbcF065Uqta6PN9+0TXWJmpu6tgxG4GBScAQL6dVN1QEnOwHUGypX7Rlmtt/oyqyh5Hmup1FBn7O2urG5RXQBNZ7rOqsgKaWOUuyYUV0ESy6+yq4pQDTWw9ewpoYt6jCmhi3ke2KqGAJoaeZKJWX09nwYNRVroDZKIaWU4+Sd60+XqcUnsjf1+a9+0ZNGGPDE9xCg97BVwI1ci5/x7VFjlQZ1sHpS2cS94AkY9+eVREmnj69uOE1Bg00ffwvHlzQO7aRxUVLwl+maSZO4TUKxtHk3i7O9KJE8fxfYWu2nDQxN3dnRYvWkDHjx+n6upq8vf3p40bN9L58xeppbV1xAm1VQqCtBVzZdSyNWjyk4/T6cvCBnphyxHy7v+QQiN/QkEh8kgrK0oeBsCxj/wCv0qRMb+1iWOrK36JtJKPkFbyFNJKbrZJm+YaMQWajHQPjNaWt+/HFOB7gU7nXUMltWl0TUoVlK4+BJgZjair76AqwCWMi60c48Sdpmtu9uzZNC15ukUy6+bGw9+3teykytKfIppoM6KK/mBJlXEpM16gifh9AfhbWlyI59F5AZgwcDLc+Jnn6hZHW7d9DVLqiDqRGeEj14mqtoNUXvyASF2NSXhZVnMKaCLLfVZVVkATq9wlubACmkh2nV1VVEATmdOpgCbmHaiAJuZ9ZKsSCmhi7Ek3cAXQQA998N5jSM/RqMKsWn0vCPRSqGcAp3sSzd5BE3YL85tUVZSJFKfIiGcRLdIKDpIfIQrPi2rzNOpEK9evokakFOTgdNzJ1QUpACU4aW0fijSJ9gXYEiFy+mNjo0AOO50KC38NnhMN0eH01ONo10c3C9oQd45yUas1qTrDQRP+zNsvgOIRNbIL5dasWkVNTY3UXD+kCDZ8WllZavOWLWKDYieCRxJX7ujVbAWaqLr7aEdmNb1yuFCoO/zrlizqanlVNv9IW/MOqiz7mZAHTpq5HcSmhnLXUp1SV/08Nda9TiERP6Tg0G9LbcaqeiNJDvM94AHeQb4HVCrVqG0yAaSv/98oyLeEDmZ8laqb4sgPlTeDQ8bRsROgyX2I6uLIsOcRgeWP+/cRXXthYWG0CveOpTLrlgxOrTpBZYX3gldoKcUmvWFJlXEpM56gCRNWe4MM9eyZ04gaOkFdnTmGYwRY7OW1iK5asRZrDRE+k0AWnSMxSwvuJE+vBRQ37W1Zc6KAJrLcZ1VlBTSxyl2SCyugiWTX2VVFBTSROZ0KaGLegQpoYt5HtiqhgCamPenuMkglBf+iY8dOU1JSIi1eejP1DEbKcvtUAE0EOIEUp4sXL+DE9E5EhiBCpPLnyNOHRPDAADWWVOPM2oE233QtXcxMF9EhECwFm38ZHTqYS0uXxkMdZxEkXL3Jw72Z1qyZTsXFzwEM0cgGc8QPc0gMN45y6dALcR8OmvBGMbOqlWYlJ9Kc5Dgqrqyh/acyaHFcoFDaMWVXrViBCJcI6rShKoysBTRJK9sCNGHA5De7sulwPhMva+y2lOO0PupdCgz+JoVFPSpp9IODPUjL2YaT+2rwLjyBFJDbJLVjqlJj/d+pruoPFIgomDBEw4yHjQSa8LX5HuhUt9K+vXtH7UqjuocSY/6MiLom2nnmG9Sq1qTebJ5/HNEnp5EqtwIcJsngFPo7+ITiqa7+HvE9y6wzj0kfgGMGtWxl3Z15VJR3gyDTZVLdyWLjCZrwmJ3Bw+QDZRNWcaupPioIX4UBMHEHD0/anLWQfp5Jnb3yU6Js4WMmQWYyZFtwBCmgiS1mxLI2FNDEMj/JLaWAJnI9aB/1FdBE5jwqoIl5ByqgiXkf2aqEApqY9mRfXyP1qrZjw+BIydOSqEXVQZ4+62W5faqAJvzy7+XWSyeOzxNgCYMmWlM1tFBbbRMlpiTTohVLaC82eBwd0oE/R0ESu3LVaoqNSxDFN4E/pq3tE6oo0+TLM2ASGfMbXWrO8MngEPeykiI6d+6cUaQJbxSzazRy0ltWLqJdR86I/04M9qJIPw+jebV1CoKshTPJK9sCNGGw5NFPDdWXVkSepHtS/yUrpaa26v+oqf5tRDEsQRSDhuzUVtba9ClVlT8JTgek/MTaJuXHXN9GA03EPYJ7oLy0mM6ePTtiU2VNHbQ05Vls0nvpo6P3IYrKVZRdEN9CM+LeRnSJL7W2raXAgP/g3pxPTc3Xi+/XrF1LPr4BiHIw10vrvmeFsvxLa8GfEkTJKYesqzyGpccbNOGhuEP1q7dHTbt27iBVG/sCKYzeCyk8PBEA8hpq7+yfNLLovb21VHBpHSK3Qil59n5ZM6GAJrLcZ1VlBTSxyl2SCyugiWTX2VVFBTSROZ0KaGLegQpoYt5HtiqhgCamPdndXUQVRffQ9ORfYdP/Prl6LgGvwl2y3D5VQBN2ksNgNV1K3yDC+6trfqTzW2drOzWV15GHnxfNX7GYfHy8kZazH9LE4Dk5cpjmL1yME+5QWrJ0iYjy6BvUpEP1C3nhoZQcUxPB569Minn+/Dnw0RQLzhSWCG7p6KHKlk5qwt9sbkgJ6u7pFf8dBcAkAcCJvo1FCoKshTPJK9sCNHn/bDm9sF8TTaS1BaHpdP+810Gyeg3IVl+02gsd6nNIH/iWqBef/A4kWedY3cZoFWzJ6WBpx8yBJnwPeHs40nkAh0VFRSabnTY9nkICj+KecqKssiW6MmE+7hQccBr3mYp6e0ORIleHiJNERJskYtMeDrWqACMeDSbE7h+0Tnp9eKcGB/spJ30uPnagWXMNgTNL/TIW5SYCNOFxeLg6Uk1VAX2x73lE3LlTQOAqkSY44OBCPb22i/CR67OBgQ7KzVgiiLlnpGkU56SaAppI9Zz19RTQxHqfSamhgCZSvGZ/dRTQROacKqCJeQcqoIl5H9mqhAKamPZkp/o80nPuoMDAa8B9sR+8Ct+BJOaDstw+lUCTro4sKs7/OkL6p1NpyR2QZ9boznSru6iuqIrcPN0oNCmKZs+ahWiUQcrJyQb1pCbsPDk5mVKhaiMlA8ARRL7uAEX2QaGnpq4Roez9AE4GBIDC0SZVrRpiXzZncJakRfmRF9IatDZWKQiyFs4kr2wL0CS/TkV3vnXKYKQzA/PpJ4v+hJP2JUjJsj5KhAETBk6CQu+h0IghXg5bubNTfQHPiG8CjJkLUOZftmp21HbMgSZiXSPSy9fTRURxNTU1GbW3YnkqUnAAKJU3UF2LhlCZIxw8XZ0R7dEIGdx6ESHm4NCLTXoEubqEgTg5AOAI1KP05KNYVcrDy8cmMtx5WVeDP6qFpqccISfngHHxpbmLTBRowv1ydayns6feo8KiOtq89SEAVsHU1Tv5tLty0udjTfTSzDnnsV5AqiPRFNBEouMkVFNAEwlOk1BFAU0kOM0OqyigicxJVUAT8w5UQBPzPrJVCQU0Me1JDo0uL75f5GuzmkFA0K1QyXhSltunEmiiav+Syou+S75+KwCFPCRUa7q6umgQAEZfUxdOUB3IOcgDRK+xtGH9Ojp46DDIXgsRZRJCa5EGcPrMWRBaakhdrTHe1HkEBFEkTsZ37dopqrq5ulJ0JMgTcUrLqQlN6m4hHTw91IdCfdwMmh+rFARrxnCllbUFaMJjfvjDC3SyRLPJ93ZzptvmddAyvx+Tu8csSpj+oVVu4ZQcTs1xdYsV5K/66i9WNTRK4Z7uEiFjzIomrOg0HmYJaCLWPMis+3s7keaxU4CS+hYYWElLFqXQwYMZVFDiKMBDVg1jc3ToBtBZrCs+MBBEQUFzkBICbmy9dhjYTElJpQ4b8WsU5X4Fz9kicJr8B8/cpPFwpdlrTCRo0tF+AMCXE0h4uykmbh2kneVF85gdrMQC+VmrIEfdJNKqOL1KqimgiVTPWV9PAU2s95mUGgpoIsVr9ldHAU1kzqkCmph3oAKamPeRrUoooIlpT7Y2f0ZVZY8LZQA+rfb13wI5zN/LcvtUAk1am7fDf4/ihHQbzZ79HH159DClp6cjJaCfeus7hB/944JpM3hLSsvLKQmn1pyms2TJEiorr6CamlqrfN2DXV01okj4Tx8IZ9cuTiNfpOpcPHuaYqIiEPnvqDslT69spbauXkqN9CN/lhy5bHPnzqW4+ERIqU4OokWrHDCBheWCJv5eIAnG/52AzHA7CDOYZybE2w2RDz3gdTiM8H9PyJqusniEg1BZUrUdQYsDiAKZBw6ccLN1ORKpC9fu6bd87jkygiMknJz8oOj0pdlr2KKApaAJX4vTPOrrqunYl4Z98/Y+SfFx1QBDfkDbt2cIMFNrLs612Pw2G3SVSUidXaN1nzGwuW7dOhDI9tqMX6O04C48Z88IkmfmLpoMNpGgSWPdG9TTeYzi439GvTTDALCaDL7R9oFBQwYPk2b+F+ChhotKiimgiRSvSaujgCbS/GZtLQU0sdZj9lleAU1kzqsCmph3oAKamPeRrUoooIlpTzbV/wMn1f8L4sNrqL1tP3n5rKDYxFdlud2eQRNOCdC3hrp/UHXFM0iN+CaAiCfImfqwQfsMajmViDTpRMTJIG26aRu1d6iptKycoiIjKDEhnqpqahBxMnTSbc7hnH5T395NDYgeYRuASg6r4UT5e9LGlUtEekJxSSk2HUMtFTaoAa50UkKQF8ppSGBjYmJo8eIl1NGDrfbki4I354YJ/V4uaOLu4kAVtfX06oc7MHdOUDTSpGdw2L8aEUsc9s/3n6XW1ZkN5RFs/kFQ6e4x26Jqq1avJndPH0QjWTf52RfTuKfg4kjH32MfDWANaMID9wTHa/alLMrNzdX5wd9vL7iEjpKP9xP4LI0OHT6s+87drVCk5RgY1Fu8fa4WHzk7O9PWbdsATDoa8ZtY5OgRClWUPEztrfsATD8LgHqTnKZsVnciQZOayqepueEdik/6A3l4b7bZmGzdUEn+bdTZkSGbM0gBTWw9MyO3p4Am4+NrBTQZHz9P9qvYLWhyoqiR6tq66SvzRpcV/e2ObKM58nJzoofWTxeff5Fdhz+1pOrpE/nyyxKDxN9aU0AT80tcAU3M+8hWJRTQxLQn62teoobavyAt5yZqbvwIJ9ZpeDF8V5bb7Rk0cXcGIWRfH0ALDVFhbe0rOOV+g0LD7qPQ0HvBiwBJ4A4V7di+g5rK6mhuyhwKjA6hnOIh8s8ZM6Zjc5dn5GNOL+BIAH3rRWRJZ08/wtaHiBF5w+3jgV0i9r0sOZwGXpRZM2fS/oOH0Z+hyJXati7Kr1eJaIYZYT6ChJYjXjqxV2RiS8Ws84Bc0ISvdq68kQoL8qilopDiAj0vd2BQpyDi7bvaok719dUT8+kwgMGKOUykac7mz5+PFIgEcEaYK2n8fV7WSqz7ZnBxHAYXR6D1DVhZw1rQhNNufDyc6NChQ7p7ICjwQ/L0zKDGphtpWtLtVF9fL6LA2Nzd8nGv9Rv0ytHJGxF3i8RnV69cSYFBoTbn16ip+H94zr5vc1loK91rUHwiQZOKkgcBIu0HAfIfQYS8Qc4wxrRuGVIwGdiMSfyLDliTckEFNJHiNWl1FNBEmt+sraWAJtZ6zD7L2x1oUoRTRwY5GOxYlhioAz9MTZ8a4bsZCO3WN039OnrjTs1LxWtHkJcb7E0JIV6UWdEq/v30DWk64EQBTczfGApoYt5HtiqhgCamPVlT+Vuc9L0LAtj7BHii4UbQcGRINbsGTUCm2t3ZTnt27xbuCQj4L3l7nabm5mtJpdYodMydkwo5zR4qyS6kmbHJdAAbuR7vkU/2GSzhSJJuABn8365OTiCpdBD/ZnJXrfEadgdgEhIcRK6ubiJlIDw8lNZdgyghSHQ6IGKBuR16cG02FZ7jFypaBPHlghh/2rhpE+bXC6kZUmd2ateTC5rwfNz82nH6xbaZ5NZUSA01VTqHqtqPAATrR3rOSnw2RNg7ksc7VKcA3HUILiIXvZSSkcrHxcXRwoWLSI0Io2HUHxZNamHOdUhPKJadnmDRxVDIWtCE2+XfU2fHfnEPdHd3U2jI6+AtKYOc+j0YM6S/Fy6A4tR5Kisrg2JONYhkDd9xXN3icX/EC3LmxKRpSF+zfURNfc3LeM6+guft90C4fb+l7hjTchMJmhTn3UJdnZcEUM+A/WS1ytKfUFvLLkQI/R8ihLZK7qYCmkh2ndUVFdDEapdJqqCAJpLcZneV7A40qcOpIwMfHGnCpo0YsXTmHv84g1Kj/ej2JbEmqzz43nkRbaL9XgFNzHtWAU3M+8hWJRTQxLQnK8t+Sm3NO0H++guqqfg1Ihf8wVtwVJbb7Rk0Ycd4gkOhqrKMTp06Bb6E98nTI4saG79OHZ0pwm+uULVZsXwZuROUPf7yH6ofaKX+EOcRfdqJaD0GTUwZR564YzPI69cR/83SxV6e3lD4IGz8XOi6a7eRo5MztXUOQBnEAS/2TSC+PCCaYpjmGPgz+O8f3LyJoqNjJi3RoqwFN06V5YImH56roD9+kUe3Lo6ln2+dAQLfXSABVoneq1XHaXCgG+k5VyECAlFEoxjLhPd2l2He/RAZMd/s6P38/GgTADNVFyssWZeWo22cFbZYaStu2j8suqbZTpkpIAU04Sb5HmhvbaYDB/ZTZMSzeJ61Qgr8YZB4BlAgpIRTU2dBbWcfqdrbcS81Q3IYkVlIy3EDWOLsEk5RUbF01YoV8NWASIGztTFAzUC1LQi3bdW3iQRN8rNWY24aKXn2fpFmNlmNfxubGz/A7+TPMXdfl9xNBTSR7DqrKyqgidUuk1RBAU0kuc3uKtkdaKKdoXdO4eQFAIo1oAkDLa8dKaYXb51HXmD7H24cmfLgexfo2ysTBHDCpoAm5u8JBTQx7yNblVBAE9OeHAo7/jNUYL6PQo6XeQuke97eQRP2jJebA2WkX6S21ieECkdd/d043R4iCAwMDCC/QXe68NExGggC00nkyDKVLR09JgkQOUKEJVK15ubmCpAmCBtf5sEYJOanCAsNw6bPQZBVsnmCFLYgP5cyMzPFvznSJBQbwds2rwaPhnSpTOmr4cquqc9h4+Wu+e1Td/VJGtTP/5tJxQ0d9MCaJFo9PQQgRBvt2bNX02Y7R46oAZosASGsl1H7fUiNYXWrgQGQmQ5qru8BwITJWc3Z5i1byMnFg0bA5cxVF99XFD8AzqODFJ3wJ/AfrbWojrZQdVWlAPiCQyzfFEsFTcQ94OZIhfk51NJ8I/41SOUVv8TfmqiRWHD6+Pv70rlz50S0lj4u4uHhQVu2bkWEl8OYpa+1teyhytIfIVphI6IWnrPKj2NVeKJAk8HBbspJX4jHlzOkfC+M1fBs0m5d9fPUWPc6JL1/CP6qb0tuUwFNJLvO6ooKaGK1yyRVUEATSW6zu0oKaKI3pRxlsm5WGP6Yfunh1BxO5/nd9Wk6UKWzW4kBN3dXOCIPW4Th9yj8AuZ8Jfd79jVvgHogx6rYkAfSL96E0+50SpvzIV3KugeqL+20ZOkZECH6SnYT82wwx4A9+5qpR3g9HTy4Gi/9VdTQ8AOcmALA0LOeOjW1na8hv9ggavTXKOnwJo0lTZ0vS5/yyX8rSCaGy6VyhEmQ11DEgSPkUkPDwiBr7CAiR9LS0mjatGSxGeWyWo4SZkRxdBwU0scVFRVU1+NCaUtXUgtAlW1pUNdRzGIP8Pz29vYgfUCjugJhImGDEh4hTQDGOOqH+Wg24LeUzcXFmcqhqHT27Bncgxdw77WRl9c8E/deD7W1ncEa0QNr0Bk/v2WY69G5TJYuXYoUrgjwkIwevWLOKQX5j1Fd3b+x5p7GOrzJXHGD7x968H4KCQ2lJ558yuJ6Loiu4ntCSmQM3wO9PZV06vRa+NQXXCY/Nbju6lWrSA1i5jOQ+9a39evXw6cBuL8sVxayeECXC7a2nqSszDvI13cJpab909rqY1LelWWb8WDqlxiFJLVTXV2ldO7sBqSYRSN1bL/UZsalXmXla1Ra8ntEIt0Lwm/D9WRNB9jXvKbHIorJmn5MhbJuiAjt7VN8PdZzzYdkiikeUECTy2tAS/jKfCWm7LMLVfR5Ti09uXUWhfoOvcA1qzR59YqN7AHeOHkgcqedmRkVG1MPuDghxQE/oqpOaafEY9q5CWw8K30TTrDLKGXObsrPvRe8BRWUMncvoidiJPeKI6jY3xyBZs/Gm+rzZ67GxroB5JM/xabDx2C4fSDcbjtZSd6hfhSyMp6ysnOE1KwWIHGGj/Q5S/Qrc4SJFyJNtBYEHhMXF1fBRxEVFUXLli8X3CSu2ISjGerQA6kZsHJ2GKB9+/ZRfOoi+uOBEgrwdgeXhmUKK/Y8Z9aMjYExN4Dax48do8rKSgEEsvEG01rLq2sXMtExAZ5CapiNgbD58+dRTnY2AK5D+LcafDQx2FANRZq4e7iDzLQbMrXGxOzuHsm4T4ckcof3KTk5mVJS06hvUD43R2XZ76m25k2KivkxhUX8j8XDZxD2Zz96CBFSfvTYzy2PrPDEizjT+XRLDI/hVKLsrNtxT8bh3rxX198wAI+rEaHVDyLnC+A3KSwsFN8xSW5cfIJNfDWac7o6C+hSxnVQO0qi2WnbLfbjWBbk6GEmnO4ZZ3Lo9raTlJ9zF4hVF9H0Wf8YyyHKbruh7gMqK3kK0VI3U2zCryW35+3hjDU9MGaRTJI7Ngkqdnbk4OChDZFsGm4wuebj4UKd+L3tk/C8lnvtqVSfI9UUUzyggCZYA9q0m4fWJxso42iXB6f6cOrOcMCEv1fSc8zfREp6jnkf2aqEkp5j2pN5mSuwsWiFKsZRKiv6Nk7Vsylh+vt4qdfwUCyaSQAAIABJREFUc0ixKz09B+9aFlt97csi9KC17RrUMTyhZrnh7pIWcgCqMX31HMopKKS9XxyEvw2j8HhtOqFuDzZyDIqwlDD/0Srp+Pr6koeHp4hS8fLyIk63YAUUji7hlBEGb7TpOdqOu4Ow1hnqIKXNXXTdy8doZrgvvXmHhsRbMcs9wBEPvB6Yf6S7SxMtZG30A0cWnShuEhFGC2ICkEI1dDLHc7t40QI6eODv1NpaguisSBEdweYMQuBQRGh0dtdAKccUaDJT8HCYspCQELoGBMFtHX2SQJ7hbXJqAqcoBIX+D1IUHrbIgV2dOVRd/iS98nI7Iiv66Rt3+EMl5QUQ10aZrS8nPYcbb2vZiTSYn+K66yjrkkaRyM3NTaTf9A04ibnw9QTn0F6WJfaRRZJrdjB6Bfr6mig/axUif8AdhWfuZLCJSs9pbf4vVZU9Rr4B2ygq9n8ngytG7IOt0qqU9BxjFzOwWl3+hFBR0lpc0t/I03uxrDWhpOfIcp/FlZX0HItdZdcFpxxowuAH/9HnOmFQhJVxTEWZPP95npAufmLbLJM8JwpoYv7+UEAT8z6yVQkFNDHtyeyLqeKLWXMzqKzw2yCkPEGxia+BW2G5ZNdfyaAJp3H5ejpTXm4uNTXVI/KmBJEkNYJHgjeorFbCOfhsnC6hbj8q/u3kNI/aL5N66juuDxwWDIT4xYfS0mXL6O//fJeampt1RThdwxRPlLaAh7s7+YPAkqMbuJ31GzaQu6cPToU1JUYCTfg7PtWsa+2m9S8cElESR35kHReF5AVgZxU9AHKoVS10cP/nYmTWgiY14BArgPSzP2SiUyON094iIyMoPnaAPv/8Q/DihKJ9f3EdBj4cHZ0x971inRkY1pwnUnkcHb2NvO3s7CzAgf5BJwAEtkk1aYEceXXFL8k/8EaKiPmVRTNcWng3dahO09/ejAJ40Uc33lRLfoFfpciY35qtLxc0aax7EyDPcxQWfheudQtScc7QmrVrcYodAM4SzeXdkCrhMNBD7rjH5JDkmh3MsALZFzlqd/Ayd5T8KCBrrz+8/ESBJg11r1F99QsA4u4BEPeI3GGMaX11+zEcKnxH/C7y76NUU0ATY8811f+DaqsMQTNHJx+aNmsvflcNozet8bsCmljjLellFdBEuu/sqabdgSacZsMgCEeP8B9OpdEnbuXvONXmve8sE/PIZf7nrTMCFEmLMiSb4+9u/esJo/nmNrWSxApoYv52UEAT8z6yVQkFNDH2JEeYcKSJk5MvFHOQglD6CE5o94Kg8FkQFW6S7PorGTThQXN0gZvTAH32n9dAJplh4Ac+IfbwnCc+GxjoxKbwJDauHuQLfonmpibqgtSpvvU1dUJJdpCuuX4LqRFP0gFg5diXkJe9bB6IMvHQS8PRr+sMQCUU5JmcpiCiFBYsQHpEnCCq1NpooAmX4kSS2944QaVNHfT3OxfT9FDpL6GSF4QdVGRy0cqyIiFZaw1owqHhWVVtSMvqFb4P9XEz6Y15c3qxnnro0OEShKgHkT8Ub9zcPXREpQMDKqwd5uAYhGqOr5AGd3YONtnWSnB2+AeGIA3A+jSikaaqvfVzqih5iHz81oloEUssN3M5DeAUWR804c3QjNTjZqvLBU1qKp+GlPo7FB71KEVHfhMAaCPuUQAm/YYghYfgPYCqkI3AJbMDQwGdYkzKwRHn0JJ2bFVmokCTmor/B0Wa9zFHj1NA8O22Gs6YtNPZkUkl+bcCsE6hhOT3JV9DAU2MXVdR8qBBlIm2RML0jxDxOlOyrxXQRLLrrKqogCZWuctuC9sdaDLeM6WAJuY9roAm5n1kqxIKaGLsyR7IlhbmbEW4fAxOdXbhJPlX1NL4oZAfDgi6RbLrr3TQhAfO0QX1Nftp755/G/nB03uRiDLhVCaWiWVz95hG7uCXqKurE3wJWusHj8W8lLnkHxFM7xw9SxtWLKS2xjqhbsPpN/7I/dCm4Qy/kCbSgFMJiOLj42ne/AWQJuYIl6GSo4Em2lJPbc+iL3Lq6PHNM2lrqkIGK2VhM7+Jv5cTnUXEQkFhsdkmGCzJr1NRo1qzPniOl8YH6giAhzfg63OI5s9bTDk5zlRU3IXIDL9haTUDpGo7jGqO5O27asTrp6amUiIIgrt6bRNhor1Qh+oMlRbeheiWhZAdfsvs+LlAQfZGELJWGYAmvAnizZA5kwuaaDdi0fHPU0DgBijqOAk+q8lAb1CU+zWhhJQ442MAY9PNuWLMv58o0KQcikwqVmQCCMdg3GS2nu5S/FZuE2Bl0sydkruqgCbGrquteoaa6o1JkafN2mNRKt9Ik6GAJpKXqVUVFdDEKnfZbWEFNJE5tQpoYt6BCmhi3ke2KqGAJsae7OzIwOnZbTg9S8Xp2XsIZ/8jZBXfQKg0iBtDh8gTrZ0DewBNeMxdbR9QZUU7Xbx40YQLtHEcQ195ec/HP7ygpNOg+zA2OJJmxibT6bPnqAan2g1d/XTr5lWUeeEcNdZWAxQxvbn190ekgZsm0sDf3582b94MfopeoygHfdAkwNs0AFPR0kkljWqK9PPQkZBaO6fWlO/DyX1bp/2pp/FG3hXEsDt27qaWlpZRXcKASW27RnVHa2E+7pQcapxOw997e5+k8LAzlJT0AlSs2qmiqsZAUUkTaXJGyBGPlOsfGRlJV61YgVSTAZurc/Amnzf7bu5J2Oz/x6LlwBwFDF5oI01uuqUV3BX/hw0y8/+MbnJBk+K8mwWoGY/nmgeebxw9plWYMnftsf6+tPAezOUpik16nby8NZG9E2kTBZoU592EOcoRkRscwTGZrR+S33lZK2Vz0SigifEsm4o0CQy5g8IifyZrSSigiSz3WVxZAU0sdpVdF1RAE5nTq4Am5h2ogCbmfWSrEgpoYuxJFXgSyovuQ572CuRpvyoAEwZO5OaY2wtoomo7RB7OrXThQj6VlpYKBzo6MiErogcGjUEBV7d4ELYmUAfkTNva2igAXCTrV6yhQ3/bTZ0eA5Tt4kBqkJGsnZNIy+an0p49e0itVhtNjJenJ7gXfEVaDhvzUzi5eIDHxDjdQh804VSDutoqofaib80AW7KqW8kPUS1pkYaplra6v7TtsApJNKcQDUuDsPV1JqI9H3DdMOlue7uKdu7YMWoXzpQ2UxfAI31zhlrOsoRAk/W8PC9SYOC/KTr6AYqI/C7t2LET/CZDqV59vfXYYGaJdA4GOYebJ9YMEwRz6tZYgAN9fQ1IK1mD6wdRcsohi93PPBAvvVAqOE2+dfc08ZyxxOSCJrzB5Y0u95X7PJmssvTHSIPcjTTI3yMNcsuEd22iQJPJPEfDJ2UQz/uc9LkIGXOiWXNMgeiWTaM9gyauToPkinRTa6yzI516uooh5+6K+zRESIU7OLrgvgAnEyI2O2WIcCqgiTUzIb2sAppI95091VRAE5mzqYAm5h2ogCbmfWSrEgpoYuzJtuYd4Gn4mXhx5xd4KWSPpubHXkCTwcEeqij6BlJjHoR87yGAIZ4IF46GukkL1EwyjYbO37khTYelxFtbW2kVuCXKL5VQ/o7z5BDqRemeGlWcxXGBFB8XC9UOb9q/f0gxgBt0cXEBjwleHsGDwtLEy0AeGxoeKdRyTNnw9BxPqP9dysqkvLw8XXGWEz1Z0oR+jbxpt8V9FhsbS4sWLQYwpCGttTdj0IStFzK49XXVRuCU/nhNgSbekHadF60heR1uHh45FBz0Dvn5raGEaS8hbaGFDhwYWhs9PWXYXBSJVDqO9hhuwwmCbe17TkfLSZ+HNCMnmmnFppHT/159pV+AJrfe5kDTZmvIdM2ZHNCEuYZyMxajr67o6zlzlxr377V8K2FRj1Fg8DfG/frDLzgRoMlknyNTk5KbsRQRXGpw8pwAr5DpiDFzk2nPoAkTKztBse3QwYPgZbrMtjyKQzjlqadbk+roAVJrJyd/EF5/id+OXpo7/w5IgM9AOqr0NENrQRNPPJ/dcLBhyvj5x2TwDo7uJr/v6u6R1Vdz62Yyf6+AJpN5dsavbwpoItPXCmhi3oEKaGLeR7YqoYAmxp5kokR+gQ8IvhVkfE9SW+teqix5BOHzG5Bn/kfJrrcX0EQLIkVF3wdehHtp186hXPYO9RmQXKqGfKSnZsL8FStXLKeW1jY6d+g0qc/XUK+3K+UEu1GUvwclBHmJeqkps6m5uQmRLBfEv/l1LTQsFP/rKNJypk+fTrNTUqljlNO24aAJq+T4eDjRQby4Mr+K1k4j8qEbkQ8LYwMgoWvdaaAlC4GlczmFSI3UEAZp7NG0oEk7ZHw9XAYp+1KWATilP+ZGdQ9l17QZuCEx2EukSJmymTNAvq7+BVJvFlFc0t/BqeNARQV5lJGhISLu7swFWFMtODBcXCMNmuDonpi4hBGBNVvNhZbYlUmjmTzanGlTGk6dCkYEliulpVWBD2I7eCHizVUlOaAJb8QKc66TzT9htpMSCzTUvgK+pJcpOOy7FBL+A4mt2K7aRIAmrEpWmHPtpJ0jU94tuLReKKlNm7UP96A0bih7Bk3YZ+4AHVqaG+jwIeNoNAYetGp0jgA0BwY0Eu7uHrOhTMe/e0ScMhwa4krr1t9LXQOhstIMrQVNOIrQB4pzHAGqn37JqYm9PRWifwyWMS+TvmrZiquvpqDgMDx/7fCkwILHjAKaWOCkKVBkyoAmzc0nqaenjsLCrjM5rSN939+vppra/+Kl/wRy70NxSrYO4ehLdW0ooIn5u0QBTcz7yFYlFNDE2JMNtX/By/tLupd3lhsuK7wXG7el2Li9Idn19gKalBbcSR3qs5BY/Q1Fht9A1VXldPLkSeEX7QsgR5044vSJN4LaF6nZs2fTzJkzqaOzk3Z+9Bm1n6igHpzC5UZ50VxEGvjgRIvNycmJFi2cT1lZWVRcXIz0jEBydXUTBKBMArsWEqnt4Abhf49kpohgXXEtR5zW7d61C892DeJyCRv4JmzkZ4b5UjAAHFvbxk2b4AMv6rE/KhOdq/RBEwanWJr6wIEDBuCUvl+LwSNTCT4ZFydHAZSNpJwTFhZGCxeGUkb69XghnwGi1H8TU914QbHn1KmTVF5eTp3qCyLCycNrLtZNgO4yTBA8HwTByMAa8+iewuwtWE/lggiTCTHNGZ8alxV9V5DHOrsECWWuiJhfQ9nnBnNVZYEmOnlYPMdiZTzHzHZSYgFWjGHlGP+gmyki+imJrdiu2kSAJkO/NYvxW/M32w1mDFsqyr0BBL554v7k+1SK2Ttowj7h51Zebrb4XdO3zg48w/oMuaBcXKMABCfrijk51tE1a5MAvteRt7+8KCxrQRPuBL8n9vd26NIv+wCSMe+OgeGAxNvnavGRIN5OmoZUzImXDpeyHm1RRwFNbOHFK78NuwdNOjqKQVi4H3++IH+AHYkJPzSYNXPfV1a9JwATrtfdXUf5BU/T3DmvCQCFTQFNzN8ECmhi3ke2KqGAJsaerK36X7DW/wOEaz+lwJBvCeJEJlC0VOFipLmxB9Ckq/MSfHGLOFmakQKOEAdHvAw6UGZGOuXn54+4LHkDzGk5TMbpBtLQipJi+uIPHxErmpZODzBKz/CDtOzC+XPp2PFjOM3qI2TliBQd5jEZcHChnt7RozZGUs9hXKa9tRkRJwdEX8sgOVzW3EHRAZ4UH+hp1H810I78unaclg1gnE4Ui3LMgWKJLV68mMIjouySx0R//PqgCX9uCpzSL1/b3i18GgoC2OkjEMC6ubmJue7orKHszA1CLYJVI9iYvNQTESe7d++mmuq9QqnJy3s5lqJGtpgJgjcBrGqHKow1MsiWzKmpMkwazSfB8cnvglw1zWwzDbV/BSj7oni2cHRMbeUz5Bf4NYoECGnO5ESatDR9TNXlv8C1vopr/dbcpcb9+/bWfXguPGyVfPNYdnIiQJPWpk+pqvxJ8gu4jiJjfzeWw7NZ26UFdwFEPyNAnpHImM1dbCqAJo6ItPR2d6Tj+E2rrKwULtESWQ/3j7MLOJo8hjiaVq2ai9TE16F0VU7x04wVdcz5V/97a0CTfkijN9T+GQTNpyki4nbq7JxGp0/nY77PCdn04cYEzpFRCXT1ypXiYGNgMshyWeMcG5ZVQBMbOvMKbsruQRMGOhgYaW45IaZpOGhi7vuL6d+m2Jh7ddElZWVv4MVNpWtHAU3Mr34FNDHvI1uVUEATY09WlT1Orc2fiY0FbzCYhK0ge5PY4EybtVey6+0BNNECSgHBtyN16XHhC210AfOQ1NfXG/mHN8BMxtk/6AzSVg3YwUDLWw8/T4MARNRzQikyRJOao29pqSlQTUmk/3y2XfCYrFq9mvz8g5BOY34KRpMc5g13QX6ukDfWposEgPQkJcIwtYLlcTOrWkk17ILMvcIcLKNZUlIS0i7mINJBeu65+VFOjhLDQRPu1Wjh6OXNnVTapB4RqOL6axBN5OMbQB3drZSXuUKkvXD6i9bcIX3dpW6ijz/6uQDuvH2G5IZ5rTFBMChWxsXKi7+HDc0Rikl4BbLHK81es6LkIQB3n2NT/AxOkxMFCGmpZKsc0KS+5s9iAxQcdh/SXx4w28/xLsDRaxzF5uk1H/LN/xjvyxtdbyJAk4baVwGo/UmotLFa25VgFcU/oPa2A0hdfdEiBShTY5oKoAmPmwFfd+dBAfgy2TlHZqpBPD/c9EGTefPmUUxMFF04v1A862amgQsMHEpSzRrQpLTwbgGYaC0x4QkcBEMxKXdYlMnlAkHBa2jrtTfg2euo+62X2s8rvZ4CmlzpM2ib/ts9aKJ1E0eMdHfXGoEmo33PgAqDJvqRJdqolZkzNSc7CmhifiEqoIl5H9mqhAKaGHuyvPh+bIIOYRP0EjZBawRHR27mMk10BcjupJo9gCa8ge3vb9VJlmp9wWR3NNAj+E2Gk92tXrOGfP0CDcAOjtzY9+zb1FXXSK4LIsgjwJBIzt3dXQAtTo7OVF1TRar2dhDgJVoctTEaaKI98Ttx4jgVlJTRmdImckWqyJJ4QwUXU/wbPN7RODj4+6CgIFq/fv24RTpIXY+2qmcKNOG2ORw9Py9HgFP6VtSgpqrWzhH9OHfuXDHXXVC8waKi7Itz8LcDzZqr4THRmqtjPRXk7qBz5/IE5wnb0qVLKQzRPSMRBNtqzPrtVJU9CpB1u4gM4AgBc1aQvQFAbDXSeT4DWJIIUOgq3FNtApAdzssyvC05oEl1+c+ppekTpL78EikwN5nr5rh/P8S5Ei84XibaJgI0qa74FYjHP6Tw6CcpIOjWiXaBRdevKn+CWpv+IyKlOGJKik0V0IR94wHAV61qoc/37ROuMuIBw2esBMaKYHFxcUhRXCRIxAs5DaozT0SaMEGsVLMUNOH0G5a/1jd3twiaNu1JOnL0IqL8Cgy+c3IOoG3XPQIA23/K8pjoO0QBTaSuUPuqp4Aml+fTFKjCESqZWQ/RwgXv4GRMc3LK3Cdl5a8LIIVN3WXBMal9rRmrR8ObGg7x7rJnIgCrvTI2FThKwBmnH92Kr3UOzsq4FfKp5ykl9R2cduN0B3by+GycCvXT0uVZOOXRcG9Ya04gVGOllu7xOgK3toNmytfXf0qF+T+Dus18Skl7z6i0Aw1SQ30dHTlyWPfdnDlzKSEhAYqUhikt750up/KP91JAUz35L4wi52BD0GTNmrUgmQ1Ei47YLvdD0taZOPLDUvUZZ4AgzH8xkswsk9KyPPL+/V/QF5nliAYcoMUATdz1yGAbkEYynLSUBxYJ0tqkEI1KhJYbRTtg5mPZsmUruCrAj4JTwalgfHrKNtzX7GIseWJwqqJCQxjIxtE79fBtCmSeh/OZxMTE0OLFS8S8axlrTp9cCFBBRYuXnsXv6pA6R2PDLqTmtCItrJtqaz0pOTkZ9yxC2iXen1LnqqT4aWwg3gLQ8xhkke8atRnmSTt3ZiWeub60aInmBDc35z5qbjpA05L/QMEho4MufKDAEe+8Xq217Et3U2vLMZo5+3WkMJmPiLG2fbnl+8DrcObUUgPfyG1TTn0+UOiDvGs/5waOk+VkfweEoYdoxsxX8Py7ZpyuKu8y1qz/ka7kBiChD1GIo/FUyevl5Krt6DBIxUWFdP78eRzKdIn3DVZOYulmD49EcnePgbKWhkScFdoH8MNXVPhzqqv9wKLnzGij5Sg9Tm/lNkezvr423I+LjYrExn6fwsO/R9u3fwCS/DzMWQfGoKb5CxbRnDnfIEdn00o6k2sGxr43fHCjmOIBBTS5vAZMgSZMAnv23O0GoAlHmtTUfgZFiOdFzVb1CBqZytrSeYDZuvnBrkJOumJj6wHeXLKcnLprnGLZx3Y4Nmk9M30reEyKKHXODuQVa2RML5xdjpe6Zpq34Bg2xIYRCZZelDc8vLY7uifG1xxRkVvTTjPCfWgRUkystbyce/CSdIziEn5FIaFfN1mdMYfs7Cy6dOkSRUdH09IlS6lvEBvgYe9n97x9mvzSM2huRz3N2baUKnqH0nrmzZ1H8QmJiDHQhCAz+MEghzUv1Bz5wr7uwxsnp/aYMkc03AtC2LzSCrHhd6E+4jny8NAouXA1JonVr8/98Pd0ESlJjgDAqmtqqLCwSNf81Suuhm/CkYpk/2k52kG7u2pAk64e44288BNAr917NOHo4l4qb6HWzl6aF+NvwA/j4+NDmzdhkwCiG/25Tj+/BuBUDc2ZfwCEwEPqHNWVr1BT46dIg3qVMjKbcCK7EJsBzQZjPK268s9UWfEiRUR9j6KiDTnQhvejpfkAFeR9D5FXy2n6TA3RZ03V61RR/gcKCbsVG6Jfjtp1jlZjnoBuM5w+phrJvLiFurqKKWXOdqzxaePpIouvdfZUqkhZWLgkA/e8ZdxBFjduZUFP+Jo5cbQphVZWl1Q8K+Or4MfJpdmpHyNNabakNsa7UlXlS1RV8RK4LO6nyGhpqkde7k6IRBwUwMlUMVfsqc+cOU0lJSWIpDwLMtg2RGksICdnP+ECfha6e3rjeab5LWmo/4hKip6kwKAtlDhNuoqfN5Rw+EDSEr6njIsbQfJbZjAlM2a9Tf5+i/HsradDhzVqQEEBTZQ2J4JUHaVYB9LWgL3NO0cFKqZ4QAFNLq+BkdJ3Tp3+qkF6Ti2UdNraMyh5mib/X0nPMX8TKek55n1kqxJKeo6xJ/OzVuPlrZGSUw6KEFm2wpxtkAUstVga1NT8TGR6zvtny+mF/UNErckg4HzrziUWLyOWFyzK/Ro2Mm7glvhSKOOYMgYifPACfO7cWaiXzCfsjY0iEEqgnnL7mydpOQCTZa0VlLp+MfnMChVAS2xsLC1atFiEI8vZ+/IpDz9HONph79691NTUZLK/vKlvbG2n2oZGKs7JxOa8m5Yvv0qU5Y17a6dW15hfXAdFpJAviGAZWGGy0bz8AvC4NIjyU1UxYKT0HK3Dh4ejnylrRvh2Py2K5cieoWickZSGeN3x+kuc8YmBooQ2LWDajL9SaPBqalN3A6yybXRPX18vmTsx7FSng9NhP0hg5whOBxHFNIKp20+AT+cByJnfDs6KR0QpVgAqKfimGBuPcTSTk56Tm7EIgEsXzUg7ifvXmEPI4ofBGBbMv7SW+gCgJs/+AuB02BheyXzTE5Geo01/nJ5yBJvnITUo872duBJNDf8UZMaBwd+gsKjHJHVkKqXnaB3EoL4vAHjmN6ks34HfOzxrfFYIsHDJkiUUGh4J1bWh55n2N1gut5ql6TncT61SHv+3o5MPgN3vg8D6DjEELTdYWVkZbdiwjC5l3UkqVS6eYZ/iWTY5QVlJi1NiJSU9R6Lj7KyaAppcntCRQJOi4heglBNGUZG3IqxTjdDhpyk4eB3+aEItFdDE/B2hgCbmfWSrEgpoYuzJnPR54rRz5hwmXNOcFpTkgzm+Ix1cHv/C5miuJPdPFGiSX6ei+987Z0Ro+sNrkunrC2MsGktd9XPUWPem4EJgToTRjNM1fHCapQLgAJ5XI3v9y2J681gx3RY8SOEZFyh2/gza+N2vIVT5nABaOroHQSQn78RRy2nCJ2r9vZ2Ca2WkiJNehODX1DdS5tlTiDwBaHKVBjRRIZWyp78fpK8ImUYITctlAMXfwxXyj2tI3dmFU8JSUTYiIoJWXH21UAeaaooB5kAT8YINfpOykiKAaefoWFGjiAZZnhiE9B0NwDCa0lBJwR0AFs4LclAmCdWa7nOodgQHLRuTCC5+PjoO9ghelpHWD2/yuzqzsMkPRWTayNEBrP6UlNBPBQU/o8Cwh8jXf5NuLDnpC9F+N4DaQwBqg0a8vaSCJv2IksvLWmlEqGvRzT+OhYrzboQvcyFf+5FQK5tIG2/QZGBATbkZSwUgPSPtzEQO3aprtzb/h6rKngCfz1fA6/O0VXW1haciaMJj53TQnq5m+uiDJ0XarxckeznNMDU1DQcHxq7UgmrTZu+DmtxQ1J01TrcUNGlv3Qs1q0fwPAqkJPAtDT8o0XKDdXd30SDek0pLNXw8Pn4bQQr8nDVdssuyCmhil9Nq9aDsHjThdJrKqncRKqdG+JpaSAXrq+GY+14rM8yACbfBgElU1K06jhMFNDG/5hTQxLyPbFVCAU0MPakjfXX0xIvrKd2XZUX3CZb7mEQoZPhI4wOYKNDkcH49PfqpIYkmD2xragQ9uWWWRUtJewIcN+1tbFwXmK3D0QWdw3hyWIXmHKIMfr8vV6jWPLMigmo/2klB8ZG06ZFvaICWDgAtNshe0ieC9UD6SH1dNR378kuT/e4EsqOqbaRz508hAqKblqQupAFvV1Lhc44aYIlhfkHk/vcg3WfpogUUHR4K/qps0R5HnTBp7VRVDLAENGFshOU2T50+Q+/uPyMidpYlaFLEWGloDshfEShi0obUaf4MYuYhlZy8rFX4jW0a86gEXj91tVV0/NiQeo9+R3t6KrDxKQCFjTt5es4Tf5syVgTqUL1G1dVvYxOyC6mHTeDFAAAgAElEQVRGQ4BlWdG38Xw5js3GH7Hp2DDi/SUVNNFKhbt7zAAg8W+z9+9EFdD6ITbxr9hAasDLibLxBk26uwoRzfdVkANPDiJcS/3OyjmsoMOk6UyeLsWmKmjCvnKmKiot2kunzxRQbNxGWrduHbV19JlMRy3He4gK7yFRcc8BdN0oxdVkKWhSnHczAMxsCosEyHs5umT4BfmAxMlhQBBv9/U2ICJ3s4hmi47/E55jayX1z14qKaCJvcykvHHYPWgizz1DtRk8cXb20oEl2m8U0MS8hxXQxLyPbFVCAU0MPdnbUwV54Y1QsQBL/CwNuz1bZelPqa1lJ07S/hcnatskuX+iQBPe7G98cYicVdv5WxZE00PrppsdS1sLwodLf4yT3xRsuN43W95UgerWLnrg/XPEf2vtt+sSqOGfyN3396Ftv/iOUBUYDrRIuhgqDVfP4Q17VmYG5ebmGjXZVtNIqsZWyijMEqDJ4pkLaACh02pER3gi8VxLDsvRL4FhkSC7m0tFOVk6laBr8JIrVTGAN+S2tpEiIka7jgNAjE6JXDuWgCZ8bQ5HZzLk370OZTp1Oy2MDaBAkP1u3LgRm4TeEXPstfdeFO4938v3HqvNsOqM4zBw09a+1LYHRWqEn2dSXl6ewSX6emvAEwIVCUSmaU2rfKFfkGVDo6ND6OKF5eLkNjnF8H5sqH0FUrMvi80Jb1JGMqmgSXvrfpwaP4iN7WpsbF8eKzfJbrey7GfU1rxDyDH7BVwruz05DYw3aKJuP0ZlRd8hL++lFJv0hpyuj2vdIanohYgGe0vStacyaMKKVh4u3YjUcKE5874mwPeROLG0suFBIXdRaOSPJfnaEtCkufEDqqn4tZBET5zxmcXXaaz7G9VVPyuixDhabCqbAppM5dkfGrsCmshcBwpoYt6BCmhi3ke2KqGAJoae5JMVPmEZ/qNfU/kbam54j8KjHhd8BFJsokAT7utjiDQ5hIgTfYsL8qTnb5pHYb6js92XF38fEsyHka/+KPLWvyll6PSbXdm0M7PaoK6PmzPdW6JRELnpD4/ghN525KnDQRPmLvHxcKJDhw5BaaXWoB91+WXUh6gSfdCEC3R5u6DOEJkbqxksW3UNfbL/BPk49FCQl6tIJ4qJSzCSuG2prKP6wgryjwyhkGmmU6A4+sLX05lKiotH5FyR5GwrK/n7+1NCYiKAC2khPpaCJtytsuYOKoHM9OnDn9Pc6AARoePg5IaNwsidrqn4f9Tc+D5kWH8OGVYNAXFnRwZS5m4bt5dz7fo5ePAg1dXV6TqrVp2Ags8QECi+QJi9N8LstaZVBKptOIBN8QPiu5jEvxgMWK2Cyl7h/4D4EcBk8sjApFTQpKnhHfBOPC38x36crMbcGMyRERb5UwBI35rQbo43aNLS9DFVl/8CYNFXARr9dkLHbs3Fu7vyECFzg0WcPCO1O5VBk7rq50ndtgspOW+CMjt6VLlejjLhaBOO9uSoTylmHjQZFAdHLItuqYy6fj8Ks7eCG6wMv+duItWQeVCkSlFLGd9kqaOAJpNlJia2HwpoItP/Cmhi3oEKaGLeR7YqoYAmhp7kTVBZ4b1Gp331NX+ihtpXKST8AQoOu0+S+ycSNPnuO2cpo7KVViQF09XTgmkXAIx0/JsJYZ+9cS4Fe7uZHBOT3zIJLnaCggDWyclX0tjvfOsUMbfKcHusI5+6WlW09clvk1egtLZNdWg4aMJlhHqRY7/gN+nu1uSCcPpNfWE59YCvxAA0AaDhAllhjo7Q2sYNG6kUaTxHM4pEys6qudOh3JKG6BiQ1up1ImPXMcrcPZTKkbAkhZZ9Y4tJvwmlMJChMhlgW1ubJN/KqeTp6SmAi+4+KAlJVK6wBjTZc6mGSppUNC9wkFIimFgwEv4bnb+mrvqP4NN5A8SpD1FQ6L1iuK2IRqhCVAKHqHOo+niYK+bJEWSNu3ft0klNq9oOGl9aDzQRikCQDe3AGqkq/yM11L2G58d38RwxVJhgEsicdE57G6QZqccF6aIpkwqa8OkvnwLr+3A8fGbtNRpq/4qImxfFPHNfJ9LGGzTRRhsFh30H6+PBiRy6VdfuRbRVwaX1griXCXyl2FQGTSpKHqb21n2UPONv5OxuLPGr709thB3znzDnGv8uW2vmQBPtPSgVmNESd+v3Kzr+RUGSPZVMAU2m0myPPFYFNJG5DhTQxLwDFdDEvI9sVUIBTQw92dayB6koPzIiM2uqf4tqq34vTj/5FFSKTRRocqa0mR784DwFIsdg+/2aE/AORFY88tFFAZzMhATxczfOE1K6w62+5iWARX+Rffr5y+1ZtDfbMMLDG5Emj1IlNZZU0doHvk7BidFS3GqyjinQhAu6Q167vbWZDhzYrwFEQEiqalFRU3mdAWji6uVGvhFD6hVLFi+moKBgamppoSZVDzYILjQ7KVa8tOoTvzZXNtCuZ9816tOqe7ZRdGqiyb56erpDfaUNsrx7bTZ+Sxtat349eXr7QcJWukyvNaDJO6fL6KWDBfT2XQspLdIX6krmX/ob615HyPfzBhtp3QYz9NsUEjG6zK+lvrCkHK+ftpYmOnjwgCje2XEBvCotBlWdXYIRAZMqPtuA1CM3d2/B08OpF5yCER3/Ap4v64wup1WqiEkw5G7RLygVNKks/Qn6vWtSpL2M5ueWxo+ouuKX5B94A0XE/NqSKRmzMuMNmlSXP0UtTf9GJNAvEBF0y5iNy9YNDxHYGvKAWXOdqQyaFOVeD3WwfKSzfDAqkbTWn9ryUknpQ/3dL0sOG4PVAwMdIr1mcKBXpAqyopfWmFQdgnKjWldnDiJ1bzIqw4AJAydTyRTQZCrN9shjVUATmetAAU3MO1ABTcz7yFYlFNDE0JPaXF7/oJuhEvOU7suWpk8ROv0kwkwROh0jLXR6okCTn3+WSV/k1tE9VyXQvSsSdGNqA3sbAyeXqtsoNdJPRJz4QKpX3zRhulXIsX8d0TfLJC+7H+E6x4sbdfUZMHkI6j2BkCYuv5BLS7+5lWIXWEZKa0knRgJNuC4ruRTm50IRJYM47aKyoob6m9SUUQROE6jnMKcJgWpk0MsJmMigUDNIBFnpgQMHxaXV4IjxCQhCTICjUYROd3kbdeUNjVPbV5cwb/JMDTHqemhoKK1ZswbpKYNUUVZCp09r0pXGw0ZKLbL22taAJn86UEDvnimjRzfPpOvnRpkkOxx+/ebG95Bf/xuD1JKqskcRbbIdG+v/hw329dZ2WVZ5L6yf/LwcjaIOUnM6AJwMpeg4AIRaLLhWWBEojGVDB7COYHmZV0NRr4Wmzf4cyhfhRn2oq34B0SCvjRplIRU0GVIgeguh/QtljX8sK7e3fgHulR+Ce2UtuFf+ZHSp3p5KgJ77wTkVNeYn1+MNmujIxkcBzcbS93LazkmfC/y5H9EPF4QKjLU2lUETjjAbhEKXpVLgnMLFqVxS0mUd8XsX4ucKVc8iasYBgNaYm4kJrQf6O/DRAOSug6ASmKb7fsaMGdQ36ER9A6OD3P397XjOLTeafjnvTdaupclSXgFNJstMTGw/FNBEpv8V0MS8AxXQxLyPbFVCAU0MPcmbFt68BIX+D8LDH9Z9qSVS9MHLfLSJl3lL5mMiQJOypg669Y0TonuffW+F0Sa/CWo1DGjk1raDY8KfnrtprpDXZdNuYPi0KXHGJ5YM0WQZlhdmmWFfdxe6YX6USG1ZEBMgUoPS/3uIcg+cobRrV9LMa5ZIvsbwiqOBJlqpxBMnjlNVZSXVllZTb3sHXSzWgCYLZy8kZ4AYjm5OFBAVREz0yoBJa2uruIy3jy81dA2SuqKdojv7yRFAkyPUdvjvrsJmGhxB/scJHCgukd7kGukD2gtHqKe4XlbdcQDxnyN5uTlQRvpFSNKCWNRCa+3shTRln5BFZo4VSy0+Pp4WLFiIukgtkh5kIi5nDWjyFCKO9iHi6Klts2nTbGPgwFT/dak4IIFlMlg2rQS4pWpOlvrFknL666eiokJU6etroJ7uMmw62sTp7MxZqwRhsFY2VJvmNloKA/MGMX/QaGHxUkETTp/gNIpps/YIwGGyGktLM8DDsu58kq5v/AyuKn8CPm4XH3MKUyLIJsdqPOMNmmjTGljdiFWOriRjOWuWtZ4OgmMnEB1ba1MVNGEQsCB7k1WpTdpoLF//rUhN/D9rXU0h/m6IbOmhnUgz7OjoEM+uro5Mg3b43tKCqwsXLqTI6BikcFpGWs6RJhxxom9xkIVnMHkqmQKaTKXZHnmsCmgicx0ooIl5ByqgiXkf2arEWIAmrDQx1sbpBCMxzMu5dl3VH6ix/u8ATB4BcHKPrqkO9RkqLbhLvEhIVQiYCNDkxQP59N6Zcro2LZIex+m+KatXdYuIk8J6lVA0eRbAiauTI058HwJw8jl88SP44m5Jbj2YV0+P/0cjd/zM9Wm0apphtEX+kfN04ZP9NG3FPJp/o3HKgqSLotJooAm3yVKJXq6DVFxUTG31zeIyew59Aa6TLtqy9VpyYdAEfCdxSfHUiHQeVbuGj8XFxRmbNFdqbeggd8hCmjSk/Vzce5pUDRqOEkdIKYs0HgAcmg8cBHCy7Lo1FDsrGS+jmo856oWJYb/44gtqaGgwO/TsmnZINw/p9HL0zjwAX+aMiV83bdpE7Z19IyrWmGtD/3trQJMH3j8vZKdfvGU+Lfr/7F0FfBVX+v2Iu3uIEEgCJLgXd6hSd3dvt7u1f9utbtvtVrfduht1g+LFijsJEHd3d/mf7z4meT7zJAJ932+zoXl3rs28mbnnnu+cqN70J2PtNdRtBZhwp7Ab5tQVjrRjYG0gLSY2YQvEBgNM6a5VyvL14+LQLbRoGhsbRZ0d7eVYLByjgMBIWnH+oxqOQJwawykyhhgUfHxXZyOlJk8TdY0cexA79ro3UvNAk246cUS1azxy7BHUqwJFB2NI4BLbMbMts3pIrDf1v/XlDnZ/gyapydNxDTSc1I7yHoynx2CfWPeKz93wkauEZbKp8VcFTSTHJDePqXjWfKRo2iThXUenoQBB1yo6Rr0Qa5q0AtivxXNt44YNSDFMxr1U93nDzNKY4aNo/ISJ1NSqqdtlrFFmm5QWvQAXrLUA5FshnH8lBPQfMbmfp/oBNtDkVD+D1um/DTSxcB5toIn8BNpAE/k5slYJa4Mm7Aji6WJPKSkndFxKrNFnO1ijTp8+HRoBhm35LGlHor6GRjwF2v+FPVVxzjHnEju7jADr4mezmuhv0KQZliRnvfUn1Pg76YOrJtPoUMNCq2wF/MAPRyinspGmRvvRi+cFURZSczhiE7YKFXxTgm2Oq8FiuemL/VTf0kG3zIqh62bovkwXJmXQzo9/obCE4TTzxhWmNGG0rBxownomPu6OtHPbdko5cQKIhT3YH/YQQ1UBG1gPk5+3D3V1QPOkrRG53F1wA7AjZwAmnNfdXtVMQO00+4Br3yPQm6bNnkEH/thLldBJsQOrxjHQTTBL2ssaqa2onjoqcezJCBkZTcOmjaGhEJXlcIbYaHdnqxCr7ew0bCnDDJOkIhXzRT3igjwpyFO/qK9UjoVf7R1djTrWmHIiTAFNLgfrKRfspy9vmEbD/N0VNdPUeBCA5TU9DAze0eadbTt7D4imqlhUAxEubJHdWEsb1vdq0bQ07YOF8kyyd44kR5exPd2SwNjAkDshBHu7we5mp18mdn0NpcOZA5pINuqWCHX21/xK9H47O3eRriCFIdq/o1MYFo59owXUn6BJ77jN1wXpr3Okr50cXLe8+I6O/VojrUNpn/6qoEk1XK1K4GqlnQ4sN2+pSIFhxhUL7/L32pSQhGC7O8spK+MA7dv7Ow7X1TcZGrGcli4712xwXRLP12btmtLXU7msDTQ5lc+e9fpuA00snEsbaCI/gTbQRH6OrFXC2qAJ98sRLAU3pBqsW7fO6o4gM2fNwk5uiKzjhrnzw/n0nJYyNPo15Mwv6qmmo72U0o8vxAtKEF5U/jCr+v4GTb6G6OZ/Ibo5bZgfvQprYbkoqG6mv/1wmPj3HZO20yT/7+BOshwU4JfkDu35/GB+Nb3+R7qGU87CkUH0zDkqYUztqM4vpY2vfkE+4UG0+IGrFbcjV1AONBHXKfRKmspKafW61VTT1ChAkc7ODryMdpK3txc5D3GkqoIKsgcI2AmyiJOrE3RMgIwANenAHAFH0Ymll5xFdWCl5OblG+xigJsvOSHDIG3HUepsV9FMPAJg+wvwhH+8fd2osqKUdvz5p8E6imqbKatCxXBQj0gcG+nnZvC4adOmwbEmVICO1gpTQJMlb2wjBtTW3j1bpGspCW1L0+YmgHvpVyKFAfa8cYbteZXUbWkZ1sfJz82mAwcOiKqmTA4HkWgT1TcWa6Tx5WbeQE0NewVThhkzhqK06N9UVf4Z3FPuALhyh0YxYXsMJhJjaU0SPUnBAJj9wuLWLi6jKDz6VQVHaBbplFN/NLlG4wdIGg8jxxwQtqVS6GOa9KXAZH+CJj2gvHMMxYz81coz2vfVSSLHkTHvkrvnTJMb/KuCJqWFz8Ni+0sKCvs7+Qdep3je8rJuhaj0Dp33FCUVdLdtoMLC73E/OkjDRzxORw5nUE5OjsahDo6+dMGFjwDsdzEbXO9NN5wMdu4nSrp2WpWxgSan1ek0ezA20MTsqVMdaANN5CfQBprIz5G1SvQFaMJ9413YlqY6Wg/gxFB0d3dAZBTiY12c+uBAzqD1DrFzMVg+MTERdNER1KIwt9acOeIUHE7F0c7B7YLgY2rSZNG/kWP2m1M19TdocukHuym/uomeXzGG5sbqipDqGwQzTThV5+4xj1GIexkWeW9jkTdb0Xh5MXzBuzvFolg9XoHA7PQY/UyV1oYm+vWJt8nJ3ZXOe0ZzkaioUQOFlIAmaVsPUFdDPYVOiKI/tm8V+d1YlwobYm+ksNRUVlMr0nDUww7XdTeYO/p0QMZOnkhBw0Lo+HHNfG71493d3Wk5mB6cqdPc1ErZu5Moe08S1Rar6NHTLphDPqGB5Dc0kFq7WnvTdBigUcM5WDi2tL6lp+pfNqt25UO9XWl4gH4GBwvajh6dQM1W/v4oBU2Y+bTwta3QX7GjzffPU3x629uKkfe/WIinsohqbfVvsBt+xGRAT3GDJhRkWUQPVzs6CNCE7ZtjYqLo8CHW5ukSjDRmpnGkJk3Dfa5RNp2I0+E4Lc7dcwZFxrzf0xMPTvHq6gBQx9ceQDttlpORPre3F4MRcwRpZSFgAciDp+pVubg4Q/gYqZD9CJz06q9sQJ9De7rT1LCPcjN70wSZaRQ1/BOAZ/rTDk04jXqL9ido0lD/J+Vn3aZz3i0dQ38dX5j7d7gzrQXA/h98L5eZ3OxfFTThc87nnnXSWC9NaUiudpxCzKnEcsHvWSxmX1P1E9IIVS52nP4XEnYbRUZcDWbjd1RWBmFrvJPZ43s1b/71FBQcTa2d8u5mhtru7KyFKOxMtOMo0g3NsUeWG9dg/twGmgzms9N/fbOBJhbOtQ00kZ9AG2giP0fWKtFXoAn3j3dhC/NzDTqCtDQn4wGulksL1X13dxUwoR2hoaHELJOGli4Ni1drzYNUj2TnFxP/IxY8qpQJKVKSJmHR0gra+H64YxgGdwz1iUETNyc77BIbTruw1njWHSulh39OohgsoL+4XqWToDTSCzYgheR+Km0Kog1lb9Bz5+lniWjXty29XLSpHTfCtedGNdce7c9/fOh1wbg4//m7ycHZOoI4SkCTtS98TPVlVXTps7dScUUhbd22DddWFwUFBVJVZRX0KVrAKAEwoUcotdNhiABOWDCWyScRMUizmTAedovHjKbVLFq8mFzcPAnarRpRfDyLio6mU9zkWEpNS6PKykpy8XBlOgy1NbcKcVlmttghfcfeC7vvQHfq4X7kDlHaMWPG0tvfrAYBRtXRKDBNIsA4UY/AwEBasGABdDY6rL4AVgqaMIPpkg92URiAne9v0XVYMHR9Mg2d6ehSOo60YAgIvhWMjLuVXtZ9Vo5Tvbxg183pVPW4PxXlPUnVld/BsvMq2JM/DNHFTKT2nScES1mI1Vh0dFRR+rE5WGg4Y6GhYq9wSGmPhw7uo5zcXLSlXL23rS2P2lqy0H4E7mnDFc9Df4DU+jqTnXYJvnvHaVjsN/iuJPQUkezgebHHbiPhUS9jgb5U8XhMLdifoEmv1fL5whHqVIuSgqfENW+uXfJfFTTJPLEcrjX50IL5FVow+i3p9V0LPSwOD7A4ABwaCtaDYrCkvnZDTxEPjwSwGVeQh895wuWLN7jaWxtFSijH6NGjKTYuXpEdvNx12mOPPOILcnU3DbCVq3uwf24DTQb7Geqf/tlAEwvn2QaayE+gDTSRnyNrlehL0IT7yIYeR+EIkpmZqdFlZpc0NegyNlhETltIztXV9aTLiB0Wm3pyIqw1Gagn/fgCADll2NHehJ1tzVzh9OPzhdgjp+dwmo6p4Y7dYncAJ8nHTlBDg0pY1NpRB/2Q4OhYemldGu3OraW/LYyjiyYONamZwtwHsWv4O63NPZe+S11Ei0cG01Pn9C5eDFVmCDS5dFIE3Qt7YUOx9vmPqB5irEsfuo68gk3TTjFUpxxowjbHuz9bRV4h/rT84evJB2kP27dvgf1wIc6tIwRhwfIoKqPO+jadJthVpwHgRScAFg5faJ8sXraUftm0i6I9De/MKXEhaEdqj117C/248jtqbNBNv+H27JAuZA/dkhZgb/MXLaETaVnUBm2N2ua2npQddycHsdBmRkKwtxvdee0lsIu0k7WMNOlCOVlYKWhypKCGbv/6II0J96Z3rzDN9lYlZNpNo8YlIdXkIXF9hkX+Cy//55rTZbOPgZyv0J3RDgZOGLNiRgbfP6orvhY7rP7BtwA0Saf6mvWCdeIFByC5qKr4goqLPqDQyFeh4zKhpzinPXq72dOadWupulpXz8ZQvdw+u3Rw+yweqSQYpJ41ezb0DDr7FKTW1xcp9SAiBiw3z16WW0H23VRftxnMklEAVU7g/L+I8y8/n0rGq69Mf4Im5SVvUUXp20LvhnVvTrUoK34VdtkfgvVwn7DMNjX+iqAJszpSjqqAhFFjjwIZVZ4yySLYLIbNAKKKxdEbnQBeJVZJW2t2zwfevmeTN+zZo8LnUF1ju8a7lCs2c8pKiygL72lz584V33trsMuKC54EY/N7gMf/AIh8ramXxSld3gaanNKnz2qdt4EmFk6lDTSRn0AbaCI/R9Yq0degCS8mPAEWbNy4UeyeS9HZWQPK+GGdYTiAgq9Nt2bLVw9PHwiaKt9dNXd+etkk+7ALg51+teDdYt41Vqfdm9KOYJrA4aQRaSC/r14Nqz8D7iumVKpWlsVBPaNGU3aLK32+O098cj3EV2+GCKvS6OioxE73XFG82/8n+ttPJVQHRsOyhBB64szRRqthpgOnX7SqAVvs6PLWZROFvbCh2Po2qMHpeTT71gspJD5aaVeNlpMDTaQ2x5+/gGJnTyC+57g4dMENZQ01NDYLJ5vqsgpqKNVdnNoDYOnAuBpaVaKxS5YspaRM0J8rygzqiQwbNkzlQqDA4tcVO38NdVX02/c/UW1JhY52Cr9bD/F1pcSJU6kCzkddtRCcPYnVVDS0wT66ToMcM/2MWVhcBtDM4aYDfUpOhlLQ5I/UMnrs12SaHxekmL0ktZ8GpgmLZcYl7iTWT2Cx1OgB2L3kXdnujhZKStJlVKnPVXMT9GqweGGgglP7mB7v5BIDm+lIo1PKQtdxsU7QGHiG3L0WCetz9fDzdKK62hrYhSp3zWhuSkJfwFxyS1TkNNSfILW+yeDUK07BCot8DtfteaKIpCnF//YNuFyAUuYu0JVc06Id2IiziHZzPzADi/MfF6kToUOfhCjoRUq7OGjKVZZ9QGXFr4nrNSj0fpP79VcETVpbMsBAW4FNoigwTVabNGd8L8yEUDv/dnAMpKCQewWTjcGS2upfeuriun0AlHj7rej57ktCsNobUGx5z88RTslpa7fO5hRf03xte/ksATPsFZPGeKoXtoEmp/oZtE7/baCJhfNoA03kJ9AGmsjPkbVK9DVowv3U5wjCuyyNDXC+wG/10N4NnTBhAg2NiMKDXPkujLlz06NbokWNl+rLgYNHM5w82HKYrYdNDUnTpBmL7arKMvpz+3ajVXRg17oR+iD82xsuLA7SytjAUV2+Q6nbK4yeWZPWU4JBi/X3GBae1K6qsvxjKit6GSK4CyEy9zodLQRb5fvDWOx3wrY4FLbFowz2+V9rT9CqpGLyQV954R/i5UL3LYgzCphwZftWrqWcvcdo8qVLhBCqNUICTZrRb/WoLSyj8qxCKkAqjIOTI8284Twagh18DgZKGmqrhOUv65rATIcKjucgdai3DgYsHABY8Ntla0cnjRk/iRpxbR5OTjHoTuTr6wtgZYlJLgSYQsrJzqSNP62mdjBI1IP7EDt9Ajl7+dOeg0dpRKAmILU3pwpCr6qX3pGjEsg9KILe2ppj0nVgyjlQCpp8eyCfXoNIMDOfmAFlSkgioJzekp12MRYLdRSXsI3sHfxMqcYqZbXFX/VVKtkPswsM1BQhLlwLPZFx6K9xm2VOQfRwr6Djxy6BltBcaAq9pVE9u+eA00LZ2dkG0x6lA/geywszlYZBt3DZYJaGXMxHGpenl2+/gNT6+lJa9BLEcD/VEMesLPsIi/JXRDqOq/tEYgFNX//LkA7ymNxwzP68P0GTvKybIey5C2l+72CDYJbZfR6oA6srv6WSgqdNdoGR+vtXBE1YcJ6F59Wt1JWeP9b2YY0fQ8ECycwq0aeTYgg04ecfv6tZM324FWmBWanninsPO/38lcIGmvyVzrbhsdpAEwuvAxtoIj+BNtBEfo6sVaI/QBPuK9M/K8pLehxBeOeVX+g1AosL9RfGyMhImjJlKnb0u/QKb1prDqR65Cd+FzkAACAASURBVBxy8rPvAgNgi8mibVL96kKwMGKh9NQUiIYe1zsMBkqSYSmrLqo6JsxbgCf6Ijg4mNyjx9CDPyRTSV2vQCiX/eGWMyAQqkyDJSv1ApyXNAGYMHDCwY44D0Aclhkk540Lo4eW6Aov/nCogF7emCaAh4+uniILlKiP4djanXR8/S4avWQGJSw7wyqnVQJNYBNAdnVgi0CfhFkbdScFV7kRe4AmbHUs7IYTE6i6pRv53UMoOzMdKWVHgYsMAXjSTUWZ+UL8lYESO160ngRZ4uLisGiLovd/2SwAIm3wQhoIC7/amWjxy6k17tAE2rF5Cx3avldjTiJjo2jElMm0cu12ivF11nGh2Z9bDbHkTgoLC6NJU2fQU6tOCCq2KeCZKSdBKWjy9rZM+nxPLt06O4aunR5tShOUlXYhtTanwor3Q8rLvBGnzBuskx0m1WGtwkzqcXcZQocOHhTghaFoatgDlgnbS/MR3dCfYTo9BF0NREJCAtwsYgGulVLG8cUYoyfGuEujtGQ5zKKw+tIe1Qu3NKcAMCnROJ7TcyRxWn3d6E+Q2tA8cJoHp3uoi1xmpeG+1Mz3pTfEYQU59+gFlax1jrme/gRNslLORUpgFliMP+H8GE5ltOb4rFkXi8CyGCyDWqw1Y2r8FUETCQj0C7wa6SsPKZ4y/l5np+mykVgHyT/wGgGWOMHy3FAYAk0Ud8DEgqzRxFpNw0etAdMuwsSjT93iNtDk1D131uy5DTSxcDZtoIn8BNpAE/k5slaJ/gJNuL9uWJCmphwHtX0H6PXI4UU4uowEi8GZHAmaJ9A5YfFVR6cw8vLyomXLllEjhBXbT+6aW2vMhurptTYdIVJwtKMo71FQX3+lsAjQxv1UtHFTQh00sWP7UFd7wTYpLi7WqSa9rEHDHYULOIC6Px32wdrh7OxMZ551Fv10uJSeXHVM4+MJET4iPUZJNGKRxwtSnv8Ro9ZrHLIvt0q46nCe84UThtIDi3qZAgzu3PKlSrSSmSjMSDEl2EFm/7frKXpqIk25zDrCjhJo0gqasWtBDnXcfieVI4VGO3zCA8n1pReobcx4MEYYJIEbCjRD9u3FXOTlCbpyZ2c7XGx6U8u4jqCgIOR+z6FNf+6lXWlFAsxiUEs7ZsyYQYFBoQAxTJkRVVlObeO+/PTN91SSk0+tcNth953FF59DP247QBVIdxs/1Een4mxYEVe3D6HFS5bRBzvyiLVE5HRlTO9d7xFKQZNn15yg35OLzbpGcjOuhavVAYBU/4cd7efA2hhD0bFfW9Jti46V0g7Xr18PfZFqvXXxTjA75khh7+Bj0L0mJCSEZoFlIjnVZKacRW2tucJSma2VpZBAk1aAePrSHtU7wq4c2kw+Zr0YYjL0N0ht6ATUVP0ISv8TIqUgLOJZnPeDlAuWn7RbzXomzDZydo2nmLgfLDqPxg7uT9AkNWkqrpUmAZIxWHaqBdvfshaNu+cZcH16z+Tu/xVBk+L8fyKd5gfBlmLWlNLglBxOV9QOpfbb/Q2aSFpEYZEvIN3ubKXDPOXL2UCTU/4UWmUANtDEwmm0gSbyE2gDTeTnyFol+gM0YQCAF0tNeNG/f2E4Hd7xHhUV5VJrdzilV/kj/aSLfJ1rKcorX6i5u3lMpaUATByd3JBmYK2RytfDwrS5mdeJ1BtOwdGO0qIXQRv/HLtCD0LU7Br5CrVKaFsO83XuZN9Fa9asoeZm3pHujcNY6Gpb9/Kn04f566TpzJs/X9DpKxs76A4IbWaUq0RmWUeEBVgnRhhPCZBaLcr/P6qt+gVihLdBjPAunfHtyq4UjBOO88eH07RoP4iPttNX+/Iot6pJB0xROkElKTm0/b0fKDguiubcZp18fnVNEw+QczpXrabqhx7X6ZLH3bD5vO5qqrXv1a9hwU13Fzvom6yluro6wZ5pamyguvp6cbyTk5NIt8nJzaO8whJiQIltdKdEaQJao0aNorj4kRa5EKg7G1Tnl9AM6JjkV9XSujRo68AZiZ1o9EXU2Om0OrWOvj+kAnS+u3kGcapWX4RS0OT+7w7THqQOvXIRLKhxHZsSEsuLHWmqyr8QAqAsBDqQwVT2zvZm4TrBNsDq0dFRIXRXtMMNbhd2dprpVC4uLkLouqPLvkecUdK44B1o3omWQgJNGoHC6Ut7VG9PH2jCDkRucCjTjoEAqQ2dO2bz8fmW0hZKCp6BM8s3PcyTzo5qiGDOBrjgJTRu+ir6CzSRrFkld6i+Gk9f1su6OTnplwMUTASYudLkpv6KoEluxnV4ruwHe+4DcveYbtKcMdOEGSfqwSwsBk7kor9BE0nvhrWIQsL/T657p83nNtDktDmVFg3EBppYNH1ENtBEfgJtoIn8HFmrRF+DJgyY/P37HTQjZCO5OTTT/Fh7Sog+m9ZvxAIq10dDoT3eN4NcHVpo1pyrKCJyssk6JgwysINLcW0LnZkYqjglRZpLKcfY0I4Nuxuwy4EhUEHunGiDJlye/1YPHY0/oKOhHqml9VQOkU/10Mc0GTduHEVFx4DJoFICffr347T2WAldg/SHq6ZGKl4os0ZEWjLn0ncJUToWkNMXf2ZU0IM/qVhC6hEJm9uVN5r24icdX1daSete/IQ8g/xoGZxsrBHaQrBesCgte/ifROvULF8nTybv116idi8fHYcQBitam+tpHYATZp8wcFJTA/FigFvMCOgE+ykjM0t0dWdWpbD7nQEggMtxcLqUtVwI2Ka6uCifamGP3F5cR4f2ptBR9069ABq3PXHiRBoaGQ1NCqJFr28VejQMmoT76AdYLJ1vpaDJ1Z/spUwAep9eO9Wk9C3uX1Hew2B5rcKiYD6+L5sB6t2B7+Edlnbd4uM57bC8rJh27tBMFdKbfojWWOSaxa7VQwI9cfvqCUlA0dN7CVJSegUU1UETLqyd9qheL6c/cj/Uw5CDzkCA1IYmn0V0c9KvOLkA/4pSk2YIxs4wsEpcwC7hSE2aIlKf4hN3Cyvqvoj+Ak1akHaWjfQzPjf6GI59MTZr19nWmkOZKWebJWrKffkrgibpx+chfa4CrM4N2CAyjZ3JbJPSohfEJgffU1gwWR1cNXZ++xs0YcYda7C4uI7Gd/hba196g7Y+G2gyaE9Nv3bMBppYON020ER+Am2gifwcWatEX4Mmz676g5aHPiQAEyk8/S6nlKoLadvWbRrD8HOpoQUTXGjo8BF01Vee5Ae/Yv7xd3fu/beb9DfVb1/8NwcDJXd9c1D8luKFFWNoTmyg4qmSaOGsNh8a8YzOcVUVX6oECAOuwI7Jo4rrlQrqA034Mzeo1mdnZtCRIyoWBwenvNSAxaEe2syCiIgIofnCjizImhFx6Qe7Kb+6iT65dgrFBSmneUtjUyJKd9MX++k4Fu/q4QaQYeO9KtcdU6OjtY1+euS/ZO/oQBe8eK+ph+strw2acDpFa1EJtd9zH1ZcqUT+/uT00QfkMDScuuz1MzBY8LOoII/27t0r9E2QHUUhAEP8cOzRpN40qEP5NdTY1iFSZZjNwUyU5WeeSZ3koNeFwEmPZa3coF3QxS4wsj574E3qbGmlwLOnUEerZsoQ1xEdHS1Ak1aAaHxJPIV0rd+OFptlPS3XJ+lzpaDJmW9tp5qmdlp1xyzx3TUlSgqfE44p/OLd0nwcLJPBQ/V2deymlBPHcVnhujoZhtzBXN3HgyHRm1I1fvx4iowa1gN6Ssdzag6n6Dg4BFBswpaeerVBE/5ASns8ceKEzpS2NB8TNulsf8xAqD7L4alTp1JwSJjJILUp58+Usm0AejJPMNMwDODY3QDMHgE7ZiLYf5/1VJMJDZC2PtYA6S/QpKFuG5g1dwjNm0gIwZ6KwU5RadCuYKHjuATjAuf6xmcqaGLY2N302WMAglP/2JabQVlHxzC9lVjTu09KsbGzc6H4MftN77QFR/Q3aNKNDYuUo6oU4fgxeJaCTfxXCBto8lc4y/JjtIEm8nNktIQNNJGfQBtoIj9H1irR16DJj9tup1Heui9RafQLtVeXC8FNKQICAujOiyPxAvk4/XfvPNpVPEV2mPZYzPICjIVTq5s0XUbMdY7xD7xOODdoB+908463uakBhkATSfTzwH7syOTmUhY0KYpqm5HyYY/UCgcqq2/VSf/w9PQUmi8MmLSftPhl+9lz396BRZTpAEZ2+qVIJzgGEb//QMxvmdF5v/bTvcQMIu1goVFDKSAu+vVre6pI27IfqQ4dFDd3khBoNRZt0B7pklAiAwW1QZOG8mo69utmShwdTl5PP07Or7xMHcNjqc3JuEAu2zAmHT1CGRkZFBUZQZMnT6JVq9dAtLGXBZRSUk8Vja0UH+xJgR7ONHfePPL28TfoPuLtDrvihgZqqNedQ/XhsIOPFA4ODoLxsvrDtdQKbZYJZ8+kGudGaK1U9JTx8fFBWttSaGzUAaxpx069K5U0IZXqnd00I8afXr5wnOz3yZwCSkAT/n7OeXmzAJ/+/Pt8k5spL36dKsreF/aaDAKwngnrmgyGYHYR6xNt3bqVSkvZqUYV2kwPbRFW1hCZNGky0hYhPaJnRZZxfBG1Q8hV3eJcH2hiTB+JLdLb2/JhdzxcrwjjiBEjKDFxDPpgzWWoZWeFWSWpSdOE5bsrUiUboc0SMvRx6D5c2lMx20431u+Eu9DbSOOZbVmDBo7uL9Ck13nmQlgOP9UnY+nrStmpKeXoeCF0PHLsYZObMwU08YLlu8ToM7khrQO438KSu7Om5xNmbjg66md+VDdobmSY234zUvdy0i8TzClmUPVn9DdowmPLSb8S83wEoOD7AAd19Vj6c/z91ZYNNOmvmR7c7dhAEwvPjw00kZ9AG2giP0fWKtHXoMnug5eTt32STnfjRm+gvDoP2rQdAnIQ3ORF4dKly2l0YBoVZN9Jjs6jwQb4iKoa28RPpfQbYpjqf2NNDWNhinNMWfFrxPm3gaH3UkDQzTrVSjuCHp6zYQ35tsmnwBBowhVJop8fffMzHc4qEnWPhbCoF/QoWAeCxXAnR/qRy0mWwpKlS7Fz7K6h+bIVqUmP/JxEU6A18vrF4xX3r0doUWtX21AFkqCn+ufGACoem5ebowDIWCNEX7BIa3tLGwUOD4c4sLPeMo6OjoJFwae8o9P4vp82aHLguw2Utesozbt6GcXHhVK7mwfVD5FnO/DLOb+k79y5k6ZPny4YPXm5ORp2rznQcykAuyfKz53OnjddI11K30CkOtnaWB30kDth1Vhd52VWUnQZADVfN5p765m0FulGHR2qvI6luCZKy8phGFREDKCw7kpRTQstek3F6Np031xydYSPspVDCWhSCken89/dSUGezvTzbTNN7oHkNMGMie7uduGcww46gyWYPWRPHULfpK2tF7xlbRMWY+UUEnUtE9YQ4fPV1ArQ04DQdWHug1RX8zsAgycAGFwihqoPNOG/8zPTEfpIa7X0kSSmCYvJMuCkHgxSL1y4kOqaOjTSJAfDnErpN6q+2CENZ6dGGk6viGbv3Fi73+aAJvzddoXguSnBzCl2BuLFujN+9IW2Zg6zzpoHEdDFfZbEbM1hE5gCmjjiWndx6BaaU42NvULLpsy5VNZQGp2209WYMWNoWMwIHUaYOW3yMbXVq7EB8xA2KJZgo6I3/c7c+kw5biBAk9Kif0OL6jMwx+5EWuXtpnT3lC1rA01O2VNn1Y7bQBMLp9MGmshPoA00kZ8ja5Xoa9CkvOR/VFH6P43udg/xoNFjd+Ml346qYQX7G3buWZtjeCTsMAGeZICazS8zbF3IFobGghfPlQBS/rc1kzac6N3l5WNMZZoUFzxFNZXf6exqSu03Nx6mnIyrsMM9DjvdX5p8CgyBJmzpeyivhoK8nMnDvp02b1wnUmt4gclxAkyGSjAZpL9NhhZHWHiEzgscz8EXe3Pp+hnRdPOsGMX9k8atbvFp7GBOgWK2iSRUy/P82PJRRlOhjIlWMlhSlVtMnbDJdXRxgraJL7l4uut0gRkcXt5+SD2RH5o6aFIHq+F1/1YJ+y596DrofQRSfZtyG2vuO2tHNKFhZOHguhqCVKrDlJkJxydEKZhA6WX1NHHUCLr6nEXCAYU1TowF10ldbfT76tXY5VSmdizp3CQWNtIQuAKNXDGFPIK9BKDDKRacFpSaprLxZmFROwcXMLCG0J0rDxKnED17biItiA+SnzwTSygBTY4hnetmpHWNCvGiD6+ejPk0DbxpaNiF7+b3omd29hDAHfq04l7yPaI/HLhcHIcA5KiiLVs2y/ZtMQAtF1dPXMuGr5PqypVwCnpWOE5wOhKHIdCEP9Onj8RCk12dDULc2k7NlYVBar5GuuBbdpKoJtvn/iyQfny+YBSJMfueg/E/r9F8r77ULViI3dMnXTMHNJFclXZA48YQQKzdWckamgETRy29G30Di4mJQUoXNIs6cA8ZRJF+fCHOWSmNGL1R0TjUu24KaCKuddw/GhtqaOOGDRbNQEtzstAV0Q71NLrw8HCaDhe0RljSy93XlXZGei8KCO6769dQXwYCNKmrWQdL6geEc1fEKZqCpvTcSuVsoImpM3Z6lreBJhaeVxtoIj+BNtBEfo6sVaKvQZMNxzOosfTvFO+nWszZ2XniBfi5HpV3Fty0w84x7+BLL4GSvga/uESP+ELRUHkBzwt5SdOEAZmHlsQLQVilUZj7Nyx61htMUWlrzYbOwDlgeERDLHWV0mp7yukDTV7/I52+OZDfU+b6MyJpin8XlWX2Om8U1jRTdmUjhXi50NLp42gsACZgKDpxBxbHh7E4/g/SMM5AOoaS6OpqQS76TOruatVIA5A7VhLdrce8szsPO/XIBS8qKytKacefsEI9Gd3YMa3IKaL2Zs3UquC4SKFxIgWDaqz90NqpbKGgDprs+3ot5ew7RjEzxtKkixfjGpRP79EeixsEe5taVeCGtDDauHEjVcL2tw6Kq5k1HXTheWcDFPDtSZcyZz60j+G0lnwwWVjfhnVTOCYw06awnpwjvWnGxfOopaWF3Nzc6MBBFS1+2rRpFBgcChaSaq4YSGNA7Sx8F/4P4Ja1QwlowgLND4MFNWtEAP37/LHkA0uj0pISxQvLdizGmhtVjDVmmLALjZLw9vYmPz9/zJ2S0paXYX2RjPRUSk7Wdc6Rap8yZYrQEGmDW46xkCzQHZ3CIRapEjA2Bprw58xyyM5M70l7lBx03D1nCl0TKWZCzNg/INhgCpnlM2F+DZJLmVSDX+C1cCz7h0aFNVU/w5b4Mb2Aivktax5pDmjCNfAztbO9SQCiSoLTFtgRiMF41gQxFiwwPWfOHGpo6Rp07KCs1PORkpaO58iPELXttaRXMgemgiZcJ3/XcnOy6NChQ0qa0CnDaWCcmtONZ6B28HfO2SVWWLwvB7jI7EYpDdasxrQOKswDi6z6d1hqPwdr7fOsUaXiOgYCNOE0Q043ZDttttX+K4QNNPkrnGX5MdpAE/k5MlrCBprIT+CpApqI3eJBEq3YeTYn+ho0uR0WuGlYHL254EG8tLtA1HCzeHCqBy9wm+Hwoa5TIe1aDR32X9jpKtdA+HRXDr37ZxYN83enL2+YZtKU5GXehN2r3Qbzbjs6Kin92FykEvlhHJoitkoa0gZNWBeEgR71YN2K72+eSs0lWUJHg4OBiSOwIB4aHEgP33Qp6PTtetNT5r6yReyor717NnnJiYicbFTKp2fLQ7Y+7OvQFq1sa2wGaFKs0yyzTTwDVQuIoUOHgkkxDfotIGfIMDikiiTQJDetkDa8/Ln48/JHbySPgF4RTkvGyt/9ro4WkY7RCi0Wl5iJdLiklR5YZBoo4YoMofTUFDp+/Lje7rC2DWvcqMdQe3vyzawhO3xvAhfG0pTJE7FwOEINoKrHxsbS6NEJ1Ky2C82ONexcw9o/LMJq7VACmvx0uJBe2pBK540LA5iJHXWAmiyAvA7pRUp25DsgNNkCVxUOdp/hVAa58PX1FSlK9c0dsulccnUp/Zw1WzxgV7179y4qKNB0ruE6hg8fTmPHAvRUCOKwuCaLbA4f+TvA2khZ0ITvHx4u9rRv7x7oI2VC92OH0JngdAMpEhMTKQZi24ONqSDudbV/UEGOLnOEQSNeyErB92m+X7t5TKGo4R8rPT0mlTMXNOFGGCBmV6VdYIEZC9bSYGtq1taQA02cnZ2FwHRHN6ypzXzemzQBJhbOzbhWCKpGjfhUMJtMCXNAE+laZy2wnJwc0RzPJ2sJ8Xyy4DI7EvH1z//NDj/8OYuv4i4iWDHIncMPv8fpvj/ZwdL6rLNvJXevCMEwtGZIGmK8KcSbQ/0ZAwGa8PgkBrG6C1Z/jru/27KBJv0944OzvdMWNClIyaXGmgaKn56gaOYNlW8D1Tx5y0Eqyy4mdx9PGjYhloaO7LXvtIEm8tN7qoAmvFtaW1uLFwWoLVox8qCPkIWFDu8yszvM6FAvo1oEwcFBSJUAdVRGHFNfF/sSNDmQV013f3OIhvvV0aOTHxMvvdKOqdx0VZZ/TGVFL+OleCpeij+SK97zOdurss0qL162PTBP/FYa2WkXw5njhLDFY5cO7bBU7E4bNJF237XbYbvgR88cScxkkDQv9ubW0NxFS2hiVDC5O+sKpR4rQvrDl/uJHXa+uF45WJSTcTV28A+B/fMv7Nqeq3SqzC6nLVrZUt9IVXmaaVVcuYc/9FxC/MnDw0Ps9KkL3ippXAJN1r/7M+UdTKERsyfQhPMXKDlUcRmJOdMCG+JNBV302uZsWn3nrB5HJyUVGRPx5OP351ZjcauZvsPW0wmlTdTV2E7u40MoND6CyiEIGxgYSAsWLNCrUXH5h7spF4yVty+fSOPg8mPNUAKafLAjmz7amU03njGMbpw5TDSvbuss1x+2xG5uPCiKOTkPM2iJrV4PXzd2jq4AEuVqt+7nrLkAKSJaA30Rdc0FPz8/Wrx4sUkgTkHOfQASNvbsSMsxTXgkEiC1Zs33VFIE8V3oqbi5q5g5oaGhdMbMmaoUMjOeF9adKd3aqso/h5XqizofhEUgTclvRc/fJXchFtcdMWptn3TLEtCEO8TGbsePJVNaWpre/unT02AGlbr2jfqB+qyp+2TgZlaan30XNdRtIVM3Org5c0ATPk7Sy2J9k8rKHDBHwPACQCLFEAAkvCFgKA2HBV+dXWOhC1UlGCf2Dj4CYGltTkfK8AgKCGgFu9EBOhy3mDkr+g9LTYY+FtLm2GlIjl1k1YZR2UCBJoXQcKmDlou6RpO1xzaY6rOBJoPpbAxcX0470KS6pJKyD6dT9qF0Cge4Mf38OUZn11h5Bky2f70RYIkHxc9IECAM//ey21eQLxYAHDbQRP7iPVVAE/UHdk1Nr/q6/AgNl2DB0xMlmmKZLnBRmRyln7bLWgZBTPVWmLag3XJfgiaP/5ZMm1LK6O5Z7TTe7QFycUugYbHfKJoefnHhvHamLXMOLOfCKo0rP95D2didZ+0E1lBQGhknlkBLpUgAO+q7murHs6sD03rjE3drCBMqaUMbNJE0SLSP5YXlHfOG0xCkLTHFm4U+PaMT6SBSr+OCvGnxqGCd5jjFh1N9zhkbRo8sld+F5wokBX977KjFQWixv0JdtLIJ7AgWge1Q28qzAwvBLyKYnNxdibUfnF09TN7pY9CkKq+Yfn1BZVN61uO3kJuvcgtmpXPBTBF7gBhXfryPkgpq6Z0rJtHYcNMESnk+nCDiyYvsZgAw6mEINIFPBbVm1ZBTmCe5jgoQQspnnnUWgFY7oWOiHW9sTqeV+/Pp6mlRdPuc4UqHp6icEtDkhXUp9OvRInoQKXMrxvUyBtjWuTA/V0NYV7tRsYgB7V+1M4z5dvCXdc6ZAQ2CgMAQLHiUg6aKBquwEANCzY21tGH9enGEHa4RZgl0I0VG3/kxVG1V+acAEV4iHz84q0Q8Jcs0kerh9hvrMuiXn14FMycAIHAiubq6ij60wY66bTAKmaDzhkCTodFv9KR08hi7u1vh1jLJbLcWJafRUtBEclXasmULlZWV6TTJbBnt1BDpXGkXNjU9Ucn4rF2mKO9RCJz+KtJvvX1NSzkxFzThMfA7TEdbI/30wyu4R5ToDmsImCTd+pgkngYZMWzdPjLeiU6cuA7P+xYAL9MoOPwhk9OO9M0xa/Xwuw0DNHEJvamq1j4fhuobKNCkuuIrKinE5gzSkTgt6XQPG2hyup9hZeM77UATBjYYCCk4kStmQA40MVae61n79s907v2XCuCE4+Da3dRY3UCzL18k/tsGmshfaKcKaMIjccEDux0PbKbpWyMk0U/tuqZE+QnbWfVgu8gxY8Yqpnrr619fgSa8q8272xzfXQuBxOK7QRGfidSXdxVPU0Xpe1Re8oaglkeaIB729O/Hae2xEp0FmlzDSgCRjBOLcb6LAaysB7ASJlelxucSaJIGYdcX16fQTjihaMeECB96EZoPLK7KTIaqyjKqrqqiDs8QuvyjA3TB+HD6++J4neOe+O0YbUwpFYAJAydKorTweWL9GL+Aq/BC+LCSQ6xWRl20koVgG8qRflHfJKxXvUMDyN3PC/a+kykkNFxW+0Ffpxg02frBz5R9MJXi5k2mcefOtVrf1Stipgj+R4/9mkzrj5cKzRDWDjE19Il4ch0ZYJyVwHlGPcK9XSkKaE397gIaAoDJa24UzZ47h3z9Ag1qVOyDA9O93x2mEdCe+ezaqaZ2z2h5JaDJP348SjsyK8S1PRu6JuqhbuusryGm1fOPemjb96p/Fh8fTyNHjR5wdxEGhPJzs+nAgQNkroYIay7kpF8u2DXDR/6mGDTh+ehuP0AFucl0+EgZFnvDaQGcctw9vBUJKVv1AjGhss7OeqTdXA9mQErPUYYWWZwqySmTsaP/ADBkfYFjS0ETHgC7KrFmF7saqbsqMRDIVsraoc4Kkj4zJz3RhCm3WlHpecLPEn6mmBKWgCbcDj8rnvbp/AAAIABJREFUC3I307atPypu1hBAxc5jy5YtE2mwNdWbsdB/QQjTcwSHPUR+gVcrbkNfwaaGfZSLa9wUzTaLGtQ6eKBAk5amY8RpSeZqwllzDvqjLhto0h+zPPjbOO1AE2nKOaWmAeCGHGhirDyn7Oz5aRtd+EjvTZX/lrrrGC28/kxxaEmVrujU4D/t/dtDpjfzi3hVncLE7/7tnk5rLhAkKy0uRB67CiSwJJKLaqmaxRu0gkETBmikEHaRCxYKqnenBTRrfqlzRw58db1x615Tx/TaH2liZ/tcLODvmJYB5fSHhQvE0Chd6rWhuru6mij12HxBY40e8TFe+JUt9lbuz6PXwLpYAYDhYegnKAl+iT1+ZBx2Lu1p9DiVdoK+yEy9ULzQD4//Hru3pulXuGARtTOrkh7/OVlYKAd6ONPDADkC4ZLD+iYspsoOOerh4tiNnTRH2otF77Wf7KPhgR70pZ70m/Pf3SFEcL+6YbpI0ZGLbuy8pSafgRzveoqJ+w4797rpSHJ1WPo5y65kZ2X0iFZW5ZVQc10j+Q4NosSJ40CPHg+tG1XWualRn19Ev7/yFdhAdnTOP2/V68Zjap3GynP6yQc7suhapFaZy+QQIp6YjyNHjvQ0lVRYCxFY1f2A03L8oUvC59cB42rYX0QdsBSOXz6Rpp81H4CJcVbFYqStsT7OdzfPoAhYFlsrPNxU96WGJsN5MNd9tpdSABZ+dPUUkW6oHqodeQfauEklrKsdDfW7dHbkWafAw2u2TlkWypw9e7aw8rXkvmiNueGzwbotZWWl5Ovrbxb4x/04cXSqYLfFJfxB/j7hQp+lqUU+56gYzjt+3vGUle0OQC1eCCmby0i0xnyYUkdZyVu4z6binj8FLJsVOjpYXFdW2qWCLTcs9iswBsaZUr2ispx+24LcrpZW8/TCpEacoGddX8uuSls02tV3XfOC0tlFlb7GwemJbE3dykKkMjbrigbVh4X4nLErDNvKBoXcYVJLvp6OSBnrBLBk/lw7DCmjg/u+0UiH4vQcN3fY1EMPid8j1IP1TpycI3T6yWl99o4umG/V/bSrq1kAJ9Un3bs8veYhxeRhuJXpHqtk0FxPUf4/cV2fR+FIi+3vYICqHjbj1hS2VTqGE0cni/mMT9wKdqQmeK60jlOlXIgfa+fY4q8+AzbQ5OQVoA9k4fSc3179hhLnTxQ6Jm0trQIwqQEDZdnt56tuwAqFDP/KF9oQUM9ZiuJUmitOoTh69Cilp6crPnUdEO1saOkQebkeWEGmIi2noFqTns+VcY76nLjAnnoFFR80aycspu3xb0uC55r/123F65KdVaY+t0m8cP5850zyo58wL89C0PNaCFU+blJ3s7Nfg8jbm8gtXgRWzTuKjt2bXUWXvbebxg71Fu0riba2CtqxYzqsEv1o1ixNcVb14w8duopqanbT+PGfYyE0Q0nVPWVe35hOr29SXR+LkGLz3PmJAjBRGqOfWIs57aI9jy7UOK4I7jqzXtxMPm6OdPDxxYqqKy7+gVJSHiJv78k0ceJKRcf0RaEuuOfs2bOH8vLyqLa0iqqKKik6fhhdfsNVFl2Tq177VqRdTj77DJpxkXIhYXPH+OvhIrrvm8N05phQevOKCeZWgxfK3vnIA1srvbRe6BlNhxsS3w8ZLJGiIaWCmrIhbIi/RSP/ftqKORQQqZu6JZW/b+Vh+vVIET1+9mi6fma02X3UPlDcQxDdRuCtGc//QaVgzOx4eAGFeut/meTUpNV6LJirq3YIirx6sJijr5/md5stl/m+yKkwjrg3ni5x9OiNAJO2UkLCaxQcdI7sXEvj5uOamrLw/f4Oc+IjUrhOp0hOvpPKy9dhXt6goCDVppQ1Ywi/hACxNXZdK22vE+8HKamarkod7dUQQT4qNDQ4HB0hfu05hobY9V67DJh4eXriO26aRbfSflmzXH7+xxAvfw7P+evwnH/MpKqtNde1tQeQEvcTlZVXkKODN0Cn0Zg7FwAmLdAXSgMoUy5SutzcYrDpoQt6TJ8+nYbCYljfe1Vp6SqM71nUUQEQz5VGjHiMwsIuNWmcXDgz80U8796nmJi/UVSUaeCSyY3pOYB13vh1zxrXtan9OXz4Gqqu3kljEt9G+qSydxVT2xgs5U3R0xssfbb1w/ozYANNTs6pIWYKp+gkbz4kUn5YCLaxpl78lpgmtvQc+YvSnPQcXqjXA4Aw9EIu36plJXi3lEX6Nm3ahBe5ctnKmGnA7IIOLJI47PEg6zwJXLC1bDMAB955YTCD/x6KvzHLgGMWdlL9/IOsYhfZF+k5X+7No7e2ZtAMLPRehv1tecl/qaL0XbEDFRB8u+zcqBfo7KyFY818zEMb2Cafg9IqvyA1Rwy2tSWLslLP7aHBG+qkJMw4NPpV5Ngre+iXN7TSv9enivQEjpsghHkDdEtMjfuQXsGMk+fOTaT58b10dNaNYf0Ythlmu2ElkZuJBVXDHgod+iT5+F+k5JA+KaPuolJeXErVEIU9+7xzKCh+hEnaD+qdK03LpW3vfE8OEMxlLRMnt77f8WEdohs/3y/YQp9akP4i2Rn/+Osq2pKcK2CIkcFeFOAB8RS16IYmRf2OfGge9u7MOro60+IHrhGpTfpi7fESenr1cZoW7UevXmw9xwYl6Tkz//OHeFHf/gBy+TmfSU+4OtlRRXmJhiU1F2M3DIkeLx2mLz1n7rx55OXtN+jST/h5ZomGSEXZ+1Re/Dr5BlxO8XFPCqZJI551cpGZci7SmrJo9NgNAEzChbPWqRCGrg/tvhdj97+y7HMKCf8HBQRdZ5WhqbOTrJGeI3WKF1CchrZnz24NVyXJbpjtbR0cg8WCXgpL0hOtMhkmVlILG+gitoE2Q7PC0vQcqatVJU+RJxipW7YV435jmuB1XFwcjWLnMSOMPRaMLcV1V1fzO75TnuIdICj0fvzbuFW0+lSyIGpD3TZoFD2H+5VycXILCMUaZ3Kg0nO4E2XFL+M7+7FgCYaEq8wBTtewpeecrmfWtHHZQJOT86U0nWft2z/R0FFRlDhvojjSBprIX3CmgiYsgLk6uRgOMh1i0XLvgliaGKH8ISbfI2UlONUFkmRCvLO93XC6C7visMCjBJhItTtD8HVUiKfQs5CCgaAjhSqRWablL5k5xap2kdYGTfgcXP/ZPioE+0HSLygpeAbU1m/EQ9I34DJlk6lWqqz4VTxoPyQvn6UUHvWyouNNFYNlBxl2knF1G0/RsV8YbKM4/wmqqfpRiDKyOKNc/JkBHQfol4h0HLBKngbgMS7MNKFQqY2Pd+XQ+7BTvmRSBN2Ha1wKSeTz5lkxdP2MaKNd4s3TlqY0UNsvwO6zKwRg2ZJUc0EuNyZrfy65qKyFLlCUF5gSDZ1IOZmDHVfzLL23v/sDlaTm0MSzZ9HwBcqdhCwZF1/3S97YJlLo/rjPMv0Uno99GQX03c+/UbAnbLpxT9OO9vImajqq6zo0fsV8ip2jetZoR21zOy1/c7v484Z755A75w1YIeRAE772z/nfn8JViN2FjAUL66alnIAA4wmNYqxp0n5S5NEJjilsO6y+wGShzKjoGDgNDYzwqxWm0WAVbOPKdq5sszx+wi+KQRMWSmXB1Pgx+8R3/VQITtPq7u6EoKc8KFQGwKSw4D8UGHQF2A0PWTw8JydH4dLFoBSHNUETro/Tjl0cuomdXiRXpcb6nWJDwN1zBq7nXtZhTEwMjRs/QaSZmZOeaPFkmFGBZBft6TVfOOiYEtYATdpa8ygz5UwKDbmSXNxvgb7JVsVdYOex+fPnI925Uzatz35IF/TlKmFU3AL2Xwd4dvZCbNnOTpnQeHtbHo5rA1M4AsLQypmmzExm1ytLY6BAE04F5vtYa0uvm5S2wLOlYxtMx9tAk8F0NgauL3850IQ1SVgkVlvrRAlokrr7GFgnB+kcCMM6uagWJjbQRP7iNQU0+R1gybNrNF+wGXRYf88codfAavwNdX8I0c6A4DvEi2dfBguS1VRXGH1gN8IW91B+tU43/N2dBWiiHaX1rWCl1Au7yJsuOpOc7R2sZhdpLdCEWTPPrjlO+Ugv4rScAOh1/Hq7ij5fmPsAdmbWAfD4D4CPZSZPv6Q2zwey+w678MiFqWKwbJXIlokeXnMoYtj/DFbPNshshxwU+jfyD7rBaDckm1UuNAvil/9EWsRQaElUN5in1XMQ18xdKw9RfLAnfXzNlJ62b/nyALEWzutgD0wBi8BYeGBRkpv9KpWB+ePrfylys01Ll5Kbd3M/Z9HMpoY6qkgtoM0fraYF915O/lHKBG3V2yw+kU1/vv8jOYNdcvkLd1Kj/NrL3C7rHMfAAAMEP916BgWDGWZu/HS4kCoamyncoRFbcxnQMtEFAiIhDJz08y6dJkYvnUEJS88w2DRbgLMV+NPnJNCikYZTeUzpuxxokoYUo+sApCph4chZMOvrFwtlTps2XWWja8U0Q1PmoG/LdsMpZiIW1+00eQp0s5BqI8c06Wgvg0PHAqEbEJuwpW+7Z8XamWXiBT2zzZs363WcUW/KzfUY+ft/A8epUVRReblFvRg1ahTFxsUDdOsFaq0NmnAHGRBtaqihjRs2CLCEQZMhcFRikXQp2Jp6CVzDWIhUAnAsGlw/HdzUsB8Cp9cJe+uoEZ+Y1Ko1QJOqii8EC8TLZznFxb1M6WkplJwMC2KZ4FQ+dpViDZPObnmgnkW7u9pb4OzXQps2rsJ1WihasLNzxg/riSH9hbrw//rrYvFibtPLOwLnV653qs/NFZLWV/tAgSasd1NRqvluZWfvCX0T3eeYslkZ3KVsoMngPj/91bvTDjThvPckABvs4MCaJOx6M3E58hqhScLB4AjrkkjirnLlGShJ3aW6UXNaDoMtkpMO/80GmshfqqaAJg//nETb0nXTYZgi79XxlgBN1GNYHAt49i1w4gFh1dSU43Ts2DG9g2Wmye5sXcFDdsUYZkDEs7S5m0ZNnUuf7SmgE0V15IXFL1vTnmmGU4d6p6wFmlz76V6RbqQeL6wYQ3NiA+GGcCM1IhUkcvgHEPabLn8B6ClRWvSiOJcsJhsW+YJsHd9AhPZ12KyuGBcGFx35881WiWyZ6O17Dup/3mD9ElXeP+gmACf36S1nKB1H23JYdhBaBZg6Pu/VLWInbO1ds3ENsH1pN819ebPYjdx471xyw0u5oXB07KL27maqrVhJRbmvIt3pC6HgP1jC09Wedn33B534Yz+NP38Bxc6WT8XS7vuW/31L5Rn5NPG8OTTxzDOottG6AsfG5uqOrw/S4YIaeuOSCQYtwuXmmp1yrvxoDxZvnfTbHWdQTX4a8ugzNA5jO8yEUYn03ePvUXtza89nnJ4z745LyCfcsJPIV/vy6M0tGcIW+YFF8XpZLHJ91P5cDjTZBfHjB344QtOH+dMrF8mnjxmzYNZu293dnVi4ESSaARE2NHWuzC0vpdPFjXwLi62FsqBJE5hzuYI5Nw7MuS/NbXZAjpMcZ9iRzhhj08mpABov70FjIoxKy24zu69BQUE0D6ld2iyDvgBNuJOSq9LePRuEQClbzzLDkcNca2qzB2/FA1m4NzvtQmHLGxOv3MWGu2AN0CQv61aAUDvE89vX71zoxNnRrl07qbBQBWoYijlz55K3j79JaX0s2l1eWgTgpB1W8T+DPaFiAw9he2MGTcCWUp1PV2iq9Aqz89/hJQgNHjDl7PwUgbwJCQmCXdzaaR1dm4ECTQpy7oEg8h86p6E/3smteJkrrsoGmiieqtO64GkHmvTF2ZL0TCR2iXobNtBEfsZNAU04NeebA/k6lX5/0xiqzdMVgPREDilTAvsyOH9Z7oGdXdFIhbW9oq/sjDEGCxl3A4vehYsW0f92FtPX+zVfACRgwtzxWAM0YbCEQRPtYMCE+5eFF6lWvFBZ8nBsbyuijBNLRBMx8T/hxaw3PUXf2A/n19AdKw+CueNFH149WXZ6GJBhYEbOfpfTjDjdyNf/ErA0ntCpVz0dh9k2Dy2Jp5nDVSrxloImXMddYAocBFPgxfPHwLo1kI5gkX47FuvsuvPJtb3sE+2O8Xeqs7uAbvnlArp74hUUCcDFw9c0fRnZSbSwAOt5pG4/TAe/30hRk0bT1CuXm1RjYVIG7fz4F+GUc8m/7oC7gX2/gibPr02h35KK6B+whD4fzk3mBFsX/5FaRgtHBtG/zhsjdJI2btxIFRUqPRx1O8wK6L/sW7mOagrLxGdsq8z2ysbiPxtT6cdDvfcQBl5vhMaOJSEHmvCc8NywFTNbMisJQxbM2scuxo68s6sHNEOU1HrqlikveRO7tO9QaNgNFB7xoCxoUlv9G0DgR7DrfiYYfv8+5QbOGar1tdVwnNlssO/29vUUFvoSQGR3KioyLz2HxYOZZdBJDtQGkW316CvQhHljHq52tHvXz5R6YqPQdZCeZzNmzIBAZggWyKdemll7WzGe0YvBogihEaM3mnTNWQqadIFVnJqsEmbnlFN7e2+RDoXHHECNNT3pUNqdGjNmDEUPG475lmeYqB/Laa68OcaW4nV1tbRt22bhcNXdpQvS29t7ACBRMQ+7u1rJz49Z523k4KTamDUWzC6eNWsW9Pq6rMYuHijQRNr4Uh8vM01isJF5Omqb2EATuav7r/H5aQua7MZuWFldK5073jgl/LnVmqkgfNrdQde7b1GcxhVgqD4baCL/RTEFNGGb1Qvf26lRKS/WnzsnmtJOPkTVP3SDhWHU8I/lO2FhCSUP7N1weWFdExavHerjhjxZ/Q/uCRMmkJt/GC1+Y4dOryRgwtzuWgM0kfQctPvALJjHsEhimjjTxflFil+ozA1JG8XH7wJoijxttBpTxWClRYmcWG1dzVqkG/1dr76KRjoOgJKHYCfMFrFSWAM0YU0T1ja5Ykok3TVvBEmiuxdgkf53LNb1Bac8DOlKome3PEAHig+Qr4svvb7sdfLxPNsigUpzz6Ox46oLSmnjK1+QZ5AfLXv4epOa+OO/X1NldpEADyYsmy5cqfqTafLFnlz637ZMumxyBN0z3ziop29gUqohs4W+umEaBUHPxBk6SUOQlsE6SezQxQs8e0dXnLfe3HYGTnL2JtP4FfOgZzLJ4JxJ6V3aBd68bIJFGlByoMknuF7fw3V7zfQoum32cMXnlO16szLSeyyptQ+cNGkShYVHmLzgUdyBQVSQ0zjysm4hD89xNHL0N7KgCQMsfE/zD7oZjLh7B9FIlHfFHSl7cikWQ8Ofwu5+J2VnPkRN1UiZgJaYPac+hPgrasiYeHBfgSbcMb43OVIGvtefUVNzEBaNoXABSqDhI2I1UoQUDWKQFGJL39Tk6SJFJX7MHpN6ZSlowsKshbkPCiYrM1p7nrm4lzaeTIfS7lA4XHKmT59hdlqfJGKem5NFubk5lJR0BMwTFeNEPYYMsQfbxFMAJp6eTgDzYWPdkgeW51iAO4bFal1cXE6mDVkmJK3dn4ECTThdnplIvAEmBafMB5poT23ShTWAhW2gyQBO/iBq+rQDTbKw47/pRCl+ymDr6KcDfqjPfSPE/pIKazVOh+r4MvrwWtUOn1x9NtBE/mo2BTTh2h79JYm2pKlSdMIAQHyC1BzWNWFmgvoNmj/vz5u0q5EHditcL/blVkGvwA60dcM6FFFRUTRp0mQqq2+nRa9v05k8CZiQn1X9JawBmnDNd4LVcQjsDil4/l8AG4IFeVX5+G14kdqPFyrztR5YDDIz5WzRxPCRq+B0E2102KaIwZYUPkfVFV9DrPZRiNVeYbBeafHCwn2RMe+LchVwx3lRgTuONUATds9hF52EUC96/6rJPdf+42eOpuUJ+gEpuyFl9M3hJ+ib49/3jGtCyAR6evFHAO0iZYXvzL22zD3ux4dex+Kng8595g5ydlcmYJl/OJV2f7aK3Hw9hWOOu4tDv4MmfA/iexEzi166YKxJw6+BfsEVH+2mGuSZPAh20opxvUwV1kmqqizDvayNgkPDoRmkWXXOvmO07+u1FD5mBJ1x/XkG22VGHjPztMNStokcaPLyxjT64VAB3b8wji6eOFTxvEi7ufv2qiyp1WPYsGE0YeIkgAddp4xQpuKB6ynIlsupSap3jImTDyIdybh4c3H+4xCs/mnA3bEsGbPE2Ny9e5eG44x6naEhr0G3pYqSdl5ITfW9emAOEDkOio002jyLB0dGDTMIuvUlaMIdqyl7kZydRtHW7dXQKxtBc+bMoQZcz+oOPpbM30Ace+II3/e6aOTYIwCzlKeTWAqaFOU9TLXVqyg47B/kF3itxtA5HSo3O5MOHTrU83drpfWxRk17awM026pp/769lJNz1OC0u7m5kZeXGzVCiB0ICrJ4HACCGhbGngdhWk8vX5PShpSc84ECTaS+scsSAyi8gdnXqfJK5qOvythAk76a2VOr3tMONClDDjkDHcwM4dBmjMidnkd/TKLEod50xVTVA1quPhtoIjejRKaCJue9s4PKIZbKIYnA8r9bmlOwO3cz0H+V6KoncsFDI54Fuq9M5Vy+p/Il9D2w+SgWjGSbUnaU4AWwvvD29qalS5fiRQpuAlD0N6YbIt8T/SWsBZpIzA5uZdxQH7ocu+3MgunqasLL/lSR28suDpaG5F7j638Z0mMeM1qdKWKwvEvFu1VhkS9C1+Qsg/W2NCVTdvplVNIUTW8mPSpsoE8U1+N8tgrxW/V0HO1KrAGaMNg2H7omHBvhgHLZh3sEaLPyRuyw+bnp9NvJsZuSSzbRo+t1XYsuGXMHXTXpn7AlVf5ya+n5U3L8lje/ofKsApp98wUUMkpZ6sjGV7+k6vwSmgAtlBHQQhkI0CSzooGu/nivOA98PkyJZ34/QWuOFQvB4H+frwu48K57V1enXjvMxspa+v25D4S18nnP3mmwWUNME0tT/ORAEwnU1rbKVjI/vJvrDm0Cdhypq6sTh/j6+gqhzPrmjlNKKFPJeI2Vycm4ipobD1PsyPdhp61KRTAUuZk3QHAU1yKAXQZ4T9XQ5zijPpagwI/J2TmbUvYvodpKTZZwQHQoOQF0tbNrAcOxWBzW2qq6nygRD+5r0CTl6HikF12GNI1r4QAUCiFS6zIKBuKcpx2bJdgWcQnbodWi3MHQUtAkLfkMLMTrsJnyGzZTNJ8ZDL7y/fPggf0ANXLEtCxavBiC8p5WSevjd7yqilLq6uygtWu+p/p6NZF/NM4uX44OQygwMABpQpnoJwS+T4abx2Rcn7ruaMwuHhoR1ScsuoEGTQbiuhyINm2gyUDM+uBr87QDTaQp/mpvngA8TAFNGGh5f3s2vXHZeNyUNe0bDdVnA03kL2pTQBNm/tz61QGkt7iC1tolFpDf3zIDjBPVDjXbw/JCmyMw5B4wTW6R74AVS+h7YHP1uVVNcJppogi4qUTpWexymaXLluGFyg0vU6oOcRrMa9gp3phSKtIqJLaBJd21FmjCWh4P/nRUACZvX95redreVgjGz1JBPx4xaoMlXRXHsl1dVuoF4t8jRq0XrkiGQtpZ51173r03FpKIXETMO0Z3f3akHSG/5iupvNmfHt7+z54qZ4l0nHik4xi2ELQGaMIN3obr/Siu+0eQ/vP8uhSRAvTbHbo7Vpza0dhVTXesuoWqajbpDN/FLZEenfNvGh88BWKKgyeH/sivWylty35KWHYGjV4iv+DLPXCc9n65hjwCfGj5ozeKcQ4EaNIGS8h5r2whNrvZ/vcFEPxTFptSyujx35Jx3BD66sZpFIl7gnaIFCv80dAu9Jp/fUQNFdW06P6ryDfCsCuONiOMHW3eumyihs25sl73lpIDTSR3p3eumCQEaJWEB1JzpHBA2mJjQz2tW7sOC5AhtGz5MiyMXMBeUzrDui2y4GYd7EVPpSgrfgXW6x9RaPjt5BNgGBzjMfE9l++9w0f+jrkyzrgY7HNgjLHp5/cjubsdpqzkmVReqJkS5xcZTJ5+9RTg/xXYKCoWZFt7CBaud9GyZRfIigf3JWjS2pKB59gKpGpEUOLY3yEIOsTqjIKBOK+ZJ5bjWZJv8nVnCWjSWL9LbI4ZE6DldCi2s163bh2xnXN4RCTm2zQdE2Pzib0vKikqwLXVAA2q1YJZy3dstpEeAledAH83zEsehI1V2lRScDqRpHci/S0yMpImT55CjbC/7gszMBto0j/fDBto0j/zPNhbsYEmameIWSYLRwXjR9etwBBo0oDdMVsYnwG2HWQF/eZW+ZfaNwAivLc9i66aFgXGUAPtzKyk/yJHf3686pyUFH9GuTnPiX/7+i2iuPi3+n36eTHEOw38wK6pUb28sYBndVMbJYZ5C4aCdkybNo1CQkJpiD2UzLQiA8KrK97eQd5QOdvx4AKLxmPPudVYlLQomGtjDb2Ixfvnu3Pp9rnD6U5obUjR2JBMyUkXkrt7Al4OTVPUN9ReZvo/IIz5K4WEXktR0Y8a7Nb+3Gq67pO9Yo5X3mx85/9Y0kXU0JBECWO+JQ8Pww4ff/9uO1089CZqanejuzf3uvjsemgheSIlxFg44BrgdKwWWE5bEq9tSqMP/symeXFBSEsrowUQDX3jUl2nGUEd7mxH+kI3FlBlGN+RnmYdnQIxTpVjQ1sHROmGKEuDsaTfSo/N2n+CNn/wC0Ui3WTxnRfJHvbTsx9RVUEZzbxyGY2crRoTX9MMXrRqiTvKVmZhgaVIoSusaaZVd82iaP9e1wRD1TJD6zxYFbM2E2vgXA3dD3Ni++e/U9qOozTtooWUuMiwIDDX/TMsjf+19gQ14Tu/8qbplKgQyDDUL75Xi+vIwFxLc7LmntkCJJYLhkL4fsl0+oKCAlF8+PAYaqivB0vQHgtNJ8rJ7U3XKSsrow3r1yL//2yILBq33Oa6eFHCApAdXeaDLnJj6IvPq6v/oLSU28nbexp0TT4z2EQ3qP97d6sEd6dOP25SmkRf9NsadbLcV1ZWJh1qjT6QAAAgAElEQVQ8eFCjOk/PjbiPbaHCzPFUkNHrBMYmJmHxUUhne6+HZSId6AsHtviRL+GuaHzRzPdP1hzrUNMPssZYuI7KitWUkf438U4SD0ekvlgcW6uvptSTfPRCAAfJlDjme+iLjFF8qAt0AduxEdQJRq2pkZvzPN7zPoG+0S0UEfmAwcP5XaejrRUAmj1E0a3LruRnDT9zMqHBxG49hw73pgIxM87ZyRHvfprp1c4uEeTqqgn0eXl5AdBbhusOSU5wxuuL4M0bvlefymlgfTEv1q7TAyCdLWwzYANNTl4DrGPCWij/ukD/g8EQaFKH3HVbGJ8BBk34haWxRR5guvi9XZRaUk/vXDmJdoL589muHLp7/gi6eXaMaKSo8B0qzH9N/NvJKYTGTdwyINPPOx0tzY1C0JHjz4xK8UI2I8ZfRwA2NjaWEhLHIDPY8IP90vd2i/SeNy+fINJgzA1exDtBM4EXUJbERe/uorTSevoIDi6To3ppubU1f+JF/ybYZM6k+FEfWtJEz7H8UnYcIAfH+InbwTbRP35ekE5/YZPYwT/42CLx21AcPbwELJY8GjN+Hbm4GF643vDpPro9/mpRzU3rX8eLt6rOtVgQhoHtZCw41YCvg2YLQZPt6RV0JxxzAj2dRVrafQtj6QY9Dijaoz129AKAYzk0bPgLWFyqnIg4+ubVzPxTXV9RQ98//i65ernTZS/eZbSitJ1Hacfna8gnNIDOf0LFMuFgthqzMywFqEwdxa1fHCC22FX6vXwGwuLfQWtkOu4D711lWMRVrh8Zu5Np+6erKXJcLC28TcXEMhb3f3uYmOHyPHSHzhoTKlfc6OfMaOIwBFBN/tdGwYzb+8hCcnFUtljhc8dGYuppORMmjMdCoouOHNHUDSgqKgJosg6gyVmw8jRst8x9lFJ7Wtu7Fdl9WjQxVj64o6OWDu2fJkCQSVOPGgRD+D7G9zMn53AaN0GXYWblbvVbdXw9HECKRXZ2dk+bbm77ASL9QrVVCZSyTxMs9BsaSLEJL+n0z9k5jMZO0LU+1S7IDBdOi20Hg8zawe8k/G4SBtZQeMSpKdSrb05ST9xAdbU7xbOen/lKw40X8gCnOsyY66TDyyCsmkMjE76E0Krxeyg/FzoARvQFIMHP9o72ViotLqajSUfFderp4QHwiNNvhgAQakAqbAnabgZw44vvJzbFtHRfmF3sCjewLsU8RaUz3FuOWZj8XLSBJqbPnSlHeLnpbniacryt7OkxAzbQBOeRBWHvWXkYqTyxwiZWX9jSc8y/4JWm5+QhxeWyD3f36JhI7hOLRgbT0+ckiA6UFb8GSvMHQoCUxfQsdXAxf1SEBcMQKi8rpk1bthPrC7hgx0MdYOC6AwMDacGCBVTX1GH0ofbRzmxit5Zzx4bRw9ihNjeskZ7DC3fWleEF0R/3zdXoSm31alhfPmR168vC3AegQbIO7hA3wh3ifoPDVyoGmwZ6d2dnLXKx/0QutmFF+23p5eRWexa5OzbRvZufp4Z2d5oQ4SNSHOTC1PQcVyf9O6F1UAJ9F+wqKZaODtGb9iAo31JuFwr3CvLuxfdBfsdfbjx9+flvT75DLXWNIt2G024MxdoXPqb6siqactlSip6a2FNsINJzuHFJ9PReuOdcCl0fY/FnJlLaflQBAJ9CvJpTZcyNxiromjwrr2si1f/p7hxxDXEfua+WhLH0nDoI2y57c7tgYa27e45JzTBw3trMaTlrxXGenh74jnZRU1NTTz3tLW2UeTyFDhw7SDMmTKOIEcPJ0UW/SCqn9ixfvhz6iy49KY8mdWgQFM7LuAQ7+ceFAxwLKeqLxobdlJd5k/i8P5zi+mtapBSL9evXU3W1SjfCxSWdAgM+p8b6KEreOZ9cvd2Ftk9tsUqjbsrilULTRD2UzktfpucUZN9N9XWbYQf9snBiO12iMPdveC6vN3lc5qbntDSnCkcWB0cAZKMN21P31/zyO15DHa7Nrg7asnUL2dsxWwkbEwqoRFOnTqXgkLA+0TFRH/9ApueUZ+TTsXW7yMnVmdz8vOD4Nr+/Tk2/t2NLz+n3KR+UDf7lQBPWLeEfda0TBkSSC2oNskz4zNlAE/OvX6WgyTf74QaxOZ2WIEXqybOx0wTGyQ2f76NhAe705fXTRAdKCv8FV5SvkO8aAyZBFg2Nfl0Iwg5UcO7r5t0HaPWfB0RazshgNcV/BwdhMcfUUTnqeEZ5A12D1BMfpOj8ftdss4djDdBk7bESYtFVfa4hVRVfUmnh88KRhp1prBXNjYcoJ+Nq7NQ4YTdxM2j7+sFLZWKw3XTiiIoxNmpcEv7fOG1/x5755OdSTk/ufpICvGNgqzxa2EbLhamgibe7I2jc5YLuKwXvkjHDiMX2XB1aqK3LkRrbfQRwo25ZzTvqYWHh0MFR8UjYRYrdpBwcg/ByKb/LKjeWvv58x4c/U9GxTJp21VkUOVE/KJi58wgd/H4j+YQH0eIHVOwfKQYKNPkWrBHWHTJmAc197MJL9BUfwRUGwO9tYMVdMz3a4ild+/xHVF9eTQvvv5L8Ioxbe++BC9P9cGHS1iAypxPGQBMWWb/q4z0iVYltlE0NFlksKsijvXv36hzaDdZJaVoeVdRU0pH0JJoYN558vX0ocPhQ2M7qUqNnzJghBDcVEBhN7Wa/la+G40pJ8efQ57ob+ly36m23puoH6Hj9k3z8zofw+TP91rf+aIifV10dzbR61SrRnKNjGYUEv4n7YSBV5NxJ7gBYXTzgUFJVA9C1idx80skz4MuervHO/vC4j6BbpQs4MRtKfW3bl6BJxolluCcXUEz8r+LdZDAGy/Rxyokp0dx0BGyKXHJzG0uOMu526vUyW60T3+c2MMBMiabGg9A72g0XltFwmpkne2i7YA7JFrOogJvTEKrA5pifny+tWg29GgVpNiNGjKBEsIub2vs+ZXCgQBMGTHZ8/Au1N6tMGzjCE+H4doNhxzeLTsQAH2wDTQb4BAyS5k870ITTbBjgYPYI/wR5uSC1Y5igS3PwZ78eLqKVt6g0EbjMjZ/up/87a5RelolcfTYhWPkrWSloci8o5mzb++RZCbRkdLCg0c6FECPHtr/NF6kQRfmPgbr7M3l4zcUOwFYhBMuCsAMVnHpU2tBCK39dQ+5QUQ9XS+mYDctBX79AWIoqe3GQ3HRevmgczRimul5NDWuAJs+tOUGrk4vpHuxYX6a1u15e8hZVlL6NOb9D2D1bM6TduoDg21C//jQOSQz2vHFhcLbRv/hmhgkzTeztvSgucafRLqaV1VNm6qUU7ZVH0bFfk6ub8rxtU0ETyXL1wP59Par/jaDVFlemUoh7WU8/mztcqJnG9rjnSHnRbMcqUct7dp/dJ1PUiE+seRr6pK4TG3ZT8podFDd3Eo07b57eNtgxhp1jpl11JoAVlYaDFAMFmnBqzgM/HKEpUX70+iW9GgvaA3gDYO9KgL4sjMoCqdaI/d+up+zdSTTu3LkUN09lT2soasEAWQ4GCANtm+/XP79K+2QMNOH7M9+nJ0X60n/16O4oacMdorBJR49QRkaGRvGmmnqqKSynKrhVSKCJt4cXeYf6k7ufJog6evRoGhEbB8DEtEWgkv71Z5mOlo2UnnofHHFmwhnnXb1Nl5e8gXvue+KeyPfG0y2YgceMzZ07dgA0b6Oh4c8KwU2HrrexyreDsObJdLGGJjiaIMnVlZmIrSjjCFCknYJgU+zsrHnfZqc6R0dnXB+9i9a+Ak26kKaRmgwBUAD+I8dqarQMpnPFWkUOQzpp65YtEDBVllbe1poF0CSPnFyGC5FbpZE4eiQNB3Cw/8AhDSaZ3PG8ecLPbxY1d3AIMFqcbcq9vH2x0aAsRVCubUOfc2qhF/QsOjvxrC5RXafGIiAggBYuXCjLLja3P9rH9TVoUlNYRsfBJinLzBeMktFLz6DoKQm09e3vqCxd0zqe+7biubvIEeVOt7CBJqfbGTVvPKcdaGLeNJh/lA00kZ87JaAJpygs++92Udm6e+aQ50n3oiuxe5td2UgfXzOF4sHiKMj5G9XXrie/wOupqvxjoy+b8j2zTolXsRM9PcqDyo7tJld7FUCSmJhIMSNiAZgo32n4EOk5HyJNxxggINdja4AmF7y7k0rgPPUp9ExigzTtnEsKnwXTZ6VgmTDbxJrBlppsrWln7y6oufpSTg5DcPcO6H+MCvGiD6/Wv5Dkl7zMlDPFS97wUWuMdvHtbZkU2PEQJfiniEULL16UhqmgCdfLwB/nxrK2A4sIVzdUk2NXr6Cr1HZDZySF+Kp2LIXrkqMrtasJXVZXfkclBU+dMrvPJSk5tP29HyhgWDjNv1vXLjl920E6/PNm8osMoYX3XalzCgYKNCmAI9YlH+ymEIDvP956ht5LQwIS+MP3oMXEQsXWiNz9cBH6ag2FJQynmTeukK2SUxuZ6fIJvrdxWt9b2YPVChgDTSQWGqeQ/fOs0aZU21OWgWYvNwfatGkTBKB73ScMgSacouE7tNdBKDg4mOYAkG4AiHiq5/G7OtbQwf2zxL0ufowu+4YnrTAP9unVbJ/+POzTzzFrzgf7QczYPHH8GKWmplJ46PN4BjSTj/v7tG1XEoRbVVpoXVi0ujjmUuL4tWCZ+lNlURiFxSRhUT6OKqsu7BkiXx9z586FhbWmzkNfgSZNWOjngiXp4ppAw+K+GdRTza9V9bXVtGWLstQXdohpA6PXEY5Nzs7KGDQs3nz2mcuE1lcDXLLW/P67ojlhh5rGet7kGIJNMWbbGgZE+9qRRrvDzNBhYVv161TfoFjYmtnFXeQo0nj6I/oaNNny1rdUDsBEPVy9PKi5rkHv8M587GaA3F79MfR+bcMGmvTrdA/axmygiYWnxgaayE+gEtBk7XGkhKw+TlOj/ei1i3t3dJ+AdedGCBw+tnwUnZkYSvlZt8F14U/xAlmU9wjYBD5gE/wp34k+KiGxYS6eGEa3Tg2kP7dtRRpFGJ0xc6Z4qVdC5ZS6lg4XHWab+OLJvPpOXctZJUOwFDTJBv2edUMCPJzo19t1+1CY+3fkOK9FjvO/ha6JtSMP57cR59eQnTS/iC18fasQgd32wDy9YrDNTUmUk3652K0aFrvSaBcvgvDwuVFv05SQgxjTSxjTcsVDMgc04cr5HHW0NYqXyba2cryUHtNps9suCKJzo8lQXnRZ8cvQ9vmYAkPvpYCgmxX3eaAKtjW10C+PvUV20P258N/36XRj1VPvUXNtPc249hwaOi5O5/OBAk24I7P/sxkpdt2CwaGeMiV1UmKIXTcjmm6ZpWxhoeQ8NFXX0epn3he7drx7JxdPrjpG6yFmzppIrI1kbhgDTb4EU/OtrRl0xZRIukvNVcvUtpi+PwQsARbSlhbFnJ5TfCJHh2nCdTs6O5JHoC/5BPnDong5dZKDQXcfU/sykOU5Ze/IobOouTkDTLcvwXTTdfrKSb+SOE0iasRn5OYur7U0kOMxt20G0jxc7Gjr1q3w4X6CnF3LqKv1YXL3GUM71Hb2h4btB7NkL5XkjhY/4+d8L5osLv4bREeR0ujsLBatHUiJ1XZ/6ivQpLryWwDYT5O33woKi3jW3Cnot+M43SQjPZWSk5Nl2+Q00NaWNIizhwkLYLkQOkOYfw93N2EBbQdZ8tKSQtq9a5fRQzs7a8BoKUBaVgU0yPyNMj71MS/l+mWtz/k69XS1F9dpaWmpTrUzZ80i/4Bgxexia/SrL0ETZplsePlzvd10gINQR5smY4nBEgZNTsewgSan41k1fUw20MT0OdM4wgaayE+gEtDkn78dow0ppXTfgli6ZFIvDfSTXTn03p9ZPS/puRnXEOe98gtkYe4/oG5eSsNHroJyeTT0HjqI0y0mRvS6vcj3zrISRwv/n72rAJOjyrpn3N0148nE3d1ICO4ssLgt/LgusOjiLAQN7gRPAnF3nejMZNzd3e2/93VqpnW6e3p6LH2/L18gXfXqSXV1vXPPPacK9/x0XIg+/k4lX5kZaQgNI70VogVzZkLfuIl0TdJI3+RdAo6mEYCkbxgKmvx+Ihf/IwtcTZlkFiTk0pDgsM+IlaE+865vn+WPZ0CMgTELUqNntomZmaqWgTYxWKmN7ijvfE2JIXDvhD8x2Ws3fAOfg5vHtTp3v6egCV+ABeaKi/Jx6OA+ARIpB9/PI0ct1lgXnZv5EGUMtxPQ8zYBPct07nN/HrjljW9QXVSGxQ/fCLegLuZA0q5jOPP3XniGEQvlflUWCve5P0GT6786jKyyenx3y1REeCmKu7L4KouwMguO2XC9HZIwLrNvmIXTXXB5EJcJXTYuAE8sHa7xUC6HsCLGk6ZgK20OddasSeSolUVsligfR4S4a7dglr9GTX0TOuS+z/wdKC8rxv59MoYhRy05LWWmponynGnjWEjRF01UltHc0Cw+X7JsKbwCg2BN+gJDIRg0SUt9jspTfoW3/2Pw8LpFZVgp8fNpLUrpebiDGGdd35uhMH75MXD5CMHJ2Lvjcji6pNHv+yUYO/FWoQF19uxZAkSsER72OzE6cpF8YhEqSohJOJaeG37pKMmfhJKiuVi4eBFZFruhzcIStk6K96cm0IS1GeoIoPQKD+pRhrww77/EvlwNH//HiQF784BfFk44MEB1+PChTgtwdZ1ub68lsC4OHSS4z2FlHUjASUS342OdIU8vXzg42JBbYhuaKMnB7Iz4uFikpKSoPZe1YJoa5Ur1SKfGwWEKlWWp1xUTzEtre6NrmWgaqHSfypIesucSh2AXh0f0ecmgMUET1itZ+8yHKlPhFx2K2XdeIdihzBLlYC2y8VR66xWhexnXgP+yyHXQBJoMptUyXl9NoImBc2sCTbRPoC6gyZKVe1HX3Ipf75iBQLcuq9d9qaV4cs0ZASAwkJCRfBVZ/SYSDfZ3oa1RU7WDWCdv4JuTUWC9Cw5H4qC+TtabfQGeSBobnNn997JokYVoJGUytsDsSXxOANHXhzJx+fgAPL5E88ZHU9uGgiZPr43FHnKUeXrZCFw8RjVb3TX/vwqxNmMEl+hwqY63/6O0ibhV5RKSGOwnN0zEOH9VJ5ZqcvjJ08Hh5/UtifjrTD5emL8PQda/aWS3aBqjIaAJt2lnRSKwREk/c3qdAP+kYLefwKD5WLz4Ao110elJV4gMYGiU8daht9f26OrNyDoWj4lXLkb4LFlGvb21Detf+kxsjGfdRpna0eFqL9ufoMkT9PzZT8+h/146GguiuixwJcCUO8z6Hqzz0dtx/NdtSD98BmMvnofhC7rXNZFK11iM+qtuABx+Hluat2H3rl0KL/1S37mEjIPtWZWDQZOS2iYBEnmR8LUuYW1tjfkLFhBdnW1IFYFkO9pQpSQlik0xB2c2c3NyBGiydNmF5D4mm+/68mqE+AbC1dYZx9bsw7BJ0YheMh1O3voDy7r0ua+OYdCkqGgtMtKeJEHzhSRs/r7CpdnONCmWNpADXC+jt+aLgbTYow+i1Xw7iWYvpTKHRZgyeZIQDm5vr4Gv72viUse230jlOpZwcivCyKmb6Plpg+biV+Dh5CHuDw52XXLwcBVuXY70t3eAB2xJG8fK2Qn2brLygYNfrUNeXNeGnd0/Iufqx+bJSr2FEjkxRksk9NbcyrfD5Sa2lh2iTLSurk7tJXhMrNciH7Z2Iwi4Uw/ess5QZNRwYpiYQd49h9kZfJ9zOV5JSYlCex0dpD1ISRjQ3/LB1+BrKQczL73Jkaa5rX+1jJTLnPz8/MAsE33Zxb2xtsYETbh/zDTh57J8zP/XNQrgCH/OoMlQDhNoMpRXV/exmUAT3edK7ZEm0ET7BGoDTQ5nlOGR309T9tIJ3yi97OdVNuDqzw8JZ5q/7p0ltCpYsyJ8xEZRJsIieVVmV+KRLYrWuAycbCVtFGOHRIl/kijxlxJwItW+9vS6vCm59btj8HCwxt//0r9Ex1DQZOn7ewVj5/e7ZsDfpQu8ksaTenYxicgVIiJ6G2We/Ho6zG7PY+tGFoXlrCpnV5WDgSouQ3jzyrEIIuHd+iZF+Xx2V2KXJTfP60l75Rm112JXBR4rA3XfXp2C1qoPRJaXs726hqGgiaTtsHHDByjIp00jZdjQ0Ub13FNw0cXXdVsXnRQ7WVhuDx99iOr/FXVndO1/Xx+Xuv8kTv65U1gJs6UwhyQQ6x0ZjHn3Xq2xS/0JmnywOxWrj2Xjnrnh+Oe0YZ19vOvH44jLr8L1VKryfwaUqnS3DlnHE3D0R9Kz0EHXpJEAqIXvUnkDxZ5H5hObRPPGgl/6a6srsWuXqvNSd6BJLI2XRWfHkG6LCzl96RLz5s8nwUZ3Yt+pHs0iiww0M9ukoKAArH1TUVWJ+KwELCLQ0I30ETgCAwOpVG0ajm88jDMbuphZwxdMEeCJJltiXfrXn8fwZrKuPgexpxYLa3S2SJcPzsCnJ11GTMpQ+s37uz+72ifX5pK0/OR30WL7G2pqZqKyahk8PT0wZ/ZMKol4lxgI36G6zA8JMV22vqNnbiPWYx583B9B5uEgVNAGjhlLXBKoKbhM0CvEF76hqr9h0UtmCJtjXeP0yRlUVlIlmJFslTtYwo4swOtqK7F92zaVLjPLpL42RuXfLa08CczosoKXDlDWGVK2HJbYGVyOJy9CK0ATNUxLcwtHKkVTBIn70pFGlzVkJ7DU5ESkpaWJkqRmYhcrg8K6tGPoMcYGTerKq7DxlS9EN138vEiUfJIQgj3fwgSanG8rrn68JtDEwPvABJpon0BtoAmXg3BZiCZNgCW8uaU3btb5KM1Yeo6qvJsy7UnITr8bRY0j8O+9qk4uH143wehsk2u/OIScigaDxRflZ1EqP1lJzJopepboGAKa8IbobtoIDvOwx+rbZO5SytG5WR9zjMQLVUEV7XeDbkew/TAr6fsEPA13T0Vh0LiCKpQ31GF92g94c/m/YG3mrFC/zgwkdvlhC0+28lQX26kU7D9UEjaG3E7eWJZ5ztLzCrL0fEm3DtJRhoImfCELlKOx9ghl/LaTba0TvXyX02bxTqJ6j9VYF82gFYNXllT7HTlKtkkeDFGeXYAd7/0EF19PLH3iZrQ2NQuWCVOA59x1BXxHhGocRn+CJmtP5+HNrUlYMcYPzxCbjEMqG+yp9a6u68XiqBtojqxsSdfkVe26JpK+yqfk4OPbUC2y6Dy//mMihB2kfEgv/craBt2BJsezKyiT3CZYNXakzaMtxo0bh+BhoWjqJjPMvw/WFu1Y+9ufyE0k0Umin3iFBXY27eDggOWkY8IaCVzyyC/xCdtIIPwI24lDbHAZOGFnpsEWDJowo+f0SQKjqUyBGZTyGXZ2iMvJuI8sdWcjKGzVYBue3v3NPkGb0JhV8J22nc6dgpzci8H3UGRkJJIS/03i2Wvp2T4HeamyTZutswOCIgrhYM96MNGkC/Nb5zUZNGHwpLasEnUMolRVo7KoAtVk491YXYfIqdH0nQhBIonPyodrgBdZG8uAaNbZkdx71A3GxqYWNdV3D7pnsTQWfgZkZ6bjxAlF1x9NYIY60KRTR0aOSaYMmvD1NInQMtNEKgGS+sXlqfxHir52pNHlxuUyJwZ86+rrCPC0UQsK69KOoccYGzTJOZWEw9+th7bEhqHjGOjnm0CTgb5CfdM/E2hi4DybQBPtE6gNNLmKmCT5xCjR5DzBmiFMhX//mglwqr6AMuz1wmmgo70ZyfGzSaTRGndte1ulI3/cNRN+LrpnjLSPRPGIivpmrPhoP+lTWGDnQ4pMF33bkj+eNVx4U3bFhAA8tli/Eh1DQJNvSJvhM9Jo0HRdiSpuTrXGw8eoZqEMGbMtZb3OGSaJZlpaitFIgq4gDQRmtFiYO3UyW8zMOlDRUIPkkjS0mdVhVvAsAk06yH5S1gMu7WloiIeD41ThaKAu1pzKxYsbkoSGzvKIJHJleojo8YuIHr9S52H0BmjCAI8FiskvYB72HziO8HBbjIieBTNrzfa29bXHyGXoVsrETSBtH/UibToPog8P7KAF+uPx98RGhAGA5N3HcXbrIQGWMGjSXfQnaMJAwf/9chJjA8lO+PpJkNhg3N+3rxyHmefs7I01lZKuycIH/wGPYd2zu16jkrO/qeTs4SgHWB09JgATKWbedqkCcEIkD9I2sFDRNlAHmrQ0krMF2UHXkVhvg7klgilDb03irN2FxA6pb+4gQLD72eHvUk58Itb/uQ5OXq4KZTdLli4lYVBHyuIqtlGWmY+KjGxI8iw2jnbCncmZQLmeRCu5U6krSepJW7qeI4EmKclPoKriLxVXsk7WHGktsebSUI+Tf+4gpskWhC3fSNok42g9nsKYMWPB91BqwnI0NeWgqPhuKisL6JwKvj/S064kBmoegkI/Iqae+t9ieU2T1qYW8exxJBenGiqBOnnyZGd7FgTicfkOg7pNdY3C5tjRw4XuKw+V6Z8124lAh4eJ6TKdynNk2fjBFLTvF/omJ44fR0ZGhkLXuQy6lQD6rjCHncNYIb4vH1x65+TspgAaqANN+Bx+3iQlnkV8fJf4OYvANtSdkpt/V8FmkfTMLC0tceGKFaRhYk7verq7EfbFOjCz2Mq8Q9yf/RXGBk2O/7qVSkRjMeaiORixcGp/DbPfr2sCTfp9CQZEB0ygiYHLYAJNtE9gd6BJYmENbvv+GHycbLDmHvV2r29tS8KaU3l4kDa4Yy1l7ibR42TK72mJK+hlKQsvHnoC2TVd2UljCTPKj/Zgehke++M0JgS54qPr9KuD7m7WpDmRSpK0zbCt3N7Fkij51iTkqFyyoq0N/nz9mQLkVjVgabQPwjxVRR6bmwsQf2YJgRe+GD2WM4GKwVngto6e1RrzRs3JTmZDyla8nHmqIwYG5fo6L8IZWCtrH2Kf+JAYpA92Ht6LwpoShLoF0J8gAtPMCDhpJc2beGJsVJBoXTgdrypKFhA8DIcK2/HallHKRhUAACAASURBVFRRAmXXcUpYHds7TsGw8K91mSpxTG+AJqkJF1CGOQ9jx29FUUEx3N1KUVS6j8b4osZ+VJb/IZgxLm6Xkp7Pf3Xu70A4cOf7q8Gb3Rm3XCLKTtpaWkVZDmexuov+BE2Ka5pw2aoDcCdFw/XEdnvg15OIyaroEajZkzU4/hvpmhxiXZO5pGvSvdgsPyf5eXlvbRpsa6oVLmdOdphh08fAglwPLKwtqZTACi5eLgiI8MfWbVspY1pPWXUzypqbkysVbVDobHbD4ChJyxWbRynM6TnjFR4ICytVoWY+xtHREctIsFFih+gy7tzDJ1FSVYo8+k5b28nA7kmTJsE/IEgjU4VLDKqLi3Bw114CiGSijAyeOJHTjlRioY0twOdMmDBBlMO16K/drcvQNB4jgSZ5eT+jIPcF4d7FLl5SFOW/hfKSb+Ht9wg8vG8z6FqD4WTWT6irzMDwq36FlZU3pkzdRzoRbF2bQmVKl9K/eRIA9z9kZmYq3B/5BV+huOA9AkwWEHDygdqhqhOC5efR2PnjEEcbeW7Tgsp22qjMTV24+HmQUGyXnfi0adOoLxtRmL+SBGBvInbgk4NhilX6KP32btmyRfz2ygeznziB0d4me5Y4OE5XEGjVxCTTBJpIIrSHDh0UAr9SsOAsO+cwu4QFZ+UF4GfPmQN3D+8+daTRZyH5ESklbPQ5r7eONTZowqU5zO5b/AgJuMtZv/dW/wdLOybQZLCslHH7aQJNDJxfE2iifQK7A02+OpiBLw5kdOv48MfJXLyzPRmXj3XHRb43UlmIvWCacLDgJwt/7i26A9+eHgtfZ1sUVjeKev5f75xOYIzxmCZfUt+/pL4bar+pbgb/8dURZJbV4Y5ZYeQmFCjEbdUFzy2DJmfOnBGijqwRYEl/9K2t5UzwofRSAVFMD/UQbShHR0cmvTz9h15ohpGOxssKH4eGhhKF3KVbGr62O4VtSNtbG7Fh/XoCPuIoy1WqcoqjyyzUuHUgOnIEziTG4dQpWYZqnN9weNg6ENBySoHqy7bDlpZdmWcWbBs2aiJu/CoG0b5OeONyKoOhjBoL3NrYDUdY1B/autn5uaGgCbvfMMPFxjYSESPWwsGmDokJd6Gxqapb/QLeHJQVf0GlR/dTCdI9Ovd3IBx44vftSDt4WmRyWb+AhV9ZAFZb9Cdown1b9N4eUZbClsLMBPOj58xPt08jdpT2EhVtY9P2efaJBBz5YSP8RoZh9h2Xd3t4QmE1bv8+BneXnoV9SxfLpLuTwicNh1eUP3ao0Tfp7jzlTaT8sZz9t7VzouyzbhnY8uxC7F31G+bfvByFzZXIzs4GP1MmTJxELhztctCpao9YWoVdyw7uog02lV5Im147FwJ+6fJNdQ0C8OGSCy69UA7e/LK4JDue9XVIoEl5ZTKBApeo6Dh1uWT9jwCVpX3dvT69nmRLzuUwo276iq7dgfGTY0lUnVyWSn9EUd5rcHW/CCOj3wFv8N1J72b8hIni/mhtq0JK/FzavLYhbPifau1xNbnn5J1MQMiIIGzbuQPNBBU2VNWiIldR+JInQr5sjMuFRo4chbT0p4khtEGUdbq6d8+W69PJ1PNizFBtb20Qv73qorEhQYiVW9kEk4uRzFY9KCgIU6ZMFSwLZSaZJtBEzCO9s/B3dtOmTZ0itMyebG+vo8TFZHqH6XIoY0ea8IhIIS5rCvUzYEzQpCq/BFvf/g52Lo646Pm7z+slMIEm5/Xydw7eBJoYeB+YQBPtE6gJNGHBUS69SS+tw5tXjMXscPW0askVYkpQB+6JflBsgiNH7RYXLi/5DkX5b2J//mx8HXcNfrtzBtgGlDUrVowmDYLlMg0CYwSzTJht8vIlo7FoeO8ph/O88MYnp6K+s9uvXzYGcyPVi8yx40BtTSV2Ekujp6BJRX0L4kkrxIko9+OoDEFd2NqmwcvzW9rUh5EK/i2dh4SHh2Ps2HEkqmr4LPNYSksKsX3rShXlfm7dLnAqrIN88eyOj/DCwnuREZ8sMoS8eZ1E2eXW5nzFTlB5D+sBiHPt7IRg28sbk/Ebicm+sGIUlo70IaZHAVG/iUFDiv0RI1UZNJpGZShokpNxP4lx7u60qrQkXYfYE2PF5UaMPUnglPryh7ysR0gEeStlpN+kjdSFhk96H7XACvs7P/gZbc0kTnEuxqwgyu8i7ZTf/gRNTuRU4FESqm6Sc375L33nF/Tid56ng0FDddFMm/7DBJowq2MWldh0F1xeMuutnbigLB1RjYpZY3aaiZgzQcx/G9W6tLbI/m6jv0NGh6KirgIxMVR2R2lTZme0006I/+4gwIH/Wzk0gSaTJ0+Gn3+gXgBq/OaDolxi/MVzMOWimTh06BBmzpyJmgbqpxoXH/m+cKbXgbQZjsccE88CBk5qShTHLh2vDJzw5nfUqNGo76dNmQSa1DW2IuXsQlqTYgGYsvArR0by1QTqJiA08hfY2g9t8cX8+DQc+HKtsP4NXPgFPZfzER69CdbEFswhYfBaEgj3D3qFbKivFOC6I2ndVNPvlnR/FOa+goqynzUKgGsCTXieucS2pbkObCPL93xBQqbK/W7jYAuPEH9ydPLCAipJqWloQ0ri5WhqSCYtldWkqTKmj56kxrmM9Nt78MABlQu0ESjFGmPMAHFwmkVMMqdumWTdgSbit1hJhLa2Zi8LyBBTaA59KgOi+9ORxjgzbJxWjQmaJO+Owem/9gjh1ynXLzPOAAZJqybQZJAslJG7aQJNDJxgE2iifQLVgSYpxbV4/M/TYOo7R3clLtWNLVj2wT4EOpXhxRkv0gtlsHDP4aivO46s1JuRVR2E37Nexhc3TkZ2eT2u+5Js7ChWXkNiqsOMY0vJeiasa6LJaUb7zKg/gtkrzGKRD21uQHbWZmRbmYK4uNgeMU2Y1ZJLujJBbvYY5m6vtmP29rHwcP8N9Q2jUVZ2jTiGs31LKass//La03FL51EVBE6dWIe4WEXnHGdXT4TMvgiPbPgIZ4vTEO0dRsDJPdi2dSsa62oQ7dQCKzNViw4HAk34ZW/hokWohy3dSweEiCW7K7GDDddtp5CwKoMU4SPWEz24q16+u7EYApo0N2VSadlFovmo0QeoTlwGVDEFvakxjQQhf6NMvXrAT9pIDbYXdWV7Tx6vlR0JnP5Xu8Bpf4EmBVWNYHFVBjLlwxh6SS4OlqisoA1/raLNJ1+3iFxlWFfEOzII1g7qBZh5E+lAm5mbvjmB0PiTiGis6uwy20GyY5EmW0jO4/L37vTpU8jOkj17pM1oC5UrlCRlKYyfpQW8SaxV2bUmLCwM48ZPoPJAAlz0eBBs/98PlN0vwuw7r0DouAjaxJoRg6CVdAx0a4RLDFgvgRkIVVVVAgwqSctRAXu4rMh3RIholDe/Cxcu1GjrrduVDTtKHjTJy3pMOML5Bb1IrIUrRcPJceTM0lYjXHXYXWcoR+yGfUjccRTRi6fBKeoz+m0/IcoluWySbZdZU4tBbQa3+XnQTKV98veHxBjkZ33kqL30TJXZCkvRHWjCx9hZm6OoMA+HCbCrzCsBizDLB7OUnD3dhL5Ga7s5/SHL+NNsnd6BEaTxZUZaX4M9+BmQcDYeSUriuDyuhvrT58peI7Hi4tuIzeOokUmmDTTh9iQR2uMxB4XtsJm5DT2/ZogplBIc/eVIM5jW0Zigyb7P/hCOZtNuvBDBE42XgBwM820CTQbDKhm/jybQxMA5NoEm2idQHWgiuTzIn82aJddOUtWg4GOu+PQgrDtS8fyMN4W7ALsMcLDtKju6cBypX0sOPDKHCC754dIfdkdhJ4neDmaBXPvFYbJCtiYrZP2tgbvrz1NrY7E3pUTlkG9vnopI7y7qqvwBIttKwMmJEzHIz83RuzyH2Ty8MRxNVqKuGqxEHR2PwM11A9WXT0VF5UXEajEXzI0OAhtYRLG3goEMR9sObN60kqx40zqbnbl4Kf7KT8THhzd3bmKXRc3CxaGzEbNvL/xsmuFq2cViECeeY5pERI9GuYUbHvszXszN5GFuQliY9URYVJWzmlJwNtPFXXvJCIMmnDHriX5MdcV6VFdtpZfEaZQZ7XIHKi/5mjYLJ8kx6CaxWeBopUy/fLY9KZZq6YnKLA+29NbcG7Md1itgtolyMGjC4El30V+gyca4AryyKUGla909q3o6h7zxd7a3wlYCAcvLyzub4cx3SXoeCVPK7m07Z3sBfsi7ejg7O4vML5cqfPjFVrjHngZR8jD5igVwI2YWazFom2Pp+jt3bBPXl+65MqKQpedXwquljp7BMiikzIqy7j5uCrbkPQVQ2eFk06tfCgDmsldlble83gya6BMsJt3cWEvPjU3itOKUbGKeKbYhlViwuCQ/u9o6LHr12aVPf/lYedBEEn11cSetoqD/ElhSSaDJbGEpztbiQz12ffgzSuk+Z+Cs3WGVKLv1D35VlCxlp92u8LuvaS7YaYgdh7z9HiYNmNsVDtMGmvDBDBqcjY9DcnKy0HFg8WO+h8yppMR3eAjmzJ1LNtheQl+jsSGJmEBXDik7aNlvrznZO+9BcbHis5pZUI0NZ0lnZg4ioq7slkmmC2giMcSOHd2GhPh1AhS0s5cJoC9avJhEZ8kVT79HwFD/iqgdn7FAk/a2Nvz55EoiAHXgkpfuJa0o9cm082XSTaDJ+bLS3Y9z0IImFRVHSMOhGD4+FyuMsK2tDoVFf6Oi4jDVXnrD02MR3NymdR7Dn7PoWnVNrNrPlaeLr1NappjxtrcPQ4D/deJQE2ii/YukDJowy4RBE+Xg8hMuQ1EXj/95BsXlR/DUlJXkGjKRXEO+6zxsx8Fl8HfIhYXHZ4gKnNn571eTK08esSfYgYYdYXoztiYU4YX18ZgT4Sl0MXozVu5MwS9UPiIf/DLz+Y2TMMJHMXsmfwzruDjamWMHiTqWlqunpyv3k7NlnE3PKq8jBxczzApXdQiQznF23gUX+lNdPR9V1QsFfd7Lxx8Nzb2vnmhNpQq0ncH6v76n73ktxox2IoX+clRYRKHdKgTJxTUoIu2adtrEzQoJgUtbMw7tW492YnB0BgEmtrYRGBY2Febe4XjglzNUQtSVumYQyqHpNVSVr1OYFl03KQya2FN2sqq6BoWF8i4D2u+G2pp9wv3J3mGSQga5qSmDNn7pQhCPhWxdXFzg4upGdeOyNltbSogVs4DOcaPs8z7tFxpARxxbvRmZx7pcE7hrvPlf8uhNWnvZX6AJg5cMYirH7TNDcfsszRbJWgek4QAu0WlraRAb/3YCSziqC8vINrWLNcL/plxmcgEBJpbW9qgsqcamN75GB2Xhc4aPwiN360ep5uubExDNegPN59L4bKnOzwcLKonwba6BDWWES63IqcbHtRM0YQB1GdkCw9xabxAiZe8JnFq7izKZIyijuaKnUyfO4+9jQX4Ojhw5QiU6xNoprlBoz8nbTYjEym9+DbqggSfLgyZchsMsMi5H4bIUFrTOSL5WJ7DAwG70++msOfPnE+SsRc9zdtaqqPiYdJu+JN2mBwTDpKz4c3h43QJv/8e67SuXO3LZIwuAR9AcyocuoAn/zjqTo87OnTupBFWWuChJzUELAZZzL1yEkePHo/Gc9k0VAd/52U+R69pScl37X7/PYW91gH97zTtaxDOIddLkw9e7lNzdPNHc7iZEdzWFLqAJn8tAra1FMf5a9wHpm9gJXTEWZQ4MDukXjaHemsO+bMdYoEnB2XTs/2KNcGxj57bzPUygyfl+B8jGP+hAk/r6DJSW7qQ/O+BKYEhY6IMKK5mX/7MATPjfm5qKkZL6KsaN/VwAJAyYpKS8ShsSb/j6XNL5+ehR78HeXv0LMLdXUx1L4MwlndextHSAk9No8f8m0ET7F0kZNGFGw9L3qYZVKS4kDZJnNWiQrNqbhpNpm/DQxFVCoyIobJU4m/UGYmKfwJyAQ+Q48jRl6Luy9lvOFpKt7FnBnPjg2gkI91LP0tA+AtUjVu4iYCMmRwhD3jIjpCdNaDyH54eZNcolAVw688JFI0nAVDNw4kRjbW6swd/rZeVL3QVrNMSSlXOjnFtAlLcTvMnJSF0wy4TZJpWVRNUcdrsQaGts7Zlbjra+8edM0a+uLKdNUB6JQraSTeFNBCAsREi4zB2B+/3Qb6fopRr4+LpROHP8WyQnxRJ920dkZzlz5UbOOrPmL8JNXx0TVrHywaymSwKfFkKwyhERvUVrmY5UntNMmhCxZ04jNTVVl2EJ3QLO2HEfGTSRj9bWErJajqe+eyIgcK5K6RNT1rNS/0kZubFUR/+TTtcbKAex/e22d76jDK7MiYGZD1wnHTBaxg7rLvoLNOHvIAO8DCxKwaVy7JalifWlbSzaPucygZLiAkjaAuoYE/JlJixk6uXjh2ay5Dz49TrkxaYiyc4NJ4eNAJcR6Ruujpbk5JSPHbv3EVhST2NvEE0waOLeWAEn+v2rs7SCd7AvXM6x0mbMmAFPL1/KPuvPONu76ncUJWdh2g30XJlkOAXcwcaMSvvO0G99imALMHDCm3IHdye4+HmBxSXD+NnVTzom8ushD5rwvyfHzaL3lCra8G8Rtul5mY/obYWu73oPhOMZmNj98a/CnYNdOipKf0Zh3itw9biaNEMSqTQkVvzmS/pU3fWZ2R/MAlHWfNIFNOF2JdCA9U1a6NnOGjmOlnZYsHQRbHx9O0u+igvePQfs3EcA4r0DYRp7rQ/Sb+/u3bs622Qm2fz50YiPu4N+uwI638HUXVRX0ITPbahZQ7pJ5ti5KwORkXPIMWsyJTeovE+f+r5eG/nga8hYoAkD2QxoRy+ZjtHL1TtbDr7Z6nmPTaBJz+duKJ056EATBkIYOKmolGlWKIMmp8/cieCgOzrZJdnZXxLNuFYcx+fFxT/UCaLw+fx5U3MRIiP+rXZdGTRpaipSuY50sAk00f51UFeeI4moSmfzRuT1y8dgYpCb2gaZ2bH+2I+4d9xXcKbMTsC5zM4Hu1NRULAaN438hSxYLxF0Xvm4Z/VxnMntytLyRpmp9YYGC9ieIcDh3avHY1pI72um8GaNQRn+m8EeBoCOZ1cIV6DnV4zEQg0ilKyC70Rsk9S0DBw9qsrmkR93Bgnw5p3bEMn/uyb3HNYzYV2TtrbbMXPWo6gj3YI2NQKRhs6t/Pn2VHJkQ/aolTXlSIxfIsRhA0Peo43EYnEYl05wCcW7y49hVvRM7N13GrV1/p1NcAY+p6Yd13yuOhd8L1w34k8SE/5eocv6ME1YQJD1XHjzs337dgJzVR1/pMbZDpltFZvIIruDsqfsmqOsn9LeXo/62qMEmjjgqmvIdpgy9/J1+1Xla5Gf8yzd6xfRvf56b051n7WVF5eKegJO/AkscXDXDADKd6i/QBPuA38H3yP210kCaNmd66GFUUYDTDqfh0SRjyd9ItYWUAeakCOwEKUcNXYMgQBjhAhz2oFTOPHHDmG1+5X7CJQQgMGW2h4OVHOgRzhRpj2tuBq7Dx9H3FlZaZKngw0qSCvEqZ5ssa1JW4OEl/2HDxOfjRo1qscAKovcrnvuY9GOLmVaugxDmS1QSQ4Q9RU1cPX3RMSoEfTsmkU2turFbXVpvzePUQZNcknwtIYFT4NfQys9K4rz3yE723+SWPQTvXnZAddWwvYjiNu4H5EkVDz+8oVCIJsZI1y+yNbzrFMyfMxx+lu7W5UEuChbyOsKmvDkMGhQWVGKvVSmYkPW3ONDonFmawxmUOmQpY3s+5ST8S/q516F36MBN7EGdIh/e1NTkkgnLa6zFLeN3InOxs6m368mKpEmcWI79eLE+oAmvM4ujkEkdH0JAgLGCItpbeLPBgxryJ1qLNBky5vfCJbj/PuuFfby53uYQJPz/Q6QjX/QgSbSsqkDMxhQYdBEYpbwsRIrZcSI/xID5QgyMlZi4sSuDC3/W1HRX+DP1YXEXGFmCrNVJIaJdGxBuSwLZwrNM8CgiRPV6pdVd1lgvrxRttkdQawJdmthp5vuMrdpJbX4ZOsHuG3UjySSdxm9VL4iLsi6IuatiXhu+tu0CQ0jIc+/FDrCn7MwrHw8e2G0uJ4hMfed3bSZbceWB+bAmT1/+yD+SwDB+tgCcaX750fghqnBKldl0MSeBBGbmpoRS9nW7tgPCQU1KKtTtSUdQ7omLrReysHOObY2aYiMWgUH57l666b0ZIrMqfDZ0pIslFvaUcZOSXmsaUPWwMNl1sAxWRVYtX01Hpn0MemtTENwyNvYsnW/yBBOm8oZeF+0tFuARXvLlex9PrpuAsYFWBJz41YFtomrx1WkKfCC1u4y04RdeyqpXZGdbG/Bho0baLOjWojdQSUP9XXKdsijqF5f1RGptmovpk+fjJCIq6nviqyf4oIPUFr0KdHW76U/92nt41A5QIAmRJ2vIoDqfAje+DvZWWL3nt3ISklHeXaR6veRhEwvuvwSHPxjN3Lj0+nXnFgelJ6d+o/leDutSYCsb12p2ZVM3TyeJm0jFqLmkpznLopG4onDsG2tIXcaS3LoqkFqciJ87D0pM9whRGkDggMxd85cAlDbewSgcrnW0Z82C3HWuXfLxE97I/j7aEYlexs3bQSDJtXENvEZ5o9rbr5BsGFa5JyQeuN6PW2Dn7NcIinpt5QVf01ucO/AzeMaWk5zstr9Gb7MoPTqYlD29FoD7Tx5t6i4TQfpHi8UIrBe4QFUFpKHwtyXCZsjR7S2CmLWjaLnnUzvRl000e+DFAxOJ8fNE4ydkMjvRDkvhyuBh03ETmxo0k1d2IGe78nJCfDz9UPm4UTErN2LSdcsQfgMWTluytklwnktInoDsZdlAOJQCv7tdSDw9vDhQ5SIDIanNzHJ6KetMO8NkWhwo99JPw2/k25O1kLrq0muHFbT3KQlEuubSlLHT9yPdrjoXd43lOa8J2PxcLZBDf0uslZbb0VtWSU2vkI6U8QGvZzK5UxBbk7u6gXYTXNzfs3AkAJNJCbJJAJFLCwcxEoyKJKd84UAUrg85/TpOwnNvh6utMGS6Z/8JRgoXKKjLhh0Yf0TjuZzLBcGWKRyHhOFULcvzLn3+c6DJ71CYoO02dzy0FxE+Tjp1Mhdq57EdcN/h6/fjRg54kXEEdPj4g/3w4eyv6/N+BftF1rpBf4kbbJl2euzBdVY8b6q7gOLd44PckWgqz0C3ezO/ZH9t79r9w9GbvP7Q1n4+Vg2vOnH6sjTMsZDX8X7O1Lw7vZkcbmbZgzDS2R9qhxdc92BHWRDrIn9kEzlKsqAkhVpE8yM8BCMFuVwc/+I5jYfEyf8Sd8fdg3o+zh67CISok1ABDHDgoNkQn+rNy6Aj102Ohxvx4JJT5GAXRHy8/PJBnks9VcG/ly16iCOE8DCMdLPGVdOCsRtcpoUJaUsfrmP9I5+JHDUBzNn7NMpqyl/X7eRcFpRUSH27VO952pqzhKQJQO8pODsqYfHPJVJ9POvQmCgJekxTYKzs0wYT4r4+AdRVLweI6Pfga+vdrHavl8hI16RKz/OM8p2c3MTNlKZQDE5y9RXylx17F3ot43ej2dMmIqUwwnIPZupMOm3vH0/Pj5WiE+ppPHBRZF4aHGU1kWpamjB/7Yl47tDsrb4WfhfYv5NH+Ysrt/U1ESuNNVISDiLIA9/NNU2IZBAk2tvup40OLoX8e3u4ps++gMpxxIw/8ZlGLtYJujdW8GaMPx93LB2PUqyinDplZdi+MRR9G6gna3QW33Q2o7SPV1VfRLHj18FB4dI0mMKIJey3fQc+5yeBQu1NjWYDuC1aWlp7hQbTTueRCzCNoSOjyJtHksqgWlBSelWUtkyp698O5wco+mdK0xliGb0APb39ycmhOKapqW9iazsT+kZeTk9K98W5ym/g+gyXx1kg9tKQEvqkQRs++IvBIwYhiufuon6Xol9+0mPysIO8+bG6dLUoD2G54CTENL3vK4uFUeOXiDGM3vWEfp3TzXrIvBbnWLX7ig6tg3z51HJKuklmUK/GejJfa3tCrG7TmDXtxsROSUay+/rPTBb23UH8uc8z6YwzcCQAk0YBDl+4h+QB00Y9GBgRAJFGCDJy18tgBIba29CwovF35qYJsq3CGukcEjlPKbyHO1fIuXyHM6A/t8vJxHq6YAfb+0S6dXW0qrNL2Ce3+/osL8JIyOfFLa8nBW9bFwArgl9SVjiBYd/QZTe6aIpTdop3V2HM7x+Lrbwc7YTfzMdX/y/ix0s6Kn58O+nFLRGuhOv1Taenn6+Kb4QL288K06fGeZBOiejwOVNHMw0cbCzQHl1M/03ZVtJ0G3jBvXsh0bKzh3PLu/ch1oSYBJGa6JJ02RY8Af0Mlsi6u11teXt6Rg7z6OXKWYZSMEuNxJd285+HJW7lNGGLhN1LQ4oapqCicFuBPgwO8USFbUtIvt9KKMMj/5+Gk7Uztp7Zgm7YU3BTjr1tcdEVtPT5+5uu6/OcpgpzclJCTh7VrY+UtTXxYjSIuWQ7JClf/fx8cGUyR5ITLwP7t73EavqCoVTMlKuI82TOGKh/EDuAoqAisFzPYAb6M/ynP6cFv5a11ZXYteunQrdmD1nDhoLa7Bj1RqV7o2/bAFyfALx7F9x4vnw9pXdA5xrTuXhs/3pYOCEgwVu718YgQaiyctfnze6vIFqqKwTtO3ll6xA8OhokX3uSbDo55qn3ifh21Zc+OwdwuGnt8PBxpy0jo6jJq+UdMz84TtefTlBb19X1/aUy3P4PMlel9kLzVTKFzZ8jSjlG2rBa8PPylMxJ4Q7lKUN6eREyNzzOAFSV3OQ/kuWPbd3nEwbalVNsrnz5pG2nadws5GPluZcpCbIRJAjorfS75U/9CnPkdqyIpYsu5e1EXCy9t8fint1zgO+qKpZSb+F9dQnBxKlJwYmOfoN1WBXKmZmyZfi5mY+jJqqbYLtqE7PRdfynObmHKQlLKf18aN12jZUp9Co4zJGTMwEcwAAIABJREFUec6hb/5C7pkUTLp6CcLOMauMOohB0LipPGcQLFIfdHFIgSY8X0ePXapQnlNETjrMFNGkWcIaJ25u0zvdcLTNObfHQrMSyGICTbTNGAmr0YuHM2k+lFbJSkE+JB2Sn4ipweUl983TLgIpXeHP/c8h2mkNynALZo97DLd9dwyJxJbgTUGYzackHveTitWgsn0vgwuPUubVjbwFC8h9pZAEHlnokP+bxR5LKYOqb7DYIgMrfRmncipJ5DYeRTVNAuh4fsUoUd4kD5pwf7g2u6y0CAf271fpXmZZPXIr6+FEL6ucWea5saG1UhfBwcGU9fuXeFEcPuaIeFnsi2DGC1OEDxw4QAwTGehQX3ecAAhFUde0qlDUNDtgKunLzJk5gwQDXURtNAcDdAzU3T0nDDdPD+m223U1B5CdfjeNz068bLNLjaZQB5qYn7Ns5PkuKOhiljQ1phKVO1exqXN2yNI/2tjY4MIVK4gZtAGZ6U+q1TJIjptJDLlqRI7aS8BQ72vp9MWa9uQa5ytownNlR0BcemoyldvJGI9CyDQ8Ammn0nHwK0XnJ/6cxXWto8Jw1WeH4E4lCetJ10RdcCkOgyUn6VnCwc5Zd5Kw9aQQ2T1fUy9DQ+xpc5tG2gbS9Vsam+Fr5wpfTx8ETJ2g93KyIHD8loPIj08Tlq62zg64+IV79G5HlxP4+2hn3k7iuCk48tcBXPDkrbqcZvRjeDPO4UhALm9GG+TKGLgspaGOLKNZv4NA42GRP9DzSP3vy0ApM+rJhHH5h615G7b9vREpcYmwd3Mi3RkvAZg01JPAtxzILG9HK12LmYTDQsI0Wt/mZz+JKrIt9vS5S7jw9AQ0kR9XzC9bUZy1DaEXKLry6KqB1ZM5GqjnMKCVnX4XlZd6I3KkIqDLfdYVNKmt2Y+c9HtEoosTXqbQfwaMAZqs/fcH4Of8hc8QmO3R+2C2/qPs/zNMoEn/r8FA6MGQA03SSbOE6fVsCSy55Xh6LoKnpyq9lQGQvLzVGDfuc4VyHhaZlQRmubxHsiyW2nNyHmOyHNbj7lUGTf7x1RFkltUJB4oJVCaja+w58Qy8LdYhoe42TIm+R+iZ2FMWZPuD81BR9ivVQL9Eax8O/2FvKGR+2L6XrUOdSHvkwlG+YHaIpuC6UBmAQkAKgSiF58AU/n+2Sm6mrJNyfEjaGJoEbHUdW0+O476xOxBvfpg98Tw56yyJ9u1kmkht2pFuXUpSogL7gcd5LEvGMhkX4CpYGJrC2dkZS5bMw9EjE4jibI0RY0/0pLs9PoczXY311di6ZYssA1lLItD0t3yUN4cgu8oRlyyYgdkTRnfaQu5LLcWTa87AnUAyZpmwxaG2yM18kLJoOwi0uJkEGB/XeLg60IQP5vvd2qJd2LY2NMg0j7jfLPDa0XHOwpHtkCk7aUkuOVLMX7CAbJXdUFZ+TgTRaRaCwz7t/Ly1tRwp8XPpWeWMqNGchT1/4nwGTWjfT5trC6EtwGwPSci0qa5RwY2I7wauQV/x7J3i74s+lun4/HbnDATIlR3WNLYKsOSPkzIQjwFfBkuWjfQV/89CsBwSaMLXZ1bA0aNHkJOTg6CgIPjbuWP3N5uw8KEbhIWvPsGAydkthxROiZw7EcyQMUYwPrH1re9QlleCq955hJ5h2p8BxuiHfJvupPlQVU0uUu1twmZXXviSAdamxhRxuBkJQTs5L1LbHWsSJLW0tO581hm7z73dPjvmpOw8gtELJpAO1VbUN9QLpkl7RyGNX9WJjJl1Fhay94XAwEBMmzZdiJGz7by6qK+NQVbaLefs2fcSaGJDjBTdNU2U22RB5oSD/4b3+FMqlxsW/jWxYab09hQN6PYyU/5B4NYZ0jV5mRiRlyv0VVfQhBNdhXmvCg0f38D/DOjxDtTO9TZoUpJGTlYf/UpOY55Y+vjNA3XYfd4vE2jS51M+IC846EATLrfh8pq21jp60agT4qzybjmSzTADHHwMAyYBAdd1giIMlHC5DgeX5YSSqw63IQULvxYV/tUpFsvlOAycCMtiao+1TCIj/93Z3mBlmrBV70pyhOASlgnkWPMQOcpIJR69fafKgyYs6HrTN0cF02PDfeozoJquf/rsE7Bu2YidBXfAw/NKvE+2v0ujffDc8mDwD3hzU0bnqT7+nKm/qVeHwsK17NYiHzxnf94902hzp8sAXiLgZDO563A8tmQ47pgbKspzpOBsqxOV7OwnrQ2J/ZBOzjn5BAR50YvkcC2aMkuWLqVMZy3Oxi3WmFnSpZ+GHMPZ7rycLNo4bqMsrOpLa7uZO8qtp2IWWZ+O8XfvfJG+l9yTTpN7Egvn/mOKqnCuuj6xvWVmyvXio/ARG0nkT/15mkATPo91c2qqy7GTNGWkaKYyIv7D7BUb23AFuvm4cePIxjlUZE0lyrIlWSdHjuw6n8edmXojbO1HIzTyZ0Omc9Cdez6DJrxYzEzg0i8GTRpbu4RMK/OKBQBRmV8MeypvmXDZfLgGyH7PnlkXhyOZ5XjuwpGYFykD5/4+U4BvD1GJ6jkL5RunDRO26SyyK4UyaCJ/fdbrmUOlQYd/34247Ucx+ZqlCJ0+Rq/7aeMrn3faTksnMsjD7jnGivUvfUZlRTVUBnSnzo5NxuoLt8ulk+1k4bx962Z6j2mjBE/Xxr+VSg4b6RnEYWZmAwenGSpdcXR0xDJyBuOKqsHKNtn2zvfg+zdyajTcw7yxc/du2Ls6wc6jSpWVRzPAzz0GmR0cHLB8+XKdxp6VerNgJvKGPGzYjd2CJmz1rS3O7H8IrTZbVQ4Li/iAyoTUg1vSwR3E1WzUQRhVWx8GyueV5WtQkPMcifSOIcHd1Qrd0hU0Kcp7jcSOf6TkxGP0vnbLQBnaoOpHb4Mm7GLFblZR8yZh3KXzB9VcGLOzJtDEmLM7eNoedKCJrlPL4Ikl2XZKgrDy5wk9EwJB1H2mrn0GYLg9decMRtCEGRP3/XxCQZuDs41cZmKMkAdNvj+ShU9IoJDda55ZHq3X5dJSH0Zz3TZ8n3gHqjEPJ6jk4kXS8xjv9gc5ishsK+XDGNobksUtX4cBk2dpDN0xV/QaoAEHc+b4m0OZooWbZ4bg7lmKonny7IeK6jrEkJYJx/hA124BnylTppDwbgCqapORkXwVbNi5JkrmXNPX4WBjhjOnCQQ5+Y3KpV3dhsNn3D+wclc6bhzjihBnsl1udBC6DqzRwiwTfaKAbH0ryd6XNUX8gl5Se2p3oAmfwJvcjPRUEp8mqj1FA2mRsOUw2zTKu+Zw5n7KlKmob+asqexSSbFTRSlU1Kj9BLLIsqtVFX8jP/tpOLsuR8Cwt/QZzqA/9nwHTXgBmXHFmiJNSvoN0uK62VuQYwyVpDFzgW6kM8RAqyZWCQeX6XAZCOuWmBFA0thINtm0QY3yVhXhVgeaSNdnjRN2Hzm75yRO/rkTwyaPFG49+oQ60IStpxnQMFbs+uBnlGbkDSj7TN6kV5UXk6Dovk7QRF1pihmV5kg6XdL8LL3gAgJzHYj5aKwZM267XKK19pkPOy8y6cIZqKHnXezZOHiEOasC48TMc3CYTPeuLRYvWUIAihO5hWjvo/TMtLWLpkTYOo2giQRKxsfHC9FjTVFblgprx+cVPjYzG0aaHM/yE1/jeR4eHsSOCaJ3Lh3VUbUPbUAckXJ2IVpbiokR+RmBe13vj7qCJjnp95Ir1z4Ehn5AjCrjMM0GxEQZsRO9DZrseO9H4WQ1h+y1faNDjdjzwdW0CTQZXOtlrN4OWdDEWBOm3O5gBE2YYcIlK8rx7c1Tu7X97emcyoMm/1p9AqfoZf6/l47Ggqguho8ubedk0A9s9T6sPHk3zpTIBP12PDSPaNcsSqZaV2ssyiyX7TBDh4EmY7FzdJkP5WP+PpOP17Ykin+eRyVIz68YSZomXaKnvMmvqSrHZz+vE2VHPk623a53eHg4OTeMAzv1cklMdtodREGehmHhX/akewafwyK9zlQ6sGH9ShQWyMYpgl6oL7viP9iX1YSn18Zjat0RtBckoH7OA8JB6WFyELl6okxgUNdgRkha4kXi8BBiddhRllM5tIEmXAXAZQ3HY44hKyuL5vAQOtqbxByyZgqHk5OTyBgzYCKfMZaoz8MiviHLTJmrSEnhRwQOfiIEaruz39R1jIPpOBNoon21GFSxy8+G2YMPIoOYZHnEJFMOW7LIDvhmFVzDQ9FA3xt1oQk04WNZg6OWgBi28d329neCtaEv2HFq7S6k7FUs8TNmeQ73+8gPG5B9IhFTb1iOYZNGap/MPjrCzcECcfFxiI+XMRhZ90hdaYrEsuBjJk+eDD//QI1aHn3UdYMvIw+eWVhZYs4/FiO9IAtVbY1iDjo1oLiU0TaCgGZfAj4mIjBomF4lSakJS6mtfESP/Bx2jrM1Wg4zO7CuthLbt2kWJG1tbkFt4WmMnvE3sYBIi6ZhOCorVxBbSHOZsaurK5YSW5M1tuTLsAyewAHQQGnRKvpd+hBOLksQGPJuZ490BU3SEi8k9mU2iR2vE+xLU+g/A70FmnC5XNrB08g5lSSA9SveeAjmalwU9e/h0DjDBJoMjXU0dBQm0MTAGRxKoMnrl40xCmtCAk2S8mtwMdXZMxN8x0PzNYqOaloSiWr75rEHkFQRgcnD3PH+NeNRXvI9ivLfUDjN3MJRMCL6zOXFwPuot04/TTbMzxG7ggVtOYvMOiehHl2irU1trVi/n9gaxH5gHRbWhFEXnBlbvHgxahpaxYtedeVm5GU9RiyHC4jl8E5vdVfvdpjWjvZmrFvzKZWxVAmBxGnTV9CLdCQSixtwA+nl+ObsgnttOs5G3y60HFjToSdRlP8m3Vvf0QvhYnohVLUk1waa8DVZQ4X1KDZv/gv5uZvpRduKMnJdrBdNGeOCnP8Q0+VPopU/R/Xe14ru52c/RWyT9fAPegUu7ueX3bAJNNHtDnYkh23r/XsR8+iLtLFUpCGw8Ob0t/+DtumU1bfQLFzdHWgi34u//vMJWQ/XY9nTt+mta7Jz5U8oyyqAOYE44TPHYdQFM4UOi7Eidv0+JO48itEXzkb0Yu2ObcyEMGZ/pHG60oKxzNKu3XtQWFgoyvf4j3II/SMCDcLCwjBu/HjS8jDWTPVdu7xJ2/3xr50X9A71x4qHr8POPbsIiKgUOlDt7bWijJHt2UNDQzF+wkTUE1tDH75GafHnKClYCXf3ReQ69qFG0IQ74kDP6qyMNJw4oarb5e0t00KrLc6ER+Ab1Dd71JS/SELGqq4+8rM4ffp0us9t6HdUdW6ZEdYu0Qv7bup77UpcSpYSP0+0Fzb8LwI+ZAxX3UCTdiScHiuOHzH2pPhtNIX+M9AboAmXyfF3kZ97UgSMjsDM2y7Vv0ND9AwTaDJEF1bPYZlAEz0nTPnwwQiasJ7J/T+fVBgKsyaYaWIM5oQEmny9PwOvbU4klwZPvHWF7MdSn4g5eSkczNPw0uHHkVUdJECXn26bLhgfXDrS2NDFPnBwnElq7J/p0/yQOJbdc8roh+/hn08hnlgWLPD6AjnrzCDrUY63tiVheqgrqnMSYVVfpnbMFhYWWH7hhWT2aEk0f5nWQUXpzyTY9orYwPNGvj+Dae2lJYXCEYg3EfwiXdfYjhpi/1zzxSFYJ26BY2Uq0sfehesmB+GBBT2z62wj4VXOUra3N6rQj3n8uoAmfBwzAOqr07F2zTtCz4Stkjm49IkzxqxRoRzlJd8SEPgW3Dyvh2/AM+LjLvbJd8Q+mdifS9Dn1zaBJrpPuYt5K06+/B4a/16vcJIlMZqmvvQoKtu735zoCpoc+vZv5J5OxuRrSddkmn66Jge//ks42ky78UIET9SvTFP3meg6Mu3AKZz4Y4ewz2QbTU3BmwZmwuTFEdOB/jtkyijhRmSsYMth1jFtbW3GZhKOrq8vJcHoGMXLEWBgTyKonp7BgrFQXd8yJBgLBQkZ2P/5n7BxtCMgazr8aZPm7uOG1uY6bNq4UWEO3NzcxNglEF+f9WhrrUQyCWizfXH0GHKbMtfMaJDYgSeOxyAzM7PzMp6eHhgZPQLFRUVoqIlDu8WrVAZHjnKtzwrgz8ZBxhxUDk4+2NraUWmc6mc2tjZwdHQiBoqaD/UZYD8fW5D7AirLfoe7543wCXhK9EYX0IQ16NISL6bEVhA51Sk6EvXzkAbV5XsDNDm2ejMyj8WrjJt1pvoCPB4ME24CTQbDKhm/jybQxMA5HoygCQ+Zy3O4TIeDs/GvXjrGKKU53L4Emtz5bQz2kIvN4yRWevn4AL1mnsthTpxcCi+7Yjxz4FkU1slKey4kbRTWFeHgEp2GuhMoK/lG/H9o1O8KLjp6XXCQHixZDpdUNglnne2JRWIkEWRHnF/ZQGUgbUL4dfUdU7F7xzZUs4ODUsyaPZuEdn2o/rsrnyfRcAdKaQg7AuVmZ5Eoc2TnJuLLAxn48mAGvLN3doImDAJufYBfmHsW0rgdHKcSCPeVQiO6giZ8UnvTQRKyTcGpMyWkjRQGUfpE4q+aMsaS9TE7MnCZGUdy/BzSRKkgcdhdCpooPRvZ4DrLBJrovl5cxlbb0oKM20lYNfEckEzfk+CvPoErOYhpKxHQFTRJ3Ue6Jmt6pmuy6dUvUVtaKdwZ2KXB2FFwNh37v1gD3xEhmHPXlRovp650yJjACYMmvB6tra2k7VCJXTt3kkZEYVcC4FxpirWNvwCyOygbLwHZxp4zY7d/lDZqWbRRG7VsFkYund55OVsrM5QUF+DQwS6HsBUXUakkOQmR+U2Pgm2cK8p+gZfPDfD0fbrbNpgd6GxvRezAzYLxIsXwqEgS6K1HwtnvMXzkbhIwDUZivEyHg0ETM/NzQrKMghH6woK1XH6pDjCxtbXFMhKzbW23IG2WwQ2aNDbEU9LqWhq/DWlw7SVmkINOoElt9R7kZNwnmJfyLnE9WuDz+KTeAE3YLYddc5RjoAhnD4TlNYEmA2EV+r8PJtDEwDUYrKAJD/sr2mB+QRvNW2eECMtJYwWDJvZ2lhj/4lZh2bvmnplCT0OfYNAk9vQ8uNpU4dE9L6OySeYdz5bFbF0sH4V5/yVmxGqVOlt9rjdYj5VAE8k952MS3f2BxHeV4/tbSb/GncpGKLspH6NHj0ZYeASxHxSdBLpU7nvflagnc82OQM50T9U2NHduIp5aGyuspeVBE26bBY6ZjdSTYIp4asIS2siUiLIkLk+SQh/QJCfjfvh4zkVmlgeqayy0ZoxbWoqQenbRObtMFoqsQnLcLPFCOnzMkZ4MZVCfYwJN9Fs+LmMry85H1W13oq2lFe7ffA4HKi8ws9ZeAqMraNKla+JCuiZ36NzBlkYSAf33hyJDf+WbD+l8niEHVhWUku3wt3D28cAFT96isam+dvaRQJM60olhh7D01GScOXNG9I9LU8zMbEVpygxyBfPw8qXfz/63SzZkHaRz+Z5kIdh2qllRV95F5no4S1ovycnJYuxe3n70m9TzKzc2JNDG/mpRAiI29haqAsjyrfPvqDrGy5jhI5BX+A1t9DeiIC8aGalTxWkWdC9bWFnRd62FXKTbYWVlDR8/H5jR32wprRySvTy91gyJkARdvckFx4NccHRhmnDpK5fAyrMph8Rk9PEgegM0YY0pBozloyd6VX089D69nAk06dPpHrAXM4EmBi7NYAZNfiW2yXvENrl6YiCJZUYZOBOaT2fQ5Bi5tdz74wmM9nfGZzfIhC31jZMnJsPWohH373wTDa2yTfDtM0Nx+yxFhW+us01LuECUVQSFfgRHZ1nN7fkQyqAJOyXd/O1RlaGz48/714xDfl42jh6Vfe7n54fZxDKpIbqwcp11fvaTpKexAf7Br8HF7eIBMZXseCAvnio5GykzTQy1hGZLRAaN2IEhNOq3zrHrA5qknF0AK9KRGD9xPbkzEB2/w0Jr1jQ5bjaBJZXELNkJBlHYBlm5DwNiIfqgEybQRP9JdrDogHXsKZg1N6N57ATUUqZel9AVNOG2JF2T5aRr4ujlpkvzKE3Pxa4Pf4F7kC8WPXyDTucYepAE1FhaW+Hy1x/Q2Jw60IQtnJc82rv29VIH5EETLg1xIk2No0ePIDs7u7OPo0aNQkRkFFnsDg3AhAfGpQBcEuAdEYR5/7pGZT0k0e/09HT4BwT2ytgLs+9HRcVuePs9Ag/v27TeUuoYLxZEComMiqFy0L+QmTaZdKpkgvTyYW5mDi8vL9RV1JDTjj2JJcsSPFKMJ02aoOCQQS/kKz8mZvnmZj5Ajk7BCB+xUSfQhMt9ueyXS3q4tMcUPZuB3gBN+MqbXvsKtSUVohP8zBtPdsNe9P00hWwGTKCJ6U7gGTCBJgbeB4MZNNkYVwDeaC4f5YvnLjSeowCDJm9tT8Ivx3IEo4WZLT2JhNNcN9+BO7e9R9as5oJl8sblY9XqsJQVf4HigvdIP2IMuZ+s7snlBuU5yqAJM3SWvr9XZSxSWRNn9OLjYpGbmyvowi1t5mrpwtnpd4NLRoLCPoGj05wBOTfsanTlZwcVmCbXTgrCgwt7pmkiP8j0pEvJ0SENfoHPw9XjavGRrqBJS3OBYKuwnsmY8QdgRvewfOmTpsmUhI+Dwz4n8KSChHifIKbLUmK8/G9Azr8xO2UCTXo2u87mbaS70IIqEkzWNfQBTXqia5K6X2ZXzDoorIfSV7Hu2Y/QXN+IS166l3Q01NvDxm85iLNbDil0aeQFM4RQrTFCHjTh9q3IrcKerNW3bNkiSid9fHwwd+5coXvBltFDJfZ99gcKEzOFvgzrzKgLa2JLOZDjW3V9a6+MvaOZxIAT7oU1aWiE66ihIc94kfro4/kLrG3jkZ6yGEUFgcQwsSRXtA4qnTxn7+3mTlrlbagpqyY9CGt4hQV2Di84OJjcj6aQIx2J2Q6d5RTjS0+6nH4jU+j36S2EBF9KwFIbmrrxxM5Ov4veKQ5SYutjSmz1vIR2qHwnejqO3gJNpOfjjJsvhk8U2WgbUZi7p2Ptz/NMoEl/zv7AubYJNDFwLQYzaMKlDFzSMCfCU4APxgoGTVZ8tB9FZHP79T+nCE0NfYNZI0mxk4VbSpHtJiq3sNNq+cuWsexE4Bv4HxIwVc1m6duHwXC8MmjCfWamCTNO5OPD6yYI9xzO6PGLe3l5OWzsHKGJLpyRci3Vc8drtN8dKHPD4/zy849QlHIay/7vDTBo0htRVfE3udc8LdyYIqK3iCZ1BU1qqnZQFu5BonSTOHGY7uLEUh2+j/+TxPypE9aOHt53UKa0b0oaemPeeqsNE2jSs5nkMjbmJ+iz4dYHNEkhXZNTrGtCgqlTdRRMPf7rNqQfPoPxly9A5Jy+EzTe9s73YJeIxQ/fCLcgH40Tuu9T2tAnZXZ+fsETN8PZ1zi6K8qgCV+UhaMb66uxZ/duoWMyFHQv5Ce7vqIaG17+XPyTNqFJBk6aW3pH88PN0RonT16EhvpksbF3dl2u9UslMV527dqF4uJicbyP9yoCXvJpnV7EwUOFQr+EEZBGcpJyImFXGysbVBTIRNZtHGzhEeIv/tvZ2RkXXHCBcP9pUSd0orU3A/sALonm0mh70v+aMOEHraBJKrGBW5rziJmynhgqIQN7cAO4d70BmkiaT26B3lj8iHFYdQN4CnXqmgk00WmahvxBJtDEwCUezKCJ5KKjThfEwGlROD2hsBq3fx+DQBKc/bWH9q+t5GSSQgr4lpbuiKSaZF1C2uhaWnmLje75YGmnDjRhtgmXYZ0k1yQWRmUggZkmUrD+gblZBxoo+6UppBeciOjNBBx0Zc50WYe+PubbLz9BzNFD+ODT73r10pmpN5HQ8EkCLR4m8OJ2nUETBjtYUFZfwEN6CXX1uIoymcQWqFgHv6AX4equWciyVwc8gBozgSZ9txj6gCYMQjAYwSUIuuqa7CC74XKyG55PZRl9Sf8+8NVa5MelYeYtlyBgrGb22cFvyNnnTAq8I4NRnJKNqHmTMI6o6sYIdaAJX4f1TTraSB8DFhqBbGP0py/aTNp5DGfW70XQhOGYfhMJvPZRMGiSk/sdcrJeERv7YUrC3pq6wcCNeUeL0P9qplK3AP83KHlTBxeXL1Ba2ozY2DhxqgXBk872jijLKyXWiUyx1jXAC/ausiQR28vb2HJiYohRTM5NHOt/8TtaW1s1xoxbDQvr8RqZJh00n4lnJtCZ5oged5r+HjqlZ310O3depjdAk5hftiDjSBxGL5+F6CVdosx9PZaBfD0TaDKQV6fv+mYCTQyc68EMmiQX1+CWb48J1xy2GzZWsNgsi85eMykQDy3smXZKc3Mu6ZQsExt23rjrGpmpt9BGN4YAE2tyHPGk2tmb4O41dJF0daCJLnN1Llmm8dCkuGkkcFeH4aMPk4ieoy5N9tsxB/btIq2WHFx93T97tQ+S2r8FiQhGRG+Dg70LbEkwsKK2udvr5GT8C7XVexEQ8j84u+hejlBfewxZabfCjuxG+aWSARt20mFHnfMtTKBJ3624PqAJ96pT1+TfpGviqV3X5M8nVwpx2ktfuQ/W9rqXDRk6A+z0w44/XKsfSUCIptj8+teoKS4XdshHftgIK1trXPLyv+i5Z2FoF1TO1wSa8IFOJHTNFrtDLbb/73tU5BZj5q2XImBMRJ8Nj0GThuZGnDnBWlHVCIn4np6tvHHXHpRrQHVlOfbu3YrAgFeIWGKB4pJXMHniRHL1O4H8/Hx4e3uTjkktyglI5HIdJy9XOHm7i8bZXt7H1x/N5JYzlKO44F2UFX9Jwr20tsNe1wiaNDWmUjnPZYJhwkwTU/R8BnoDNFn3DJUuNjRiKbHqXIzEquv5CAfGmSbQZGCsQ3/3wgSaGLgCgxk0ya9qwFWfHRJlLuwwYqy45btjSC6qwXtXj8fUENlLhL7R1JhMP7JXUKYmCmHD/9T59Izkq7rsG8+dFRjyPjnrLNS5jcF0YE9Bk+7G2NFnxqXVAAAgAElEQVTRTFmhiYKpM2LsycE0Hb3eVwkAYdbIsJBHdQJNUuLnk6VoqQD7HOyDde4Tv9jnZNxLVo72xAQiZwZy0OF719LSQ+c2WCh3KOQ1TaCJzktu8IH6gCYtDU3Ys+p3VOQUig1i+MxxiJyrueSmuqgMW94g9xE9mCkGD+hcA0m7YnDm7z0CMGHgRF2wm8sfT7wnPrrq7Yexl8ZWnJqDiVctFmPr7egONKHKKtLu6u0r9m975dmF2PHej0JThrVl+jIYNGkkz+KszLdoY/8VCZpfQsLmr+rcBQdi/yQlbEdNzQP0PPdAQeGDcHd3w+hRI3HyxAnU1TeI9arILUJDVR241MHOxVFmLz+W7OW7x9Z17sdAPrCFkluplNziGDl2B1lkqy+Dk4RjWcuENU1M0fMZMBQ0yY9Pw4Ev19L96kOlOSZBXk0rYQJNen6PDqUzTaCJgas5mEGT6sYWLPtgHyn2W2LL/xlHiCu7oh7XfXHY4Gs01J1CZuqNIuseEvGDTqvG9bJcVqIcDJjw5nMohjFAk9aWYqScXUhMHS9yclG0pRuKc9jdmOrrTiArVcZgGT1uB5wdg7plmrQ059M9uJREYN0xdtweqn1vI4HHGp2nraZ6F2UtyW6HwoxcGZz0YKrY2dvBxsYO9d2UXenckX4+0ASa9N0C6AOaqLOqHH8ZaZVoAE5yTibi8PfkwjU6ArNuu7TvBkVXyjmVhMPfrRelOVyioy6YAcFMCGdfsiZ+4hZkHU/A0R83kgaKL2mh9L7TT3egSZ9OTh9d7PRfe5C8O4a0bCaQpk3fJi4k0KSqJpNYqzI9k4iR28geuKtUtbtpMCc6ZlvjQSQm3onGpjCUlNwiDl8wfx5sbW2xabNM64pZSjUllQQiuiFkRASWLFlCYrYtaG0bYgiYhsnKz36KSknXk+XyXXD3Vu9UVVb8NQn1vyNYv6zZZYqez4ChoMmxn7cg86ipNEfbCphAE20zdH58bgJNDFznwQyatJN42ey3dwkdswOPGecF5peYHKzclYKLx/nj6aUjejzb7NzCDi76iGm2tdUgOW6GyjVNoIl+y9DUQCyfZGb5RBLLZ41+Jw/Bo6WXQk/vaxEV+XK3oElN1XYSgX2I7tvZVFqzitwgzHHieAwyMzN1mpmG+tNUHy+zATQ3d6TSHN3sul1dXbFs2bIh87JuAk10ul165SB9QBN1Fr3susACn+oiduN+JG4/gpFLp2PUslm90l9dGykjHZWdpKfCIrAsBqsuso6fJZBkEwLHR2HGP2XW6utf/JSYA7WYd+/VQuekN+N8A02kuVz4wPWdAqm9OZ/dtSWBJg1NbcKJrLpyIzx97oaX7//p3IWayj+Qm/U8lZ1MJWHYixASEoLxE5hZZYbcnCzExMSgvrKGBIdL4OThguvvvIV0aSxJzPf80eyorztOiYWbKVHgQkmWvfR+qVqSVJD7IirLfoNvwDNw87xe5/k3Hag6A4aCJmuf+RDMGGSQmMFiU6ifARNoYrozeAZMoImB98FgBk146EtW7iXaaCu2PTCXNnRUuNvL8eCvp3AsqxzvXD0OM0J6/kCuqdpGm8+HKdO+mFgiMvq0LsGaEKwNIR+88RwW/o0upw+6Y4zBNKmrPYLstNuFlgZrapzvIdVj8zyMG78OzR3hGqekpPB9EoH9DJ7ed8LL70FYWpgJrQK2FK2srNQ6lXwtpjxzMNPH1m6U1nP4AHbdMLe0JZcGnQ4f8AeZQJO+WyJ9QBPphVu+d92BJvu/WAN2amBby8BxPdO36ulMNFTXYv0Ln3ZbGhK7gWxpdxwVFsNsNcwRv5lsiLceQvDEaKFz0ptxPoEmkkOHi58nlj5+c29Oo05tyYMmkl4UMwCjdBSW54uUFH5Az/NP4eF5OwHf44QbDuvOMIvEkayiT58+hYTYeJRm5GP+wvkYMWOKTvbyOg1gEB2Un3kbqqqOknPhs+RceJ1Kz7PSbqP3sqPkJvcpJRT6FjwdRNOoU1cNAU06S3O6AZJ16sR5cJAJNDkPFlmHIZpAEx0mqbtDBjtocvmqgyiqacSau2fCx7l3Rfmk8h+ev+PPLkZTU8+tA9k5JD/7Gb3rkJltUpT/OqrK15Ho2DC0thSSfWsT2Q2uIKGyNwxc/YF3ujFAk+rKLZSZe5QAqyUEWL078AbdDz0qzHsVFaU/wdPzQngFvKmxBznp96K2Zp+YN54/Dl6jtpZ6bNywQWvPGTBh4ITDytpfaPpoi2nTphE1OoBe1rUdOXg+N4EmfbdW+oAmx1ZvRuaxeIXOcWkOl+ioiw0vfSYy8cuevo2EMrWLxvb2qFmvhHVLLn/9AVhaW8HVwZIy4V0sAHb1aayph1uwD+ycZYLXLFpblJQl/ttn+DBYWOmfXGgji9nqBlUE83wATTiLzfcIi/DWllX2m0OHPGjCa5lJZZYNVG7pF/g8XD2u1ulWy8/+N5We/IVhoa+Q9fDlAhCRgGkGxJ3trbB54yZ0VDQgOCAYfpPG6tTuUDuorWkrkhMfgY3dcIRF/aEyvNSzi9FC72KDwY1voK0Nux3KBz9D6hrbCLjT//2aS+UK6dkWMnUUgifozwRv6iU78IE2x+r6YwJNBsMqGb+PJtDEwDke7KDJTV8fRVppLb6/ZSrCvXrXFWXz2UK8tOEspod64Lvbp6K0SqbN0JOQ7FfdPK8jSuezPWlCnMMOJNnkZtJOYIqz64UEnGje8Pb4Iv14ojFAk4qyX1CY+7J4seQXTFOAwLdi0ipZQi4Kbd062qTEzyPRwDJheW1lHdA5dXbW5iguysehgwc1TmdHeyNYQ4WFeKWwtR9NQrCeGs+JjIzEyFGj0dAytOjgJtCk7751+oAm3Ct54IQFPpcTIMJsE+Voqq0XTjuWNta4/DXdSyJ6c+SbXvsKtSUVuODJW+Hs4y7YAbGxZ5CWliYuwxbDrcS89I4Ion5adV6atU64RId1KvQFe0aPHo2QsHDaYKt+J4c6aMKAye6Pf6VyleLOuXQP9sOih/7Rm8uqU1vKoAmDHwyC2NqNRGjUrzq1ITFXh4V/AS/P2bRZVXQ34g0t2xOXJOdgz/dbsIQYNX3pEKXTIPrgIHdna8Qc5URZNgm9fgBH5y4Qtb29AUmxU0zC8j1cB1dHK5SXlZHwcL1oge+5FrKx5nL77qJDzef5san0LtwO3xEhsCSXMF2DgeYAf3/UNmq/rq5tDvTjTKDJQF+hvumfCTQxcJ4HO2hy7+rjOJ1bhU+un4hxga4Gzobi6c+vj8e2hCI8ujgKd88PNwg0YRs7trPz8L4N3n6PGNRPBk5yMu4TtoNDDTgxBmjCdGSmJUslJgZN/hA6uaLkIxTmfyLoxUwzVg5JiJjdbiJHkQisUtjTO8rZ+DgkJyernZXGhjgCZ0oVPzOzhCPpo6gLLy8vLFiwgOjibWgbYrYbJtCk7744+oIm3LP2tjaseeoD8fdF/7kLdq5OKh0uSs4SbjSeoQFY8H+qlP2+GOGeVb+hODkbc+66UrZROFcut337dpSWlKIgIUNofPmNDFPoTlNdA8oyC4hlYgGfqGE6d9WfNhYzZ81CbUO72k3NUAdN1AkF8+QtefQmuAZ46zyPvXGgMmjCbaYmLKLyxyISmB8HO/uxWkVJ2RmG2X/hIzYI5qq6sCdh/YPfb0TKoVgsIvFgdxIRPt+CQZOMzM+Qn/M2ASaKDjmNDUnISL6SWJPhpJG27nybGoPHy88sR1sLbN26VZT4WhNo0qoDaKJ84caaOpRnF8GaAG7PsK6Eji4dnDlzJrx8/MnCW392iy7tD8RjTKDJQFyVvu+TCTQxcM4HO2jy+J9ncCCtFG9dMRazwjVnsHsyTZJeypp7ZmJUoItBoIlUS+zlez+Jt93Tk+4onMNuPGwfO9SAE2OAJkX5b6C85Ht6oXyC1O5lzjGm4AxPM+JP00t3SwWV36yk8ptFCtMi6fA4Os1BUNgnKlNmQZ6iTnYW2L17N4kKdmVipQPr62JoE1qrch6LypoReCIfVlZWQsekpY0cHjoU6btDYa1MoEnfrWJPQBPu3cGv1yGPMpeTrl6CsBmqZQnJewigX7cb4bPGY+KVit+VvhpdzC9bkHEkTqGPgu7e3ox1v/+JQmKaWFHG1Ss8UKVLJWm5aGlshi2xaWxdHGCvBhiSP8ne3h7Lli9HU6sZZYLVby6GOmhyau0uMHCiHFOuX4aQKbrpM/XWvaEMmnDpLtvBd3R0MWC16XYlnhkn2IUjxp6gZ7DmzPyhb/9G7ulkTLtpRY/KHnprzP3VDoMm1XWViDs5WzAlQ6N+I0ZPtOhOTdVW0qd7hH4vh66LobHn3dbaAi1Nddi0caPeoEl7ezsKC/LRUd8KMwI9BOPOU/eE6ahRoxARGTXk2Kza1swEmmibofPjcxNoYuA6D3bQ5EUqn9lCZTTPrxiJC0b2XkbkcEYZHvn9NKJ8nPDTbdPgTHWXhpTnGGPjrgicLKdSnbcMvBv6/3RjgCb52U9THfff8A9+VWjKmEI2A3Y2FgQmfYvMjNcpSzkGIZGrFaampGAlSos/79ahgbNETOfevGkTmpu7ynC4IXkR2M6GNTBN5s6bB1c3zyErOmgCTfruW9dT0CTjcCxift0K/1HhmHX7ZSodlsp4Jl21GGEzx/XdgOSudHbLIcRvOYjoJdNIW6OLsWVrZYac5BRs+G0t7F0c4RqoyILooI0Gi3syaCKFjYNttw4wi8lq1sbOUQCZmmKogyYlqTmiPEc+uHRryaP/hIO7c5/eA8qgCScC+L1COVjsnMET5WhpKULq2UWiPDJy1O5u+x67ngSFdx7tN/2WPp1YNRdj0IR1NrIzXkF56Y8kBnsNicL+RxxZVvwFsYbfg4fXLfD2f6y/uzpor88lvoX5OTh54pheTJPW1lb8svoHRASFIcgrUKUUsbsJ8fHxwdy5c6ksp33IsVm13Qgm0ETbDJ0fn5tAEwPXebCDJm9vT8KfJ/NECc2VE1Szaz2dnv/tSMbvJ3Jxy4wQ3D8/wmDQpCDneVSW/0GaGi+QtsZVPe2WynlDDTgxBmgiiZkGhX4sqLamkM0Agya2RNePiVmC5qYs+AWR7ov75Z3TwxbZbJXNbk/s+qQpeMNWXVlOjJNdCod0dLSSpkkMWNtEBAEmtnYjVDRNxowhwCY0HE1tQ49hIk2ICTTpu29dT0GTxuo6/P3CKiGsykKryoKp2975Xmhb9IfdrDR7mUfjceznzRg2eSSm/mO5wqTW5eQi7tRp5JUXqWReJRtZ5VXwDPGDtYOdyuJMnDgRgcEhWsWYhzpokrjjCGI37O+cHwZMWCS4r1km3AFl0ERKxCgvXmDI+4IFoRz8rpCZeqNagFz5WAlA5HEyq+Z8Cwk0qa5OQnqSDEBllyJ2KyrIeY7e5dYIEIXBFFP0fAa4xDclKR4JCclaNU2kq7RQcubXX35CeEAoIkIidC7NsbGxEWzW1nYLNGtgzvV8JAP/TBNoMvDXqC96aAJNDJzlwQ6arNqXhu8OZ+HuOWG4eXqIgbPRdfrVnx9CXmUDPrthEiYGuxkMmuRlPU4by01CuJV1SHozGupOnyvVqaK2BzfjxBigSWbK9WiojyUmxU+i7tsUshmQQJOM7F/EiyDXuHOtuxTJ8XPR1lpOIrBbhfNNd+FgY46U5ETExcWpHNbaWiqAEwtLV5ibK4o1BwQEYNr06agnhrk2IbjBvG4m0KTvVq+noAn3cNeHv6A0PVfFUphFCP947F2i6nd0Otf03Yi6rsRCr3s++U2U38y/71qFLsT8tAlRU6KQlJ+Bitpqhc/qyqtQVVCm0mUXXw84eLgo/HtISAgmTJyE+uYOGm/3oxwMoAlntHsS1UVlwjGHYxiBByyIykCafFlTB8zQ2Nw3vujKoIlkOyw/NnMLJ3J7+V1BtFv6nN8/+D3E2WUpAkL+1+2UFBPDZg8xbPpTv6cna6bPObZdOskqp9lTQqGZdDbY0aW6YgMJwqbBwXGGYPBUlv1OJa35lGC4guZZ90Qdkb3QR7eKPtPQr8dyia+HsxW2bduJIjUlvsqd4+dYZWEpdh/fJ0CT0MAQnTWa5pNempOzG5Ub9uuQ++3iJtCk36Z+QF3YBJoYuByDHTT54WgWPt6ThhumBuO+eREGzobs9MTCGtz2/TH4ONlgzT2zYG1pbjBowsKttdV7SIn9Q2I7zO+Vfso30lBPwEk6a5wwcLKMwJm3/5+9swBv48ra8GdbJpmZYoaAHQanYWZoimm7/dstp912i1va3XK77W6ZMeWU0rRpGmZmcMjMzMx2/nNGkW1Zsi3yWJbnPI93U+neufeeO5Jm3jnnO0YfQ4wD9gY0Sbm4kFJHsggIUP6sbZAYy+gXYyihSVl1I9KTVhJYOtem+8L+Yr/JrCmUe9juHtdjSU/nHe0scfjwIWRnZ/fYnhs4ODhgIWkm1FFp4a40E7Q6UD9oJEET8TbJEGjCKQmcmsAlLMevbH/CzhEmHGni5O2OBU/8VbzFdBqpurgcm17+XEgNWfTPO1Xe/fOFT+Hs7oS5912FbTt3oK6uru39RhKCLSYh2M7GwrAuvp6wovLFjbV1cHZyxorrrwHJBdANYw/EhA5m6tDEmn675TYWiI+PV0sf7G4TOZ2JNWC4EpGTl6uw753NxcUFgUFBJFwtjpikJiHYovwPUFzwgWJqFpbwH/Q8XNzVU8v47ZLCLyit5A3S9bqFvucf6/Yc5sgkLq9t5+SApc8ZrsHWZx+YLgZWnhdxcXEERNSrIvI1XzOJkbfSHz84qKuNI/faETiZiJrqg/QQoJEE1K+gqDT1KluahuSHA+4enhRNaWVqrujz+Xi52qKGvp82bNhAaTpdEw3+TBaQCHYTlVDfe3q/AE2CfALh4kfg110V/HZe1KhRoxAUHIp60mcaqCZBk4G686rrlqCJgedBf4cmv53JwWtbE7B8pD8en6d7nXZN7vviYBo+O5CGK0cG4B/zBhsFmrSX+vuCnlZMMHDXNHc3B3DSG9Ak4dwVQonmqJiDsLISNw+9VzbaSAftCE2qKraTuN2DQvgxR5ZUV+6lp5IPq1UO6G5ovhC1k13C5s2b6SKopsdZsmaCndyJnuj12LTfN5CgiXhbaAg0qcgrxtb/fgUuPbzs+VVtk844fgFHKZIjcNRgTPy/JeItptNIXN1n7WNvCSlE17zeXoWNS+P+9vR7QiTETW89TGKVpdi5Y4dK78r8ElSXVLS9xsCkpUkRJcEVdziqZP68eciJS0fE7IlaVYcxdWjCa7Mn0cma6nJs37ZN630rpxLNtVSi2dbRHh7Bfmr9GPiySG69iMBXEzThibFQaXzcGGGO3Qm85ue8hLLiNfAJeALunn/p0Re/Pv42nR/NuPLl+wVxYXMzFiOt7eK86AhNeN21NSfpGqKSKuZEkVYXVYuzsKIqcFO1comfnx+mTJmCKtLRYAgjmaoHPF1sUU/hH0VFBdi3d2+X7lGC3xaCJx2hib2zHG7dVHgKDAzE+PEThMi5gex+CZpInzzht57CZc3yWyg7PgM15dUYPFE7hfau2jeS8Fvi4XPIvpgBB1LL9w71Uzlmf4cm2+ML8O8/zmP2EG+8sDTGKJ+KO749jgt5lXiNKvJMoYo8xog0SUu6HvW15ylF5AdKETHOPDUtVgFOuBxxeb+MODE2NLlEIqXxcaPppsCKLijPGOX8MJeDdIQmvKbM1LtIw+SgUN2J9UhY8I7/zRWftDW+EK2rqcA2KifYnbFmgv+gIApX1i90Xtv5mEo7CZqItxOGQBOe5ZbXvgQDhun3XieIDLKdWb8HibuPI2bRZAydM1G8xWgYacNzH6OObugX/+tOyN0UELgkPRc731lDNw8+mPPQXyC3tUBqchL4SXpH45vgpvoGgivWwo1wDUGUClor24Tx42FF8kNx247Dn0oWT76jXd+oqwX3B2jCc5dT+mBmeipOnlSvhMPv81NsBkpcxhR0RcmCuZaUOuBJaVAyisLpbNqI5Br7JOkKmvA4qQlXCTfz3aWgZqX9jWD4bo2V0jTNleEhQ8S+KK/ccT4cG+As750IDU4PSUtNUTsvGEpScpowjRZK0WlozEcDlRrm9NLW1mpYWjlC7jCuxy22t7cX4FoT/c4NRB2NHh1EDRiaVNY0gRguEhMu4vz58xq78Wc072I6CbiqQhNHSi90pjRDTebk5IQFCxYIwMTco1l78rUETXry0MB43+ygSRldwKSdTkLaqSQEDAnGxBXdC1f21H7H6o1w83NHzIwxlAtYgsPr9mL4zDEIHRUpnCH9HZooq9zEhrrjzWtGGXzW51fW46qPD8KWnprveHA6OO3AGNAkJX4piW2mIWzwenpaEWbwPLs7AIeSCuWImxmczKdUndd7dTxjHtzY0KS5qQhJF2aS+KgHVQzYY8yp9vtjdYYmtdVHkZFym1AO2NY+iiDfBbrA1iwq2N3i+QYlKyMNJ06c0NhMF82Efu/kywuQoIl4O2koNIn7Yy8Sdh3D4BnjMGLZdGHiez/6hULDM4SqOlxdpy+N4QhDkpl/W9kmgphKlX9OUOUfpUAsR4442lnh2NEjyMzM7Ha6uedTERkZibDAEOz/fntbW356y1EW/OdOgrGOHuplPfsLNFH4wxIn6TspLS1NzR9VRWWoKixTeb2rmzEGvgGBwUIpZjGtO2iSm/kUVYhb3604aWri1cKNf2jUTyTIPazHqR/8gkpwn0tW0/fpsaORG/DeOdG5fPLkCWRlZRn16JaWlhg7ehRpcZ1VOS+U0MTNzR3W1jZCpRUWReeHMGyWlvYUMRzb41xmzpol6GjUN5nls1219Ssj1np0TIcGSmjC6YD8GT148AByc3PVDtFYWy9UAOsITUL8g0nTJIhSpzQ/fJlLkXO2do6Slgx5U4ImupyV5tvW7KAJR5cwCOHIELaeoElP7dc88zkWrLoSbpdJ7LndJ1FdVt123P4OTc7lVuCu704g2s8Zn/6lZ/Lf00fh19M5+N+2BMyM8sZLyxURIcaAJklU6q+ZSv5FDNtOP8LGK43c1Xr6KzgxNjRpqE+ip3Ar6IcznIDV7z1t/4B6vzM04cUrRXOVjmCxO7/A53XyC99KONprvkFxdXXF/PnzSQegWSvNBJ0GNuHGEjQRb3MMhSZFKVRm9v2f4OzjjvmPK/RL/njmQ4pCqFWJ7hBvRaojHf5mA7JOJSD2pkUIGjtUePP0b7uQtPckRiyZhsGzFOVmra1Iz4MiTrZs2YLKSlVh2I5HvESC51MnTcHe77ehqkP6Tuf12VMpY49gfwGgKGCKP1ydbITPcU29ao4dpws10p/YZXm72xOZlQWc7GWCP8rLy1WassAu65d0NGt7G3iFqQp9MvAdNXqMoMMkdoxzd9BEWX7Y1eNaqtD3jEY3JJ6bRFETlVQFZh+lYbr1ePoqo6uGL56KIbN7J6W4x0lcbqDtuazt8Tq2c3FxFsDJVkrfKitTgDMKQIGjoxNFBcsppcNCiC6preYopXb9GhY2t5d3/aBu9OjRGMRwbYBEU7Lf7O0sSHOkZz0kjkhVmrPcGrX0/cEaMvwZtbJoxeZNm1BbW9vWpqW5BVUFpXT+tpD+kgzrt/yB4dEjMJIAJkeEMdTqbOMpcs7XL2BA+b+781+CJvp8O5hfH7ODJsot6gw3Om/d4dQSFFY2YNkoRVWLrtq/9sZ6WNEPQXNQIFq8vWBz/gJk4SF48HoFJe/v0CS9pAY3fnEEwe5yrLnd8LDpR9eewUHy7dMLhmLxcEUuszGgSSLparSIrKuhACeUqtNcplPECf9wObS0i6M1EezhY1la2FwOSx3b/mPW2IRqGwejfbMYG5ooKwxwKG1wxJdGm6c5HKgzNOHzM/nCHLpAVNUj0SfaRHmDspXSdJQXouwzLvlnYWVLF0jiPqXt6/2SoIl4O2AoNOGZKiHJvMdugQ2Vmd1Aopi2VJp32Qv3ireQLkZSRsLELJpCqUKK33FlJMwUSqnxo9QapfHNSUNdFbaQzpAms6Y0ndnTZ2LfV5uQG6+ISOGyutPuulrQsyjJyBP+SjNyBWjU0SzoZsU7NIAqrPjDOcAHHgRT7F2ckH7svABxGJzwsbhkbUCMcUTaDXW+rbUlWpvr8SeJTipNGfbf+didoUlfA9/uoInyd85eTuXbI9eouYm/2/kahCMkBg8/ppUbUw6ewclftiM0djjGXT9Pqz692ainc9mQsQMC/OHn441Nlz8ncns7uLq5ERBkOHaJooTThb/OJnccp1YRjtsEkUDwuHHjUaNFBSpD5m1Kfa1kLajlQgQ2LiS6bNUlVORoFD6XWTC+vr4eNvSZbKZKRcrqeS7OTgReGrFje3vUWwNFmVwiYGIpsxJEq9eu/QUjRozEkCFD6IGYnSCC3FEvJjw8XHi/ptGUPNS3c5GgSd/631RGH3DQJLW4BjsuFtBfISaGuePBOVHCXmiCJjUkrnQ6rRhpf+yBla016kvK0ezlhcNOfvj8FkVURjU98e3PVlTVgJlv7Ianoy12PzLDoKXUUT248a8ovqj3PDoTHg4K8TPOe+Uv9roG/UsLHj08jH5EWjBh4nkh/UEsq66OQ0L8XRTlUkbq7QsQGfV2j0Pzeq3r6Mb5nXfQUlWA6qpTgsaF0mT0lMrRaTSpBs7HJVIlb7AzHjQRxiZf1xvg644LLC3ZQqVwH4Cb+1xEDX6vx7UPpAYMNmT0NFpZMrOy8igunr9ZzQVeXisQFvEfnV3De1lP59HGjRuFC8+JVFrYzz+AMsUHho5JR4exSC4/vWxoEqfShs6bZUYd+LuardEAX+/7eiMSD8Zh3JXT4T7IG1vf+xn+g4Ox8KEb+txTFyha9NAPWzFk2mhMvnG+MJ81T7yHWopSve7Fe+DkqZpGQx9xZGVm4OjRo2pznz59OjyoqkcrfSaTDp0lQGQHPwp3t5GrVwVh7ZNCCpeMdVMAACAASURBVI8X/lJzUEpiqZ2NddPqCK6wYG1Hu/6lVZTe032FC7Ecy/7Iz8vFgQMH2obMTUhHc6dapC4UacR/SltEwNfWzr7Pvr8YGnAJXE1VjVpaqnH86Fjh2oKvMTpbbW0Czp5ZBnt7upkctVErV+eQfsTmt38QzodFD9+oVZ/ebtTduaxp7AaqylJfXUcPeyzVPhed20dGhJPuRROOHaPKid7e9DZFmFwOYKirSyLNGPXUIAfH4XS94qVyKGdnZ0FHo5m+6geK8KsQ7YEG3PvHKlw17GrMCZ1L3uu6pjNfGzQ21OHPP/+kdgpg0jFyaxjBkCIqQXzq1Cn6LmmlB3/NBKcsCVzbCUozKcnJ8PT0FKpXsSgzxQa17YG7uzvmUVpOI4lcD2Th187ntyNF2UkmeWDAQZNC0txgcMKRJmzdQRN+f/OH6xBDGiaDSB+F034+efcPuFOJrjv/tlToX1mryNHsr1ZPX4wTXtkBO1KROvrkbIOWsfVCAR795QzGBbvhi1sUIc5s/AXPFyydQ5C1Hay1tQEnjo6kL31bjJ0gvhhpDYGTxIR7CJyUEjyYDSenWLrwqoSz8wTKt9UcdmtNgEeWGI+6h66hpwbqpSqdFzwMi4efQL2VjVHDlPkm3kZmgVojQZOigh+RnvYMvLyvRUjYC9pu2YBoxzfyMjq3GRaytTRX4eTx9vNe6QQf3/9DUMhTevmEhkB+fi6Ki4owLDqGbs56R9BPr8mJ2Imj1fjCUgmoRBx6wA3F0QRshgCqjFOJ2PnJOvhEDELkxBjs/3YzomePw4RrDPuNMcZmZJ1NxvYP1mJQdBjm/u1a4aZwzWPvCMKuf3nzIY1DyCwvIe7MaSTTzYbSYoYPR3hYBC5Z6ncxzek3FVn5yE/JQR79FRFI4dc0Wey1szFslnr6bMd4s4LkLJTmFME9wIv8rhDgZesNNQhOAbhw/hwSEhJQlleCqqLytgpCfINt7+JAWnCews02GwNfDvVnuNRXxlWAOIWhK0HLs6epmk99GqKHryORUkXaltLKy3Yjia4BXFynImrIp1otgVO1fvnnR3Bwc8J1L/d9hJVy0prOZU0LqiomkWNK6eCbbjbeS9/IQBL27fp8HzVqJKqqqkgcNk0475R1JppJH44fHnU0SypBzNdPLDLf0eYTMLG3J8FYwgEDwThypKm+Bk/+/CgOpR8S/P3eyg8RO2wqCeB2/ZCArw0KCvJw+ODBy9BE8Unn/lwefca8WTh/8TzS09OF1znST/l55P+2s7WDu7ubChhhsMLRrFYyeuDZaV8Gwl50t0ZOg5JM8sCAgybKLf/+aCal59R3C00Ykmz+8Dfc8NztQjcGLd+vP4GZLaVY8chK4bX+np7Da5hOkSb85bzn4RlCHre+9uKmi9h4Lg/3TY/ATROC2g5jaHoOp8cknp9KX+SulE+8X9/pGdSvrvYspeqsEsRhO5p/4Itwcb9S47GdqXxs8w+voPmrN1Tf9/WFfPVR1MDR6Irkxk7PKS78FEV5b8PD+w54+z1okA/NrbMmTZPs9AeoXOnOtqVaWjkJJYit6P/1NRZ3s6FSqBWkkK8p91jf4/anflJ6jni7ZYz0HM6hX/fEO5ARjJ+/6ipsen8txlw9GyETeq/ymbYeKs8twrb/fS1UjJj/j1tRlJJNGiw/Cjojs/6uOSKAwb+zXIYdVIa4uLgYAQEBiCUQUEuMQxkWr+34Hdt1FoK9sPUwzm9uj+BQtp1023K1FB3+/rGn59NsnAJUX9meFujg6QJXP8UT/MqqejTbUAi+EY394WRvhT/X/o6kuIvCkT2CfYVS05yu01FYMioqCkOHRZOOSd/eBHeXnsPzz8l4FJXlm0mD6kW4dvpNLyv5AfnZ9LrHNaR58qzWnlz72JvCTexVr/5dKGdtCtb5XO5qTvnx6W3ARNlGTpFQrgTlurIJEyYgLDQEB/bvQ05evkqkSFNjNkWbKKAjV8+xsQ0hgXlPlUNxfx9f/wGlo2Ft3YyvtnyIL4+vbvOFp9wTX97yLVoaZKip5MgzKrdM36kcgSb8m/+fQnECwn2RkZlCQrznBV8LqVAUHdRQUw9Pb09MXzATnOLLGkR29NkUyCaZlZUVvCkaiD6qKt9fk6m0s6eXLz0IkiI6O5/jUnqOKXx79f0cBhw04dLCLBKbGhDSIzThcsNrX/lGEH3lajlP/XoWw0uyMcjRGlNvmKO4IOnnkSa8hhmv70YpJS9yeo775ZQafU7N6f/bjbLaRqxbNQnhXo5thzA00qShIQdxp2bD1jYAI0bv0GdqRumTnvpvCnn8Se1YY8YdI6CjflPMv0+WDbmoe4Gg26FD7f3eeAsO0X9Bk5XxL6Jk9KTAxtp4kSZZGf+hUOwvERj8D3pSeJtR/GguB2HAyCk6ykgT5boK8r5GVeURuigMgI/fLcJ5a4gJ5xH9z0AFJuw7KdLEkDNIt77GiDThEXd89Cvcg9zRSvdYFgWXEDxiKDyCel/Eu6fVchWJ7x55G9a2FFny1kOI33sKh9ZsRdSkEZh888Iuu/NnvbmpAbt37QJXlWi9ZGnwZ5IjMPlmR1lOlSNNfn9ptVC+V2msCXMtpefw/3c0/l6goiiof/RxFK3bpDZv3wfuhOzOO1BvY9+TS/R6n6sGNdXXCgKgjt4uQkRFZ+Mbs5kzZwpRS30d6i9EmpDobldP7/NyP0V25ut0034zRQY+rbIUfp3fDwh8EP4B92jtr1+f+0woSX3lP2+DWzewQesDGqmh8lzeSOkdzZS60dn4xjz7vHqVJI7G8otqj2Lq2E+o6kYivyScAUuqkrPhz41oaFCPnOI0687RJXyciIgIxAwfMaCiKS0sW3Am6yTu+UzxYLajjfcfj0fHP4wD3+8UUvY0mZzEpafdOBcHDx9CXp56RHP4kAjS6Amlz+hW2MrtBE0TNk7NYT0mlZSe6GiqAhaFSyKmvxvpdBblMFKkiShuNvlBzA6acLnhs7tO0o95Ixh6OLg6YszCiUJ6DRtrlyQcOo+G2dMFaLLc06Lb9oUU5nZy02EU1bcih1Tyx4e4CxCFj8vWXzVNWH8hI/1lipyoxNGcYHwWtxw/3zMXwR766WscTS/FbV8dE2DJ7/dOVjnxDdU0qa2lPT2zhJTWIzFiZLsAndifrsSE+1BW2i6upRx/aPQ3QqqOJuOUgubKODTefQ3nWQD3/g3yBfej1aF3bh6s6MKe00aMpWmSkvw4pYb8Rpocr8DL6yqxXW7S48koDYohlZQy0vvbJGma9L6PlSMYQ9OEj5V1IRHJ+Ql4cu9TeHXGK5g1cwnontUk7JuH3wLDk5v+93ec2rAfF3afQOw1sxAzp/sqJ5YWtIBLrZR6wEoC+kdlKp0gCKvSITumjJRkFeL8zmMoSM5GJZXy5fKt17+8iqCEs5rv+Le1JiUdlStJS+ly5RKh0eDB8Ph+NaxJFLI3YEXmmSRs+3AthkwejsBxETh5MU5tbjY2Nli4kCAUhflbWPZ9WqGgaUKP1lk0U5NVlO9H/MXbKWVkHKVCfqfSJDnpEZQUb0B4xGv0JH651ufw1vd/AaeDzbnnKgSPUujnmYrxuVxYkI/9+zVH7+ZSpEnnikiCCCnBH0d3VX0dpchv02VBUlsbC3rAVISdO3dptVy+iZ89e7bwOeiN81WrSYjciD+71c0VuOf3u5Fw5pz6Z5uu424cdRPm+cxD8oGLFJ1DIq4EPRh88L8t6X2OGPEc5AnfiABspqpW9Q31QrohR5oobewkSuuj68K4i+foc2gBF2cXyKmqEX+HKc2Xop+nTZtGQFFVG0Vkl5j0cJKmiUlvj2iTMztooq3nOqfndNePBWEf/O447psRgVFhquGE/TE9p74uHhkpf6UQv6q2ZRfXucMzZAOG+qpfmGnj0/d2J+P7Y5lCWg6n53Q0Q9Nz6mrPUCnXmwiajCBq/r020+mVNkX5H6C44AOVY3P6RVjUL7C26SaaoCUBsuS9sNxCaRt3PoQm+wm9kmfOEzN2ek5W2r2ortyLwND34eg8vVf82l8Pqik9p7+uxdTnLaXniLdDxkjPsWxpJqHTdNy7/l4U1xXD28Eb7y15D17hUUZPSdTHM1spPaeC0nTmPPwXxK3fg0LSA5lKFW98h4T0eDi+eDbWw5LO6TmdBz/y7Z/IPBmPsCtGYOy1czXOrSE3D83HjsPqmculcm1t0fLWW5CRyKNtgKKCnTGtJD0Xuz/4SUgXGELlmWOvnoFk0u86d071xm8aieS6uHqgkz6sMaei07F6Ss9pbi5F0vlppJ0kpwo5qqK/Gck3o7bmFILDV0PuqK5b1dVE2kpZL6VS1jO176fTwgxoTFWhSaslHhcuXFA7Cqd5sDaG0lgPQ6lvYuckF0qKyyhai20BwTEra3u66Va0dne2oQouzSSir35edB5IJpMJ/VtJ+JTFXweCCeltciu8uPdFJJSQLhBpG9VRGk5H8wzxhw0Jtz4y6VEMcx/RpU6dp4stGkhXraysBDspfZDT44rpM9pUpyh9w/s2/+rFyMjORA5V3HFxcUUzh5hcZod2VD2H/d/catUW8TYQ9kDXNUrpObp6zDzbS9DkcvUc5faybgn/KQVi+XUGLOeyK/DyVcPVzoL+CE0Kcl9FadE3amupdfwCY8O7f9LW1ceAyxZz+eL3V47B6EDV6gOGQpOaqkPITL0TDk4TERT2WZ99ErnsYCbBJoZObBYW1pTf/EyXmibKiZYWfQ07ixLKh45Fdt4WePs/12trMDY0SU+6USiXHBL5HUGrkb027/54YAmaiLdrEjQRz9eGQhOOrkNDFZ744WEczzveNvHYgFg8t/xlyJwoZadjXLh4S2sb6cDnvyH3fAom/XU5Tvy8DQ3VtVj877vAmg09GT9tN9b0e4ImlZTaseW1L4UpzX7oJrgHqkco5lAkQ2tBAbzO0I3+N9+g5R//QEVIJPwntZe272lN2r5fXVyOPQRMasurBH2a8SvnC6mDrG9y6NBBoQwq24gR9IAjNBz1zX2rY9JxXT1BE26bfHEemhpzETZ4PVX6aS89nXxxLr2eR/pUm+kBySBt3YXk/adw6tedBL1GEvRSpHSbkvFnlfdu/759GtM7WCungSIXnLxdqXqTq1A2m89J1ixiY3Aye/F80s/wRRPddCuNoQmL0dtQMNZhSh1Rnhea1s46Gh6ePqhvMpEwNBE2iCMnbW1ovR0+Hrn8OSbgYUNpNE7e7iSmfDnFnZqVU9lz2aX2lPeOU2RoUkl6Z1YkVp2WkoS4OEXUV31VjVD23EZuT9eebph8RSzOnT+PvPzCNoFebjeD0uecnN1MBm6K4H69hpCgiV5uM7tOAw6acKlhhiAcPcJ/3s52uHNqKJUf9hA2l99bfzoXP9w1UfhvbnP7V8fx9OKhGB6gXvLPnKBJmfULmDRshc4neUpRNW7+8ijc5Db4874pav0NhSZVFTuQnf53OLnMwqCQd3Sen7E7FOW/TxEnH8JOPhyhkWt6PHx+9gsoL6X8frcrUF3LF2S/9dhH3wbGhiYp8YuotF0mwof8SRodihQ3yRQekKCJeGeCBE3E87Wh0MTaphk/HvoaH+1QL1F+15x7sTL2FtIG6dtKBKfW7qCQ99OIXjBZEF7lG5XlL94nnpMvj9QTNOFmp3+nyi17TsA/JgKTSRC2o/EN7bbXv0ZLYxMWr7oSstOnUOTkgXNnMzHzbwqxemMZpzwzMCnLLoDfsDBMuaP9WoFvAu1pSzdv3gxO1YiNnUjXTopSqKZi2kATvs7g642A4Nfg7Lro8tRbcfHMCOHfQ0ac0ajH0dUa8+PTsO+TX+FNZYen33OtqbhCZR58fWZj1YpNmzahrq5O5T0WSeZ99woPoOpSCk0djjapLChBbVkVaWBEYtiwYWixkcMztD3alqFJTT2JlVKuDZ8XfOyamnahYuUgMTExCAuPILhmeKqbSTpXy0nVkIbRxpc+E4SUlz2/SsteimZKaMJaPY4kcnTs6BFkZmaqHWPZsqUEVqxIa+ZPigJSVP0cNWoUlR0OGVDCuzo5t0NjCZro6znz6jfgoImxt68/QpPa6mNCek5HK29wRqndl1g8Qve822+OZODDvSlYHOOHpxeqlurjMQyFJhVlfyA380m4uC2Bf9B/jL2FOh+vqTGHnkjNp8oQXogc1nPObmbK7aipPiKMw6rxg2MO6zymth2MDU0Sz01CC5VXjoo5QPmz6tBQ23mZYzsJmoi3qxI0Ec/XhkATG3p6mlR6Ec9uI9FsuuHqbBxy/uyCFzDMo+twczFWmkCaIXEb9mLQyChkn0mEZ1iA0SGDNuvQBppwmsSfL36G5oZGTLl9BfyoVLLSDn+9AVmnE+A3NBQz77kGpFGPn15YjfK8Ysy8f6XKjaw28+muzb5P1oIrqrgH+WHGfdepVYNhzZAGeiLu7OSE2sauS/saOg99+2sDTfhhCD8U8fD+K1WLe0QYSvl7b23ti4hh6ppm3c2nurgMm17+Ag7uzlj0zzv1nXqv9+PfsqqKUiG9o6PlXUxlCR86v0JUKiJxGyc7B4wdOhw7v9wILk88ZPYEDF88VeiuhCacNsLnRV1NBbZRFZeO5ufnB44yqSa9QIYrA9kyT1zEke82EhgNJzCquRpjV/5RQhMWk2ZxermtBbaQvkllZWVbl9jYWBKlDxAi5CrKS7B3zx4EUfreuHHjUUOfVRNimyZ7GkjQxGS3RtSJSdDEQHf3R2jCS+b0HE7TUdrFksFocHoTN4xvLxWsrWvuXXMSp7PL8dLyGMyM8lbrZig0KSv5kcr9vQA3j+vgO+jf2k6rV9slnJ1AP/S1WsGEpAuz6clqAeVK21OfOupzyKAStN0tzJjQhFXu4+M4JccSQ0eqC/31qoP7wcElaCLeJknQRDxfGwJN3OiunS7BhclyCkd5dqHwbwu6mOeQc0cPBXjlcHO09E5VF208lXUqAYe/2QBXf2+U5xb2WfqENtCE1xO/8yjObtgHdyqLPPtyWeSkffS7u26XEAEw99Gb6cbcRXhAcfy33WAopEyf0cYfPbU5+v0mZBy/IIzBwESuQZSWjyG3taQKNa2kjdDTEcV/XxtoUlW5C9lp98PB8QoEhX+qOI+rj9NDplth7zAaIRHqac3droTuRn9+9A1BP+Lq/z4oCHiaqslJvDUtNRlnzpwRpthCm1iQlElwzAo+UapRpqxDsmjxYjS2WOD0+n1I2KVIw+My3iNIvyU6dogQacLQRHleZGWk4cSJE8J/29vbY+EiimKl9C1l5ShT9YsY8zr1K0W+7T8tQCeGT7pYR2jC/ZTwcgtFfbEpooGo5PflaB4H+oxmpKcK1YpqCFh1VU1KlzkMhLYSNBkIu9zzGiVo0rOPum3RX6GJclGNDRlIjl9OqZXNOFv7Mq67YplOHimhUsVLP9gvlH/f+eAM2NJFW2czFJqUFK1GYe7r8PC6lfRAHtVpfr3VOC3xetI2OU8XUd/SxdSoLodpba1BwtlY8o8NbCgXuqEhVUjPsbVTFcs11jyNCU3Ky35HXubT9ITJHuE0527Fbo21gH50HAmaiLdZEjQRz9eGQBNNsywikVXXAG9YdyqZK96K1EdiMdOd76wRwuFZz2TUilmInDpa9ClpC014Ypte/hysKRIxeRRc/L0ELRa2CTctQvDY9gjPKqq4s/mVL4T3ONSf12iInSGh3MTdx0n00xoz7r0Obhp0VZTHZ4kGU40Z0AaaNDXlI/nCHKpS4oqoaEVVGWWkK6frcNqOrqbct/mP30oaIIo0cFM0vobjG+oTxykSOSND+FyUZOTT+WMPD4J1HY1Ffl3dPNt0SDiqjCO3SkkDhW3YjNEYvmQ6Wi9XTeLzwoEiIE6dOom0tDTMnDULjk6uko7GZaduf+NbIe1txn3XUyqU9po53L0zNOHXGF7mkvCr4GvSLKmqa2krj67UIKoj6YHLTMsUT0eTm5METUxuS/pkQhI0MdDt/R2a8PL3nn4JXhZrUNQ4BtPGf62TR/44m4tXNsdjcrgn/nuVIu+3sxkKTZQaIl6+98LT516d5tdbjXMzn6CLqQ3wC3weru5dl+Ktr7uAtMTrCJJEUTqPB1jUNjDsI7pgUNd+McZcjQVNOosFa1UlyBgL6EfHkKCJeJslQRPxfG1saCLezNtHYh2F7m7eOdUlae9JoQTnJUoNYOgg71RGteO8Wy9Z9soTcV2gyYWthwX9lY7G82Zo0tkOrv4dLBCrz5PrjsdSRrjwa1PuvEpIA+qvpg004bUlXZhJkaFFbaKvxQWfUMrOO5Syczul7Dyk8/JZ04S1TSbffiX8o8N17i9mBxmVpmVdDE7vyE3LREVeiZBa5OLXXjVy+HDScgtjHRJ1kd+L2w7j3CbFOcqiysOXTEXQGAXQ42M7UeUp1tvw8PRGYwfhWDHXaGpj8XfRuiffFaalTzSSJmjCx3IkSMXfgnWNrVTqXfVhJmsQdSxzbmo+McX5SNDEFHdF/DlJ0MRAn5sDNNlyPhWe9ddDLquj0rIfUmlZRV6qNvbk72exJ7EIj80djBWjNJfdNRSaFOT+l9KJvhKiTDjaxBSs7ULKi3Kf/RW5z5qssnwjcjL+QSK2cyklx5EEYdcRaHmOQMvVvbIMY0ATZQ535wkysGJwJZnCAxI0Ee9MkKCJeL42C2hCZTtqqsoRTyVPu7K8C6TXcJms+A4OhqVMc+pEdHQ0bEi/oTdK5+oCTba9/g3KcxTpTkoLHheNCTcuUFsir23/Z+vg6OmKhU/drtfJk3b0HI7/sEXoO/6GBQgZH63XcUylk7bQJCt1Faqr9pHo/Fv0uz2HUoOfQ1nJz5Qa/E9KEdZdXJer53AVnZHLZyBquvErGhnbv8r0jp9Wf4ua0koCJh5CWhZbQEAAJl5xBaV1dC3yW06lvC9u2kcFtBQldH2GhCJq2hjYOTsI6WNWFq0EXNQrUA3Um/iChAzs/fgXeJDe06wHbtB5O7uCJlzW2NbasstSxToPNMA7SNBkgJ8Al5cvQRMDzwNzgCZ7k4uw7/QbuCryD8gdxyM4fLVWXmmhJ3Sz39pDIX6tWHfPJPg42WnsZyg0ab9o+bega2IKVlWxjSr6PESAaQaBJvUqEco5tgvL3Smo7hcXfETRMqsIPvROpQZjQBNNQsG8Hhf35fAPfMkU3G8Sc5CgiXjbIEET8XxtDtCEvcXpABfOn0NCQoKa87giSEl6DlUCuUTRJoB3RJCasCl3GjlyJIJDwnqtdK4u0OTnh19XWwdHASylUsl8g9TZjnz3J2pKKhGzaLKwPl2sOC0XcX/sEbqETxmF4MvRApqO0V80KbSFJkV5b6O48FP6nb6bfqfvR1bqPQRR9tPv/Pv0ez9dFzcKbTmi6fRvuxBBfhx91Wyd+/dFBzlBx7MHDmPfrr2UmuMrpHjJ5XIsXLhQ+Cz0BDg8XGyQnZiBooxciuRqFTSN7F2cqBJPgyBWeom0XThlT2ajqKJlS7o8lpayAVnF5cLWQxRBdlAAagzWdLWuoImux5Had+8BCZpIZwh7QIImBp4H5gBNTmaV4YEfT+Ctmc/BQVZGT1jeoCcs83r0zL7kYjy+Lg4x/s745KZxXbY3FJrkZj5OqTB/CpVzuIKOKVhDfTJSE66kMrxBVI53Y5dTapt74Iv0VLMJefTUitN5OK2nN8wY0KSlpYqqA82jGwoSa+xgUqSJ6o5J0KQ3zmDNx5SgiXi+NhdowiDBWS7D7t27UVBQ0OZAvokrSMwUSqcqzZJu5HyHhKg4OTAwEOPHTxAqwfRWcQ9doMnGFz8Vnvx3tAAqQzx31QoqC19HJV0VT/aVVlVUSpEpRcITfn6KzWZp2XNp18baOhSSDg2nLbF4ryvpp3RlLi7OaGol8ddWdWgj3hmr3UjaQpPK8i0UHfqIAEgYlKQmLEdDfQppkf0qpNnqasqoHz6/pt7VOxGmus5Jm/bFZy8iITkRFagX4MacuXNhJ3fSSuSXq+c0NrXQg6V0bPltA+oq1MsNy2xk8I4MgrOzMxYsWDBgRUmVVamuuGWpUM1LV5Ogia4e06+9BE3085u59ZKgiYE7ag7QJLGwCrd+dQw3RB/CnIA1sJfHICTyhx498+rWePx+Jhd3TQnDrVeoXnB27GwoNGE1e1a1HxTyDsGcWT3OS5QGVIfvYpxCw2XICMqNJ6FXTZaWRIKxtSwY+w2V7q1GVtoqODhNRlDYx70yTWNAE55Y52gTjkBi/1tZOfXKvPvjQSVoIt6uSdBEPF+bCzRhj/Fvj8yyBZs2biQR7gbBiUJVH4IJna1jGoITlc3lG7neLp2rCzRhQd3dH/zUNm0W1p381+XwjQqCo70V9u3di/z8/Lb3GQ5xiWBOQTqRfBpu7h6YMrX7SAmumFJMIrktTc2CJoVrQNfAhKtyREfHoLbJ9IEJO0VbaNLYkImU+EWkQeaNyGE7SchdWSlPv6p3lQWl2PLqaoNSpcT79CtGamlswvbXv8b0m+bhYn46GCAOCgoh4VftZqIsOWyFFiHa69DW3WioqVfrzKKni5cvpYdPDgNWlPS3p94TInCWPHM3ReM4aufgDq0kaKKzy/TqIEETvdxmdp0kaGLglpoDNMmtqMM1nxyCn4sdXpv2Ij21yqSIjsUEKOZ3CymWf3QARVUN+PL/xiPKp+ubaUOhSWbK7aipPkIlAD+jUoATDdwx43VPiV9GvkpFaNRa2NkP1njghHMT6YlmNSnx70NzcxE9tbqKnlaF01Or3403kQ5HMhY04UNmpt5FugAH4RvwFNw8b+yV+fbng0rQRLzdk6CJeL42J2jCXrOVAdWV5di1a6fgRK4uU1VYpuZQBgQMCtjmzZ8vyo2cLtCE58WaJjnnkoU5hoyPEUQ62ZRwaPOmTaivb785rcgrFqJTjiWcJD0wr26hCUMWrirUWNcIOyc53IN8uzzpvOhYs6gCczFeEAAAIABJREFUSmVtc1tVDvHOUP1G0haa8NETz02mhxwV9Du9jn6zV1CpYCcMjjmk18Ac0bT2sTeFvte8/jA9YDF9yMTnGWvoDJ48ApNunEszt0ANRVwpNYB6coQSmjQ3t5L4qxXW/7AWqReT1LrNu2oJQgdHmV1aDn9GGXIy2Oz4Oe3sAKWfDdEekqBJT2ejcd6XoIlx/NjfjyJBEwN30BygSSU9Pljw7j442cnwxbL1qCxX1Hdns7MfQrBitVqEwdmcCtz9/QkMcrXHT3de0a0XDYUm6Uk3oK72LEW/fE9RMJor9Bi4jXp1z07/O6oqdlAZwv/C2XWh2jGamwpJiX8WlS90E6AJX4TxxZglCcIOjjms15g9dTImNEmJX0xQKEMAPAx6JFP1gARNxDsjJGginq/NDZqw5+xtLJBKqQZnz54Voig4PaejcXoOp7BY29lg3Lhx8POn8vAtPaeyGLorukKT7sYT4BCJ3+7aqYBDbI01dRQ5kocjF45TNIoDYsdNhLOv5rK3pZn5qCfxThu60WNfcGUhTSaTybBw0SKqyGHVL9JylGvQBZooH9T4BDyJgpxXYGsfhbCoX/Xe7o0vfkbwqgILnrwNTl5ueh9HrI5ZpxNw+OsNCBgeiTn3UPoXwY9m0v/R1pTQpIFq2tqQGOmlhlp8+fbHaGpqD1UZEjMUM5cuRJ0InzNt522Mdqxfwzo2SmNwMveR/2sDnB3HSDl4Bid/2U7Vu4ZRFSz1a0ht5iNBE228ZHgbCZoY7kNzOIIETQzcRXOAJq30+GDK/3bRExDgiwVPq2lZaBIA/XhfKr46nI7rxgbiwVmR3XrRUGjSnlP8G928Rxi4Y8brXkiCcSUsGEcVZbw0lEKurT6KjJTbYO8wWkjPYUs4G4vW1hpE0VOr3kh1MSY0iY8bSU+WWjBk+Am6gLY1nuPM5EgSNBFvIyVoIp6vzRGa8P0/l1I9cuQwsrKyVFJ0GJgwSOAok/DwcIwg8dcaRSZPr5sxoQlPVm5rKcChuLg4Ye6chsTpSEpoEh06FI4eLsJ6Gahw1A1DpEt0DdBCGhSsM8HAxMqaCEwXNnXaNBJk90Y9lTLtT6YLNFFW7HN2XUwPkf5s0zfRd717P/qFQF0GplLZZt9+ULb5ApUOPk+lg4fMmiCUDdbVOkIT7stArzgnhyJOfkFTQxO8fbyw8q5bQYFKOsEYXechdvumugb89rR6YQCuPMUVqDrb0e83IeP4BYy5ejbCJ4/Sa7oSNNHLbTp3kqCJzi4zyw4SNDFwW80BmrAL5r69l4TfqvDurMfVPMLRJqFRv6i8fstXR5FUWI23rh2FCSHu3XrRUGiSfHEumhrzEDF0K6xtFIJ2pmAVZeuRm/mUEGXC0SadjcsUcuUfV/crSfj1ReHtVErpaaCUHg77tbXrHjbps0ZjQZOmxlxBDFaZ163PXMy9jwRNxNthCZqI52tzhCbsPWvSN5FTxMkmSmGprq4WHMrAgKGJBQmkuru7Y968eZRy0iTajZyxoQk/+HAiOHT06BFkZmYKmiacHtIRmnAbLiFbW1ZJAF81esArLEBIKejKYmJiEBYRSdoWpp9i0nkNukCTirIN9Nv+BP1GDyYR2ARKT11Jaar/1PtDyNEEHFUw+qpZVEVntN7HEavj0e/oZv7EBYxbOR+hE2J0HrYzNOEDOBDQu3DmDPZs2IYlpGPiPTiiX0UqaeMEZbpN57Ze4YGYcZ965cdNL3+O6uJyikS5WagmpI9J0EQfr+neR4ImuvvMHHtI0MTAXTUXaLLio4MoqKrH5/MeUPNI50iTzLJarPzsMBzp8cHWB6b16EFDoYkyvzgqZj9FZ7j2OJ5YDThliFOHWM+EdU06m/Jplbffg/DwvkN4OzP1TtIJOYTAsI/g6DTF6FM1FjRRCsHKHcYgOOJro8/THA4oQRPxdlGCJuL52lyhCXvQzsaKhLkrsXXLFhWHclUZTjmBpQ0o4EI0MzY04YlzSVc5lVveQmtMPBqnBk26W5x7kA/pmThobOLv749Jkyejur5VDbaI5jADBtIFmiir47GWCVeR8/Z7iH7Db9d79ITdxxG3fg8ip43BqCtn6n0csTrueOs7cLrWzPtXwjM0QOdhNUETS6J1cptLuHjgJGoKKjFk8Qydj2vqHTjSZMPzH6OZomk62rD5VyB6/iSV1+oqqrHhuY+FlMArX75f76VJ0ERv1+nUUYImOrnLbBtL0MTArTUXaHLzl0eRUlSNr1bWo7n0H21e4YuGYNI04WgTpf14PAtv70rCvKE+eHZJdI8eNBSaxMeNFsr1dlelpsdJ9EKD1pYaJJyLFSrn8Nw6W1ba30iAcDdVnXmTBHVZTA3Iy/oXykvXUeQJR6AYv/ygsaAJz5Hn6uK2lEo9v9IL3uv/h5SgiXh7KEET8XxtztCEvcj6JjlZGTh+/HibUydPmQJPL1/UiZxy0hvQhBelhEO/fPU9qksqVCJN5K6OVB2lGQ216tVMuoImcrkcCxYuREOzBZpI36I/mi7QhNeXcHY8waE6YakBwa9RRClBNT0t52wyDq7+HX7DwjDljhV6HkW8bpxiwgBg2fOrYOso13lgTdCED8LRXllHz2Dft1ux+F93Qu6mEDI2J9v636/AAsxK40i2Jc/cQ360V1lm9plEHPrqD/gOplLUd+t/LShBE3HOHgmaiONnUx9FgiYG7pC5QJNVa07iTHY5PrxhDAZ75CMj+Va6YKgWxM9YBE1p1Q3NeHRtHOJyygVgwuCkJzMEmjAsYWhiYWFNYOJUT0OJ/r4ydSh8yEaqthCkMn5K/BISUk1XScUpyn8PxQUfwdNnFbx87zP6fI0FTXp7nkZfeB8cUIIm4jldgibi+drcoQl70pEiMU6fPoXU1FQqmxuNiMgo1PVByklvQRNeI+ubMBzavWU7tu3cCicHR0yMnSSk5nQlhutD5Ys5VamzzZk7F3ZyJxIEFe88NPZIukKTtKQbKSpJoQ3DmmSsTdaTOctlFJlCoUqdKuQ01dUj91wKZBRVwOKqXVlNPenLoPcFiLtbR31lDf549iPYONhj+Qv39rRkje93BU248eEv1yMrLgnTV10L70jVaya9BjOhTol7TuDM77vhSGK/I0gL5uL2oyjLyhd0YVgfpqOdocijRIpA4ggUjkTR1yRooq/ndOsnQRPd/GWurSVoYuDOmgs0eezXOBxIKcZ/rxqByeGelHZyI1WsiaOLhW/pYkEhUPX5gTT8cCKLRPIUV07/o7aTqG1PZgg0UVacsbJyIfHUAz0NJfr7yrK8gaHvC2Jx7daKi2cUlX4Y9jD0YSsv+QV52c9SlMlVFG3yvNHnayxowvncnNfNWiysySKZugckaCLeWSFBE/F8PRCgiczKAs5ya5w4cQKjRo0SUk5aOul7iOHx3oQmPH8HG5Ao7Bm8/eb/4OrmrlJyuL6qBpX5JWgmEmLrYAcHEojVlJozevRoBAaHko6JGB7pvTF0gSb1dfH04OgWQbSdjavHBdO1UE/i7XbWFqitqcSRw6rV8Rqq61CSkScciwWHnbzdVMR2HRwcMI0EdmsaWvs8kqcoJRu73/9REASe9cANem1Id9Dk+I9bkXbkLMZcMwfhk0bqdXxT7MTVkTa/slqAZlfcuhSDRkQh70Iq9n9G+nUUrbPkmbsF/SSl7XxnjVDiexpFmfhQtIm+JkETfT2nWz8JmujmL3NtLUETA3fWXKDJc39ewJYL+Xhm8TDMH+aL7PQHqZzudgpLfYPCUudhb1IRnvjtrIq3xNA0aWrKQ/KFubC29kPEsG0G7pbxu3M5wtLi7+Dt/wg8vP7aNgCLvbLoq41tIMKHbGp7vbpyH7LSVsHBaRKCwj4x+oSMBU3Sk29GXc0pITVL7jje6PM0hwNK0ES8XZSgiXi+HgjQRLgRplKofF5V1zULJVX7wnobmjAccrKX4e/330cptvYYM1a37/KQkBCMGTMWNY2XKEW2LzxkvDF1gSZpideAwUlH01RFUNPsOMInOTEe586dE97mqB4GESzIqzSuUtQxymLe/Pkkci9HU2vfC+ymHo7DiZ+2oauKL9rsSHfQJH7nUZzdsA9RM8Zi5LIZ2hyuX7ThEs1cqjlo7FDE3tSeyrXng59QmJyF4Ysp2mS2ItqEz4W1j70p/HvFK/dDZkt0U0+ToImejtOxmwRNdHSYmTaXoImBG2su0OT17YlYeyobj8yJwtWjByE/52WUFX8Pn4An4O75F7y46SI2nlM8Kelo760cjTGBbt160ZBIk4b6FHDJYX7SEzb4dwN3y/jdy0p+pAo5L6hFjlRV7kJ22v2C2CuLviqtoT6R1nNVr63HWNAk6cJMNDcVUcWibXQx52d8x5nBESVoIt4mStBEPF8PFGjCHuXPcF2DiMqvnbaxt6EJD8dw6FJLAzZt3IgWTh3R0lxdXTGfbuarCCo1t/RzYkJr1haatJDwa+I59XQJrtzHFfx6MhY8dbK3wqFDB5GdnQ2OQKjIK1Hr5hniJ6TAjB8/Hr5+AWho6du0HOUE4/7Yg4RdxzF80RQMmRPb03I1vt8dNMmh1JyDlKLjHx2OybebRxQrwxKGJlyqe8GTtwnRRErTFG2ijOZxHeSNuQ/frJePlZ0kaGKQ+7TuLEETrV1l1g0HDDQpKzuCxsZC+PgsVdnQFhLzzC/4A2Vlh2Fr6w1Pj9lwc2v/oeD3c3J+QGXVWY3vmws0+XhfKr46nI67p4bhlokhKCn8DIV5b5Fi/G2kHP8w3t6ZhB8pNaezrb1rEvxc7Lr9kBgCTZQVauzlwxESucbkPoy11UeRkXKbkMLEqUxKKylajcLc1wXgxOBJaS0tlXRBNonCNB0xOEY1hNcYizMGNGltrScRvHGUUiSj1KLTxpiWWR5DgibibasETcTz9UCCJuJ5VfNIYkATHpnTRkqKC3Bg/36tl8zCr5YyO7MpC6stNGEHJRA04ao5Hc3JZRaJur+jlf9Y8NSeMnI3b96M3OQMQYy3s7HobvSoERg+YgRqG/s+wkQ5vwOf/4bc8yltKSZaLbhTo+6gSUVeEbb+92tKUXLHgifao3P1Gaev+3CJ4YaaOiEyh+EYV0biCkmdbc+HP6MwKbMt2kQZbRMxeRRGXz3boGVI0MQg92ndWYImWrvKrBuaPTSprU1DcfFO+ttBOb2xCAv9u8qG5uT+IAATfr2hoRBJyS9j5IhPBUDCwCQp6WVKsfCGr8+ytvdjot+CXB4qHMdcoMl3RzPx/p5k3DQhCPdNjyA9i/XIzXyKqqcsoeop/0FeRT2u/uSgiu9GB7ri/ZXqPxCdPzGGQJOa6iPITLkdDo6xCAr/3OQ+jByNwVEZnTVX8rKfFfRLfAOehpunal5wwtlYIVc6KuZQjznSui7YGNBEGd1jYxtCqUUbdJ3CgGkvQRPxtlqCJuL5WoIm4vlaLGjCK5JT1aCE+Au4ePFijwuMjY2Fp7cvpYtY9di2vzTQBZpUlBI4yPpn29K4imAgARNdUlW5glFdTQU2rt8gpOd0tkHhwbju1ptQWdtkUpE8m/+zGlWFpZj32C1w8etZs07T/ncHTThd6dfH3ybBYQtc87+H+8vpozJPrix0+rddSD92vu11V3+KGnlUc9RIW7QJRRYtefZuJG0/grgthzCB0niCKZ3HEJOgiSHe076vBE2095U5tzR7aMIghMFJWbniqX5naHIm7k4EBd7RFl2Smfk5/YBR1RiCKNzv3PkH2yAK9+f3GxoLEBnxlHA8c4Emv5/Jxatb47F8hD8enz8ENdWHCVbcIVwksK4F2/m8Stz57XFBGP62K0Jx/bhAqkIg6/HzYQg0Uaa5ODnPxKDQd3scqy8aJJ6bQoCtHJHDdkFm7SVMISPlVtRWHyfdkk9Jv0Q11Dc1gQBcfapKVR1jzdsY0KS6cg/prtxH855M8//YWFMzu+NI0ES8LZWgiXi+lqCJeL4WE5pY0k0qV3fZt3cv8vLUU22Vq46MjMSw6Jg+qSbUm57XBZrwPFjTpKJMkRLs4racNGGG6Dw9BzsrZKanYt+O3YLoLmtZyGyt0drUgnlUkaiioBLBV4wmAV7dy/rqPBltOlAW1i+PvkH6NZdw9WsPUqSRftCsO2jC09j44qcUmVGJhU/dDkdPV21mZlJtGJYcW7NZZU6sS7Lk33fB2t5W41yV0Saz77+KBJptsPOLPzH13uvg6GHY+iVoIs6pIUETcfxs6qOYPTRRbgBHlDQ0FKhAEwYqDE2UkSXcVhmVMmTISxSBcgRpaW+TENr3bfvIrxUUrAe/z2Yu0GRHfCH+9cc5zB7sjReWxVCp3DSkxC+lKJtgijb4U1hrZmktVn5+GAGu9vj5Tu1LpBkCTSrL/kRO5uMkRruYRGlfNcnPU7to6hcEmRRCX91pgrRV3CGtE9Y8MaYZA5qwlg1r2rh5XAffQf825vTM6lgSNBFvOyVoIp6vJWginq/FhCa8Kv4ttrZqxeZNm1BXV6e2UC8vL8ycOZN0TFr6pJpQb3peV2hijLlw0o1Dh/LWl1pbhZLO40aNQWlCHk5tOChAgwk3LhSq1fS1cYQJR5pwJaVFT9+h93R6giZ7P/oFBYkZmHrnVfAdqoja7k928IvfkXMuWW3Kcx+5Ga4B3hqXkncxFZmHzsBnXAA2p2/FkkGLMGhMz5HaPflFgiY9ecg470vQxDh+7O9HGdDQRBlJMpagiJWVg7CXDEUysz4TQAqn55w5cycCAm6Aq2us8N/5BEy4H6fosLHyvjkYlxu++9sTQrnhj/8yltZajeNHx8LSkoTKYhW6FodSS3DnN8cxIcQdX9yivQq/FT3hsiExOn0E9woLfkRa6r/h7XM9QsOMX6LXGHuXmvI0igp/QUjoM/DxvRHNzZU4cWy8iu86jpOa8hS1X4vQ8Bfg7X2dMabQdgwrqpbA+dT1BogbZqT/B/l5q6nM5KPw97/TqPMzp4PJZBaQ0QVwfaP24ormtH4x18LnNH2NoKGpb6qciLnWvh6Lv6vZGiVf9/pWsEgrVzpuErF6jwVaUVlRjh07dqisz9raGosWLaKbeooetTANUVJjbgCnyzQTtGhuFlfUloVh+TO1detWlJaWIjo6GhzNU1fdiD2r/0DOxXRhmdP/uhQRsdHGXLLOx8qMS8a2D37BoOgwzL9f/2sTOxJY5nO6pQsB4YNrtuLinpOYeN0cRM8ap/M8+7rDni83IPmwojpSR7v+pVUUOeKicXp1FdWozi/CI1seRWJpIh6OfQgjnUdi8OSxBi2HH97wd3VflEw3aOL9rLMjVSGTTPLAgIYmDEFOnLwRHaEJR5owGFFCEQYkOblrBFBia+NNqTmFwv8rI004H9UcLC67An/54giGB7jgu9sVQrgn6cafleRHjzsCmcwF607n4Jn157FspD9eXB6j9bIZmvAFS0297oCJb96zMl4ldflb6Sa+XVBV68FFaJif9wXN8TUCJjcjKORpSm2Kw4Vz10HuMBTRw9epzSAn+x3kZn8A/0H3IWDQ/UadId/E25DoX60B0CQ58W8oK92O8Mi34O6xwKjzM6eDWVtZgkt61knQpNe3lZ+Qc3qBBKh63dVCtRU2CVD1vq/5d7GVqInYJY+tLFqRkpyEuLi4tkVOmz4dHp6k5WamXNKeoQndxDf1wQL5d6K+rganTp7E5ClTaA5oK+F88PstSNineDA1eskUjFo8ufdPvC5GOLf9KI6t3YVhM8ciloCGvibnG3mCU81d+Pr8jmM4+stODJ0xBhOvn6vvMKL1u+u2/8PS5SuEv9LsQmwnsFRTpioUPIzgT+y1XYu65qek4rODH2Nj6iZh3pYEJt+d+w5iRoyHNWmd6Gschcm/ixI00deD2vVzlpOys2QD3gMDGprw7h89tlwlPaeAKulwpRylZknnM4Q1TtzcJiLAf6Xwlrmk52SU1OKGLw4j2F2ONbdPFNbGpX5ZFDRs8DoqkRuJzw+m4fMDabj1ihDcNSVM6w+PIek5xQUfoij/fXj6rIKX731ajylmw3YNkCsEDZOKsj9IRPdJSilaQClF/1ObCgvE5mU/S2WKV8Av8AWjTtUY6TlpidcI+dyhkT/CTt63T76M6hwjH0xKzzGyQ7s5nJSeI56vpfQc8XwtdnqOcmWsS+Zoa4ljx46SThtV9Rg+nCI5I1DfbDpVXIy9C32RntNxDfY2lpcfHrWoQbKEXccQ98deoXnw+GhMuKFvHlac+HkbUg/FYfRVsxExZZTeW9BTeo5SGNV3SAim3nW13uOI1fGWlctw5TU3YEbsTBz4/HfUVVbDM2wQvCMCUZFbBC/6/xDat670TGxtLmHDgR/x312vqUw53C0cX9+9Bg0W1nqLAUvpOeKcBVJ6jjh+NvVRBjw0SSXNEltbHwGCKKvleHrOhqfnLLW9Y6CSk7MGI0d+2pbOYy7QpKSmEUs/2A8PBxv8ca9CZyMz9U7UVB0SxEBZFPTlzRex4WweHp83BMsp2kRbMwSaFOa9TuWPVwtlj7n8sSlaY0Mm6b8sgrW1LyKGbSfI8x6KCz4i0HMPgZ6/qU25umofslJXkU8nkW8/MeqSjAFNEs5NJMG6akRF74eVzDCRMqMuzsQOJkET8TZEgibi+VqCJuL5uq+gCa+QI+Xkgt7GaYwYOZIiQS9RqpC4qSvieRroa2jCa+XfjK7SlLPjknD0u43g6jKeoQFUWWUhHNw1p3r0lt92v/8TVfrJwrR7roFPVLDew/QETYylnaL3BLXsyFVyzm85iDd/eBMj/KMRZuuP5oZGBAyPwKS/LtfqKFZWLahtqcCLG59BRV6JSh9L+gwunnEVlgymB5QN+onuStBEq20wuJEETQx2oVkcwOyhCafbcHpNS3MNkdwaoZRwx2o5yjLDDEy4DQOTgICVbVCEQQmn67BxWk4oVdXhYyjNXKBJQ3MLZr65B7YUBr/roRnC8nIznxbU4zkagqMi/v7TaRzLKMUb14zExFAPrT8AhkCT/OwXUFbyIwmS/pOESRXRPaZo8WfH4lJrAwbHHBaiSCrLN1Op5ldIdX+p2nQb6pMoimcFRe+EUxSPQp3fWGYoNGlpLkPi+alCKWQuiSxZ1x6QoIl4Z4cETcTztQRNxPN1X0ITXiWnB3EqRRVps4mpqyKeh9tHMgVo0tO6y3MKcfT7TXRzXQx7Z0cBnHhHBvXUzWjvb3j2YyGKYvG/7oTczVnv4/YETbg6zy+PvCEc/+r/UpUeK/2Agd4T1LKjUvB1Q+4eRDkF018IPAhozbpf+2tRmXUzqQgpUtOLkrNQVVQm/JsrE3GkCvuZWeWlZjstZ6XaTIImerlN504SNNHZZWbZweyhiba7xvBEJnNogyUd+wl6JgRKlGKxHd8zF2jCa5r+xm4h33f3wzNgQwS8MO9tivL4lKIl7qeoibuFyjlcQee722IR6qEQztXGDIEmnObC6S7+QS8TgFimzXB90kaZ0hISuQb52c9TestF8L/t5cPV5tPSUonEc5NIo8EBg4cf0Tjf0qJvBGDFaTJOLrPg4/84rG0CelybodCkrvYs0pNuoPKKQxEa9XOP4w3kBhI0EW/3JWginq8laCKer/samvBKWetjIOgymTI0YXiltJbGZiTuPYHSTEVZ6IhJo+BDaSw9GeumaGN8g65J16W5oQn7P/lVuJmfTCkzhmhk9ARNeJ6bX/lCAAjz/3ErnH21fwinzRqN0YZLInNpZLaO0CQghqJMbtMuykTTPPi4TXX1QhRRV+k8usxfgia6eEv/thI00d935tRTgiYG7qY5QZPF7+9HWW0jNtw3Be5yG5QVEwDIeYkiPK6nSI9/USTKbjSQIvr2v0+HvMOPfE8uNASaZKf/HVUVOzAo5C2CB/oLk/U0R0Pfz8l4jKJLNglwh6NjWlvrKFLjIIE2zU9rEs7GUpsaIZqDozo6WlXFTmSnP6DymrWNPyKGbu1xmoZCE46Qycl4VPA1+1yyrj0gQRPxzg4JmojnawmaiOdrU4Am4q22b0cyVWjCvyNoaUR2draKgzjapLq4XHjN0csNLt2ABRcXZ8jt7VBcXNytk2UU0WEvl2usjNVYW4+ChHQ4uDpjyMRRqKjRXbhfObg20GT/Z+vA2iaTCUD4E4gwNePUnN+efk+YljGhibHXKUETY3tU8/EkaCKOn019FAmaGLhD5gRNrv/sMLLKavHDHRMR5CYXYAVDCyfnmXDweR0MVVzsrbHpb1N18poh0KRdV+UTQQPEVE0pWMspRGUlP0Bm7YnIYbu7nG5nkd2ODRmYMDjpbBFDt/QYbWIoNCkp/IwijN6Ch9et8PZ/1FTdbRLzkqCJeNsgQRPxfC1BE/F8LUET8XxtqtCEPSAnUd7U5ESVakb8OkclMDxhs3dxgGuANyxYxVeDDY+JRklJMc6cOaPx/daWFnh5eKKZKq3YOMrV2nBJ3Kr8Uqy47mq4BAVSeWb990YbaHL6t11I2nsSI5ZOx+CZpll2eMNzlK5EfukITcaTSC+LvpqKSdBEnJ2QoIk4fjb1USRoYuAOmRM0uf2b47iYX4nP/jIOw/yc0ZaqQRVUGpw+xW30fpS3E768ZbxOXjMEmqQn3UTzOIOQiG9h76C/mrtOE9ajsTJCQ+4wGrU1p6jc8DgER3zZ5ZEyU+8ikd2DCAz7CI5OCuFdpRXkvgpOz+lsYkCTvOznUF7yM3wDnoab5w16eGLgdJGgiXh7LUET8XwtQRPxfC1BE/F8bcrQRKhmZGeFY0ePCNWMOlpDdS3KSOuklSiGjb0NgRMfyGzVy5/KZDKMHzdGgCYZGRkqx2hpbIKjnFKqmy6hsriCNEQs4RU+CFbWsrZ2nCozPHwIPH394R4ZatDGaANNkg+cxqm1OxB2xQiMvdb0yg5Xkz+2vPYlieK3CtBkCFW6ueaGmxE5bYxBvjF2ZwmaGNujmo8nQRNx/Gzqo0jQxMAdMif/F+tmAAAgAElEQVRoohR6fevaUZgQ4o7mpgIkXZgtRE3kyH7GU7+fxdQIT7y6YoROXjMEmrBgKgunhg3+lYRTo3QaV8zG9XUJSEu8mnRxPNDcXAJXj2vgN+jZLqeQl/UvlJeuE9pw245WW30MGSl/VXlNJvNCZPSuHpdkaKRJG8wJ/QCOztN6HG8gN5CgiXi7L0ET8XwtQRPxfC1BE/F8bcrQhL3A1Ywc7CyxefNmVFZWqjimmaBHeXYhGillhIGHLUWKNDc20rWZDPauTrBzUmjMubq6YtTI4diyZYvKMazB5Y5tUZrTXr1FTv1cA7zaxvF39oQL6fq1WtsjeNwwgzZGG2jCqUB7P14riKFOv/c6g8brjc4HvvgNuedSBF+8v/5DoeTwCvozNZOgiTg7IkETcfxs6qNI0MTAHTInaPL07+ewK7EQLy6LwazBigpBF8+wkOklnG3egLd2puKaMYPw8Gzd4IUh0CT54nw0NeaQnsdmSk0ZZOBu9V73S5eaEB83um0Ab/9HKMVFFXx0HL0o/30qS/whCeyuIqHd+9Qmlpl6N0WiHKBQXGtSVm8S3mddGdaX6c4MhSZcOplLKIcNXk+QKqz3HGYGR5agiXibKEET8XwtQRPxfC1BE/F8berQhD3BgrD1tZXYStBDk5UROOF0kc7mGeIHGwd74eXAQQHw9HDH1m3bhP+2tbEhDTo7AibFBFradUqsKWrFK0xxTeXn54dI70Ds+GwDriCNEfcgP4M2RhtoUlNaQUKrn1HakROWPHOXQeMZu3PqoTic+HkbbMmn8x+/FY8+cg8WLV2BhUtWGHsog48nQRODXajVASRoopWbzL6RBE0M3GJzgiavbInHH3G5eGL+ECwb4S94hiNNOOJkX/kn+PJoPe6bHoGbJuhWAs8QaMLlb7kMblT0XljJ3A3crd7tnhK/mICDIix2UOi7ghZMV1Ze8otQmphLOXNJ586WmnAlRdgkIzh8NRobM5GX9YzQJDTyB9jJY7o8rqHQJD5uJEGaFgwZcYKAjW3vOqyfH12CJuJtoARNxPO1BE3E87UETcTzdX+AJuwN1jfJycrAsWPH1JxzqbUVeRfT1V63d5bDLdC37fWhQwajrq4WJ06cgLe3N0qzClFTrgpbbOxt4RkWAHt7eyxctAhb3/4ZOQkZWP7SfZQGpF/5W+UEtIEm3HbtP96itKMWrHjlAY0pR+KdHe0j1ZZXYcurX6K5oRGmpl+iyR8SNBHnLJGgiTh+NvVRJGhi4A6ZEzR5d3cy1hzLxN9mRODG8QowwuVnWdtkS/7z+CnOFc8vjcacIT46ec0QaBJ/diwutTZQad7jVKLXsB9ynSatY+OWlirBV40NiguaQSFvUwWa2V0epbpqH7JSVwnitkFhn6i040gPjvjgyjtcgYeNK/KUlfx4uRTwT/SKZjE4Q6AJR/RwZI/M2odEbHfo6IGB11yCJuLtuQRNxPO1BE3E87UETcTzdX+BJuwRBxuQKOwZpKSkqDioK2jSMWpE2WHc2NEoKytDenoGRZkUCaKync3JyxXLb7gWMnpA8vOT7wtpPkufu8fgTdEWmmx97StU5Bdj7iM3CyK3pmCHv96ArNMJCBw1GBP/b4kpTKnbOUjQRJwtkqCJOH429VEkaGLgDpkTNFl9KB2f7k/FrVeE4K4pitQMZcnfPzLvw2/xg/HxjWMxPMBFJ6/pC0044oEjHywsrCjyQbMivE4T6cXGmsRbQ6N+IcgxROOorNPCei2cAsOpMB1NWerZ2XUhAoL/2/ZWWtJKCt09161eiiHQpLb6KGmp3EYitmNIxPbrXvSWeRxagibi7aMETcTztQRNxPO1BE3E83V/giYyKws42cuwfft2qojTrkPC3ipKzUZTXaOK45y83eBEZYk72vjx4xEZEU76Jttw4dAJiththdzNCTZyO3oQ1UpVeUowcsQIhISFIy0uDSkHz8CZyhrP/8etBm+KttDk4OrfkXM2WYATDCn62tKPncexNZuFqJf5j/8VrPti6iZBE3F2SIIm4vjZ1EeRoImBO2RO0OTnk9l4c0eiim5Jfs7LKCv+HutTr8fvyZPx2z2T4e2kW9qGvtCEozcSz11BwmdOGBxzyMCd6r3uygiNziM4ucyiiJN3NA7c0lJJa5tEa3OgtR1RaZOddj+qKncJaTucvqO0+rqLJDbLgmmXSN/kGdI3uVbt2IZAExamZYFaF7dl8A96ufccZiZHlqCJeBspQRPxfC1BE/F8LUET8XzdX6CJPemasMlkFE3a2oxTJ0+ilSCH0riaS3VJOVo66JPYUXqOvbNjWxt3Dw8CJpFouWSBysIi/PbTL6Q0awknz3aw4udNEaX+IYg/cA4tTe1aJ77DQhE6Pgb1TS2Uqqvf/mgLTeI27EXCzmOIWTQFQ+fE6jeYkXpxlSJOy2moqaNqPnOoqs9IIx25dw8jQZPe9a/y6BI0EcfPpj6KBE0M3CFzgiabzufjhY0XsDDaF/9apFBPLyn8DIV5b2FT+hz8mrQc+x/tWqejK1fqC03aq/eYdrqIEu50Xn930ITbJpyLpXJ2NUIKDqfiKKyVomvG0cVKI6XI7KRUGdWQVaUWCrcMjeJ0nWiVYQ2BJkX575I47cdditMa+FExu+4SNBFvSyVoIp6vJWginq8laCKer/sLNHF1tEZ+Xp5Q/cbK0gINDfVq0SaC14hoMEBprK0X/tPW0R4WlpYEW2Tw8fEBvUXCr02QNbagCS04dvoEPaRRABkXFxfMnz8fyecSUJiRp7YJo2dOImFZR3TgMjptlLbQJPXwWZz4aStCxkcL+iF9aUe/34SM4xfgHxOOybdd2ZdT0WlsCZro5C69G0vQRG/XmVVHCZoYuJ3mBE32JRfj8XVxKmWFK8rWIzfzKRzOG4cNmXdh7V2TdPaYvtCksYFCRuOXwsY2FOFD/tB5XDE7JF+cR1V+clWG9PS5lyrj3NvlNFITlpPYawql56yjNJ1IoZ1S68SexF5DSPRVk+VnP0f6Jj8TMBlG4IT1TdrNEGiSm/kEKso2wD/wRbi495+LBjH3ueNYEjQRz/MSNBHP1xI0Ec/XEjQRz9f9BZpYyyyp2o0FNm3ahOrqagGcVFdXCf/WZE31DUKkCAMRTr3x8vIi/TcrtFKUSEUea5lUYfbSeSiuLMWFCxeEQ8ydOxfFJfTfx+MoaqVC5bBRUVGYOHs6LJ10S8PueBBtoUlRShZ2v/8TPEP9MfP+vivnm3UqHoe/+VOATguoWo5jp1Qn8c5S3UeSoInuPtOnhwRN9PGa+fWRoImBe2pO0ORUVjnu++EkRge64v2VYwTP1FQfRmbKHYgvjcS2gn/hg8uv6+I2faFJfe15pCVdL0RTcFSFKVt9XTzpvzzQBk7cvW6miI17KYKk65zYzNS7qKzwQQSGfQhHp6nC8pTaKJ4+dxNwub/LJaclXo/6uvOkb3It/ChVR2mGQJP05L+gruY0Vez5EnLHcabsbpOYmwRNxNsGCZqI52sJmojnawmaiOfr/gJN2CMdSw9bWFhARgEipQQ56hsa1B1GESecUnKJ/t/Tx5vE5R0JmFiAYUpRSo7QPnh4JCZOisWhQ4cwaNAg2NnZIz4hkYBKhaBtojSutDNz5gxYunnA1tlB783RFppw+eQNz31MUTJyLHt+ld7jGdKxqb6R0nJWC6WcR105E5HTFNe+/cUkaCLOTknQRBw/m/ooEjQxcIfMCZokFVbjlq+OItLbEV/dMkHwTEN9KgmWLkN+jTf2lr2HZxYr0nZ0MX2hSW31MRImJTEux/FC6d3+YKxvYkmpNt3BEuU68rL+jfLSXwl6UOlhj2uEl9nX7PPgiK9IkHVsl0uur7twWd8EKv0NgSZJF2ZSeekiRAzbBmtrv/7g7j6dowRNxHO/BE3E87UETcTztQRNxPN1f4Im7JWOpYctCZxYWFxCUWEhpd2065sovceRJtaWMjg5OkJGJYQtibKUZRWgrrIGjh4ugsCrl6cnhg7lUsR1OHb8ZJvjS9JzCbrUw8bGBgsWzCcxFXu4RyiqJ+pr2kITPv66J98Vyvsuf5FKHVOkjNh24qdtSD0cB9/BIZh699ViD2/weBI0MdiFWh1AgiZaucnsG0nQxMAtNidokldRj6s/OQg/ZzusvVuRhtPaUk3aGxPR0GKLwzU/4Z6p4Tp7TF9oUl25B1lp98HReToCQ9/XeVxT71CU/z5piHzYpiHC5YpT4pfASuaKqOj9PU6/nFJ08ihVh43TdDhdR19o0tpah4Sz4+nCzJoqFZ3qcWypASBBE/HOAgmaiOdrCZqI52sJmojn6/4GTdgzjrYWOHPmtFB6mNN0mpubUFxcrOY0a2truDo5oygjn37DKTLF1ga15dWUbmIBn8ggAaII1wkhwSgqLlFL9amvqsGk2Elw8/KGlaPhFWN0gSbb3/gWZdkFmP33G+EeLO7DGq7cwxV82OY9dgtc/DzFOyGNNJIETYzkyB4OI0ETcfxs6qNI0MTAHTInaFJV34z57+6Fk60MWx6Y1uaZs6cnQGZRi6RLa7FMj7Jw+kKTyvJNyMl4DJ1L7xq4ZSbTXSnqyhVyuFJOafF3KMh5Bc5uixEQ9KpW88zLfhZ8HGUKk77QpKE+maJcriT9mBDSj9mg1dgDvZEETcQ7AyRoIp6vJWginq8laCKer/sjNOHSw85ya2zduhWlpaUCOKmtqUZlVVWb46jGDrworaaFqt3kJ2Vxcb02s5Hbkl5IQI9OHsGlh0PDUd/MRzPcdIEmh7/egKzTCZhw00IEj9U9klnf2bY2t2DLa1+iurgcI5ZMw+BZ4/U9VJ/2k6CJOO6XoIk4fjb1USRoYuAOmRM04fJyk/+3E/yzeeCxWW2eOXRsHlxtclHp8CViI3TXutAXmpSXrqUSuM9Q2d2rCSooIirMyaqr9iMr9R7KQZ6EoLBPhKgajq7xD3yJhFiXa7nUS5Smw/omF6gE8XUIDn0ODvZWKK1s1LK/ollbVI/TFNJY+UinvgO1sQRNxNt5CZqI52sJmojnawmaiOfr/ghN2Du2VCq4tbkemzZuJK2SVsgInJSXlwtpNmxubm6UWmOLKhJ07ahPovSsT1QQrKxlXTqaNU5iYyeipoGq8ehbY7jT0TtDE7mNJbVQTyvibqVUvaeUUoncg3yFP32M9Vy6MksSd+W1dbZT63Yied8peIUPwoz7rtdnWJPoI0ETcbZBgibi+NnUR5GgiYE7ZE7QhF0x9+29qKE6c1sp0sSRIk7YNu67DqHOFyDzeBuRg2br7DFN0ITL9JYWfUM36zthbeMPF7crwSV6Oxq/z8KoLKrq4/+4zuOaeoeG+iSK7lhBlXPCKL3mV0qP4VLDzVRqeBeVGvbSevpKwVzuEBjyAoICr9cZmiijXNw8rofvoH9pPfZAbihBE/F2X4Im4vlagibi+VqCJuL5ur9CE/aQPUGH4qJ8HNi/H6xvYkUMorCoCPZ2dnCg0sAtxAQq8yntplMlHO7rHuQDOyfNoq4ODg5YuHAh6pqApmbNUEOfHeoMTVjYtqmhBseOHlU7XF1FFaXnFEHu4gjXQd76DNdlH0/ScRlOUTQVNc0qbfLj07Dvk1+F1+Y8dBPcAvWDNUadrJ4Hk6CJno7TsZsETXR0mJk2l6CJgRtrbtBkxccHUVBZj19J08SXtE3YvtxyO2J9j8Dd7zn4eOsulKUJmuRmPY2KUkUuqdJY7JVFX5VWXPAxivLfJc2P7ivJGLiFfdadwVHiuSuoPKADAoJfEyJN7OUUJhv5vc5zKiv5CfnZz/9/e3cCJkV553H8D3PPMNwwA8M1yHAjglHUBI+IqCRR4xF1c2hiTNY1ao7NZo27ybobsznWRM1hjJrEmERjDjWa4IWKxIiAqIByM9wwXANzMMwF+7419tDT9Mxb1f32S1fPt574BJi33qr6vDXd1b9+D7VfDzlp2uPSeHhMoDqqtn9PhVi/lsFDviwDBn8m0L7dtTChibuWJzRxZ01o4s6a0MSddZhDE61UpOY3WfnuO7Jq1SpvmM6RI63q/7NEZx26p0XsSjh6n54qXdE9KTrraTJLLT2cX1gs6nsyq1u84Tl6YtstmyrljTfe6HCspoZDsmfDdsktUEOJRpuHEvk90cLCQrlABUKNashRbCCkh+XokGnSBWfIxNmn+60yLcsRmrhpFkITN87pfhRCkyRbKNNCk0/+apGs310nv772VBkzqJfsV19BPPjsv8mc8ufVErg3qwDjc4HFYkOTSFgQW5HuaTJs1D3t/7xrxw9l764H1Qf5L6kP8tcFPm4YdtCT7OrJdvXSwXpi14ElNyjnGxM6dT2USQ9p6lV8ohpiEyx40csl1x54UYU3P1BzyMxO6PjdbSdCE3ctTmjizprQxJ01oYk767CHJjoo0b+br8yfLzt37lQr9KngRAUm0UNqIivhRAITvWpOYd/4E7uefPLJUjZshLV5TKJbMl5oood99yroKUtVaFJZWdle/HDrYdm5aqMX8JSOH2Xthjh31iz1JVwfaWzuODRn2VPzZfVLS7xJZ/Xks2HfCE3ctCChiRvndD8KoUmSLZRpockNjyyVt7ful59ePV1OGtZXVlfVysMv3ykfH/9HNWdGYkM3/IYmsUsL79x2h1TveURKy26TfgOvTrKljs/uqidtl1vl6ivlzaU7ZEhZP+nfb4ea2+R+KSiaGncf83Djw7Jx7ZXScHBl4LaqXHOZmhdltZRX/F598zTp+GCF7KiEJu4ajNDEnTWhiTtrQhN31mEPTbSUfpbK7tkqz8ydK4cOHYqLp1fC0UsQ5xYWSE5+btwy5eXlMm36yVJ/6HD0vLHWGqOziWD1xLbFBdnexLbV1dXtx9u5eqOat+WwWvZ3ZPtKP/qHR9Tyys0NjdKirievqKDLuVmiT37atGkyfGS5HFLDjqK3Xeu2yPyfPub90zk3XeVrklxrKCmqiNAkRbAx1RKauHFO96NkbGiycMNe2VXTqFZ7GWpsg/rGFnny7e2i96lvbJV7rjpJdYVsm89D/+x3izbL8m0HpKQ4X86dMFhOGz2gvc5MC02++udl8ur6PfK9S0+UD5wwUF5Zt1see/W3cuNJD0hx73NkWPmPjJ6xBeINz1n7zllq+by9HYrqeUv0/CWRbftmNYSn+smAE6MGPr2U7tCnSN1HXaQdtTVL5JOf+KZcccX75eKLZ6rllWd2ej51qtdP6xE9oVrnW2vTu2ry3P/yCgwsvUHNE+NvDpqN6z4pR1obZMSYX6pvsPwtOdiqBlLbmjgupY2QosoJTVIEG6daQhN31oQm7qwJTdxZZ0JoorX0o2ld7X556cUXE8LTE8fOnj1bahtapEVPhpKCravVc/TEtq3NDd7EtpEJXPdUbpOmg40qxBiqwp62YeE6MNm/bZc01BxsP8O+ZYM67TkTKTRq1CiZNm26HFSBSeyjV2R54wmzZsjkOR9IwZW7r5LQxI05oYkb53Q/SsaFJhv21Mu8lVXqv10q3OgvX5w1tss22KXm77j18RXtYYj++5SyPl5oogOTO/66Ugb3zlPhS5kKYQ55f7/76mkyemDbxFqZFprc/td35dl3d8o3PjRRLphYKn9YulWeXPK83DbjTq8Hgu6JEHSLDU30MBA9HCR6ix2ao3+2deOX1JCR59WQnR+qD//nBT1sWpTXE7jt3VMlf1+wIO75HKx/Rx7/82KZMKGfTJw0Vi0dPOGYcqWlpTJz5kypU98KtR7u+iGnb1GONNSvl6qqhWp6kx5S1OsMFYL07tLiyJEm5TxPFc9RzrN8uWWr2fiLexXLgYOWB0P7Onp6FCI0cdcOhCburAlN3FkTmrizzpTQRIvp+UE2rFsjy5YtCwTYQz0TXDhnjvTIyhO1QnHKNtOSw/q5aPeuHfKPV1/1ziEyrCivV4H0HTrI61ESb44WXXbIhFHSQ62IE2/r27evnH/++XEDoRVzX5WVzy+UvmWD5byvHP1yLmUIjiomNHEDTWjixjndj5JxoYkONnRwonuN6M0Umty/YIPXI+W2Dx37YVXXc8sjb8qD17xPBSdt6Xds+UwLTe58YY386c2t8mUVNl0+bZj8+OV1Mnf5Mvm/M7/hreiiV3YJukWHJi3Nu9QSuR9TvUz2qLk7vqBWzimT7ZtvVT0szpLh5T/pUPXmDZ+X+tpX1fwc96l5Ot4f9LBpU75QTeC26r0J3KJPqrlpqxpKs16eeqrSC03GjS9RIcdpHc47X82OryczazmcpSZrM89ur2ep75XfU55//hdSuWGxGifcWwqLpndpoeeYaah/Q5UtVmVP9uWmH7yycgrUOaXmmypfJ3GcCxGauGsAQhN31oQm7qwJTdxZZ1Jooof9FudnyaJFr8vmzZt9I55++ukycFCpNLYaxg37rjF+QVNoovcqyDkiq1a+K0v+vlBqdx0dqqN/VtS/txyqqZPWOM88A0cNkVw1VCfepp+Vembnq+eljtenQ5kX73nE2+WsG66QwRUjkrzC9Nmd0MRNWxCauHFO96NkXGgSAddDanSAYgpNrvr5Qq+XiR56U6emENe9TPR/etPBy10vrJVHP3f0g6z+t7+8tV2+fekUr0ymhSb3qRDpoYUb5XMzR8u1p42S/3xqhby4qkoemH2Ld73jT3xb9UjICnRfR4cmeoWYupr57UN9mpurZN2756oVZApl3JSOy9HpISMN9W/KyDEPqw/z0wIdM50K6wncehVkyYJXXvEmcNObXlq4vm6hmgS2WYUmm7zQZOzYPpKbN8r7L7Kdfc45yqqfmgHe3xXl5ajQpDBLGhub5PE/3SG1NVVeMJWXX9FpBTrIOtSglpRWoVh+gXk+kxkzZkjJkLJjxgv7O8PMKUVo4q4tCU3cWROauLMmNHFnnUmhiVbLUROn6i9knn32WampqTFCTpw4UcZUjFUTv3Y9xNdYkY8CfkIT/VxUlNtD/vDAw7Jj+w4ftbYVKRk7Iu7cJvq5ZODgUmlWXzDFbjow0cHJ2LNOlqkXn+37WGEoSGjippUITdw4p/tRunVookOV6x5a4s1RooMSHZroQOR6FRjoIEUPz9E//6dTR3hDfeqaWtXPt3k9We65qu1DfHVdU7q3caDze+i1jXLXvLXyqdNHypfOHSvX/GqxLFMTwz54wf+oadp3y+STXpTc3CGB6sxWb44FarjTmnV3yY5tP1Yf4gfL+El/lBz1IV1vK5dfLA0Na2TshIdVj5L3tde9csUlqifGapkw+XG1FO/4QMdMt8J6AjQ101n7BG6tasWcutrFclgNt4kOTXJyBqqAqC2Qm3rSSTJy5Cg53KNtfh0/m36QylNdXxub1XjgvRvlice/6+2m/eK1W0vLfmW8Sp1HgzeXSbR/vONVVFTIpMmTpeVIsODMz7mHrYwOA7W3fp1gS62ADgMVtRxUc06xpVagQPVW01uDer9jS61AYV6WGnIp6vUa69RK6yV7s9WQlMO+emym+lxs1Z+j3oPqaw/Icyo46WorKSmRM8880/vyxcU8ZL3UZK/6GSR2qd/YczzS0iLblq+W555/Xn3R09j+4yz1et9XrfxTs3u/NB86+oxdPLCP9B0y8JhL7eq5ZNkzr8lbTy2QPqq+i//jM96w5UzaigvUkGzVsC2GoduZdM3H41p06MqGQMaGJg89vkitvFIjX7y+8zka9Icd3dPkqZs+IFtXbZL6/XWytc8gbwhOpHfJ07+YK6t21nhL7xblqnGWKlgpUOvJ3/b1K9oeLDPsIf6xN7bIN//yjlxx8nD574smydl3vixVKlz6zcU/l8aGFTLlxMekuPikQL85PVVoUnPgZTX+9npvvwkT7pN+/c9pr6Nyw//Ijh0Py/ARN8vw4V9o//elb5yrZojfItNPfkHy88PfnVJ/s7J37255UU3gpnua7K9+5ZjQJC9/uBQWVsiIESPklFNOUTPbBwsntLUOaJrUA0vPHrr763xZsOBRZdrD6yHUs2eBshymerMMUTPS75fa2qUd2lIHWb2K20Kb2G3QoEFyjur5oh/yzSv5BLpFQllYL/mo21Rbs6VWQN/Tejy+6SE8tWfRPWrPzm77UNHSjYfeuWpp/aFXT4aZqgk5XV1HGI6TqycgVR8s9QTmmbTp9/lNmzbK4sWL415WXl6eXKiGrWTn5HnPGy42ba3vaT/HW/SneZJVnCuv/P3ovG99S/tLn5L+3qnW76uRfdv3qF65h2Xo2OGSo56/o7eunkv2bN4pf/7WL73iF9x0hYyYMsbF5Ts9hv6SrFm9VvuxdnpiGXYw3bOYDYGMC02qd+6VyrfWysJXlkvTgIHyxa98tMtWvvL7z8mNFYWye2WllI0fqb7en9Q+JKdJJdy7NnbsNvizp96SsrpqueH2a716M214zrxVu7whOR8cN1hu//AkmXln2xwmj13+pBrqMS+hSVl7HqmWdauvUN8k7JSBJTeouUxu7NAmehLSrRtvkcJep8rIE37R/rPICjsVk+ZLdvbRFYvC/GsbPYFbU+NGNSym8mhPk3EDvDlN+vTp701mdrDxiPfNWJBNfyNfpIYC7atpUjGJqGFBPWXByz+SDRtWd6gmJ3eYGi+81+thErvpc+jRs20On8iWk5Mjcz70IfUtnRhX8AlyvmEuy/Acd63H8Bx31gzPcWfN8Bx31pk2PCdarkh9Cb5s2duyfv36Y0DPOvts6a2eKVx2iPQzPCdyorvVMsCNu3fLzupdsmLFCrW0cL70H1HaYbLX/dt3y8HqWumteov0GtA2fF5v+rlEz6/WrOZoiV5ZUC9T3KT+W/LoM6KXGT7h/SfJ9Mv8rSTo7o60cySG59hxNNXC8ByTUPf4ecaFJrq3iA5O5r6wzOs2Hxua6DlJ9H+RuU6+/cc3pWdtrZzdV7wPqKtKRnQ6MaweurPwkWflsllT5OTz2oaRZFpo8nrlPvnSH9+SU487Ys0AACAASURBVEf1l3+bPU4u//lrUqImwb33wy+pnjuPSEnZrdJ/4McD/XZs33SLHNg/T032eqaa7PWnx+yrJyJds+J079/HT3lDvVm2fZOwevkp3of6cVPUhKaqh0QmbLpnaC81gdvi9yZwa2mpkd8/8meZMuUEmTL1dPVterbMVoFJbl6RJNI7Pjo00V6tzZWSn7VdnnvuOamu7jjZWmee8UKTM886S/r0HeD0wSvd25vQxF0LEZq4syY0cWdNaOLOOpNDE90Tr1gNiXnhhRdUb9a2RRD0NnXqVBkxslxN/Jr6eUyiWzJIaKL366kejHJaDsmiJYulas+uY26KhgPquX7rLtGr6wwYeXR4uH4u6dtvoBTo3nHvdX89sG231Fcf8Hqm6C0rO1tKJ5Sr58oecvBgkzT2zHF30zk4EqGJA2R1CEITN87pfpSMC030UsN6EthemzapsTMNUjd+vJqjpNybt0Rv+mc6/IgMv9HByq2PL5ceazZITlOj5E6fogKVivbVcnTZJ9/e7u07vLFWJh/YKRfddJnk5reNb8u00OSdHTVy/W+WyMQhveXGs8bIjY8ulRPVfC/fmrVUdu+4WwYMvk4GD/mS7/t6T9XPZffOe9Q3AgNkpFquOCenNO6+G9d+XM2t8bYKVe5V4cpMVeaIrHxbDxPpIROmLvd9vDAUjJ7Abf/+/fLIb3+t5i+ZLpOnnOgNySlVk6wm+pBzTGiiAqm927+mhlRdIM88M8/rCu49pKiJd/XKOi3NbRPTRraeWb3UnCpH55XR/z5lyhQZVX5CwucUhjZJ5BwJTRJRS2wfQpPE3BLZi9AkEbXE9iE0Scwtkb0yOTTRHnlqSMyR1kaZ+7e/qSFIrTJs2DA59dQZcrBJDd1wMyqnvVmChiZ6Rz1UTU3PoZ5TnpG6uroOTawDkJ2rNnr/NuS9AEQ/l5SPHqMmtlWBkZpQNmf+S3Lw7h/LfhWadHimUWFJ6ZmninznO1J7RM1r42MVwkTur+O1D6GJG3lCEzfO6X6UjAtNIuArXl4qddV1ctpHz/TVBv+Yu0gOqLGTF3782DlQ9MSvJcV5svB3z8noaRVSflLnK5H4OlgaF1q/u07OvXO+jB5UJF84p0K+/NhbctFJQ+XWsyvl3Xe/KqWll8ikiXf6uoK9+xbIW29d65U9ccq9MmjQ7E73W7/+/2Tjpntl5IjrZcyYf1fjYetk/vypanLSXnL2WW/7Ol7YCumeH/oB4Z133pHBgweLXg5QfzOUm2t3wqnXF31Yevc+WQ7WD5XXXlviMfXpM10FWP3UNy8b1H+V3r/pvxcXT1SBytGhOWVlZXLaaad53WDZEEAAAQQQQCA9BXRYsmPHDvXc9ZZccMEFaliz/0nk0+WK9u3b5/WMjd12rN0qDXUNUjJ6iIydOM57XupwfWoi2aqv/qfUP/7UMfuWPf2Y5E1UiwnwHJMuzcx5IBBKAUKT95rNFLLoeVI2vLlWzv30nA4NnWk9TfbWN8lHfvp36a8GyV4xfZjoJYg/MWOkXDNtl2zecL2ac+NUGRE170hnd31r636pXHOlNDdtk5LSz6vldP9V9hw4Ojt67H71ta959ecXTpbyikdVD4jdsvbdc7xlcCsmts2rkmmbnt9k25ZN3gRuAwYMkFmzZkltg5oFPYmJ6mJ7mmgzPfypavt3ZECfSbKhslnNb3JArWA0rAOnnphWDw2K3oqKirwJ5NQcyBn37YyNe4meJjYU/dVBTxN/TjZK0dPEhqK/Ouhp4s/JRqlM72kSMSpQ37kcaW2RIz1y1HBax11M3juJRHqaRM6/SA1f3rKpUpYsafuCJ7LV7a6Wml3VMnj4ELny05/wephE9xrRQ5SO7K+W+ms+K+ohp32/I9dfL/2u/bgcKupt4zZKuzroaeKmSehp4sY53Y9CaPJeC3UVmugJYZ+593Gv18rgUR2X28200KRRdV0854cvi15Odc6kIfLE29vkK7PGyocnNMmG1RepuTZGyQnjnzbe19s2flmtmPOcFBWfIWPGPiC9i3K6DE30h/bVy09Ww0daZeykBeqDfo2sX/UhdbyR6nh/NR4vrAX0BG4rViyXcWoY2WHJVsvGJbccXrzQJGKjV3opVpPEzp8/X6qqqoxks847T4VYxd7kr2zHChCauLsrCE3cWROauLMmNHFn3V1CE72CXqFaNrzu0PF7404mNNFPQEV5PVRvmTdV9nE0/NCTu+7esE3Om32elL9vavznEtXbpH7REsm6+ea2OU4++EHp+YUbJe+E8oxd8Y/QxM1rCKGJG+d0P0q3C0300sJbV246ZthOV6GJ/llV5c5jepnoxs200ERf01k/eNmbFHdGeX/RE8N+79IT5YxR+bJ6xWneXBjjpizq8r7eu+tB2bXjh2poTR8pH/uYFBUON4YmukLd00T3OCkbeacKS0aonipXSH7BBFXHH9L99yjh89PfjvQuzFFLV7dIQ1OwlXLiHbSr0ESX12FYVo8WeWbuXLWaUec9f6ZPny5Dh41Qk9G6nUAuYcjjsCOhiTt0QhN31oQm7qwJTdxZd5fQRIvq4OH49DFpa89kQhO9f+S5SA/T0cN1ItvQwn5ScDhPBk6okD5DBx1z8+g52yqfXSAlVZul8IVnJP/++6QxSy0skBO+YUp+fzMITfxKJVeO0CQ5v0zZO+NCEz2MZvlLS6VZ9Q7RPUSK+vaS6ReeJsP0csJq0wHI6tfekctu/aT3d1N5XcdTP/y9zLx61jG9TPT+mRiafOgnf5dqNcv4yP6FsmnfQXnomlOlYnAv1RNkhlrNpl7GTn5NBSLFcX8H6utel83rr/N+VjbyB9K772zvg7qpp4kuv2fX/d5ks/0GXCm9+82RTeuuUZOSniwjxzyUKb9vca9DT+DW2Jx8YKIrN4UmXhn1/FBXs19eeunFuOczatQomTZdzYGiJpB7b97YjPZP9OIITRKVC74foUlws0T3IDRJVC74foQmwc0S3aM7hSaJGtnaL9nQpO1Zpqda/a/B+4Ln8OHDop9Lhvcrlbl3/0EmXfB+GXdOxwnrvef5hctlyWPPyYXXzZER6pn/YM9cORQz7NjWNaZLPYQmblqC0MSNc7ofJeNCE9fgmRiaXPnAQtlSfVAKVBfPBrXu7TM3zZTe+TlquMxF0tS4QUaPe0Ly8sccQ31YTd5aufZjqsxmtcrOZ9QqO1/2yvgNTRrq35KN6z6hepmMlpKhX5UtlTdIr+KZMnz0va6bNbTH8xOa6IvT86msW7NKDQ1a0eFa+/btK+erJY+TnVsltIABTpzQJABWkkUJTZIEDLA7oUkArCSLEpokCRhgd0KTAFhJFrURmuhTKMjtKbt37ZB31WT5+rlk7dK18tLP/iQlY0fKmf98+TFn+eLdv5O9m3bIBz59kYw5ZYLUH8chSkkS+t6d0MQ3VVIFCU2S4suYnQlNkmzKTAxNrnt4iazcWePJFOVmy/O3tK1AtHn9Z6W+bqGMGP1zb66S2G3bpq9Kzf65arLYGWqy2Afbf+w3NNE7rF5xuhxWE5eWlt0mO7fdoXqqnO8N12HzJ+A3NOnZo4f0yu8pCxe+Jlu3bm2v/MI5c6SH6s6a7Nwq/s423KUITdy1H6GJO2tCE3fWhCburAlN3FnbCk28Z1A1v4kcOayGCvdQw7cPyZP/8RPvQj76nZslO/foqn6712+Vl3/ye8krLpSLbr/B3cUe5yMRmrhpAEITN87pfhRCkyRbKBNDk1vUMsOLN7WNIx09sEh+8+kZ3p+3b/66HKj+iwwd/i3p0/+SDnL7dj+kVmj5vvRUSwSXV/zem8A1sgUJTbZuvEVqD8xT9X9ULQH9uPRV/z9k+P8k2UrdZ3e/oYkWyVHDpgrUM4de9riuTi3PrZYWHlw6VA6p1XLYzAKEJmYjWyUITWxJmushNDEb2SpBaGJL0lwPoYnZyFYJm6GJnsA+X/V6jvQaefnHv1cTwm6VM1RvkrIpFe2nvOh3c2XTkndl/KwZMmXOB2xdStrXQ2jipokITdw4p/tRCE2SbKFMDE1ue3KFvLRmlydz+ugBcudlU70/79pxl+zd9YAMKr1ZBpZ8rl3uYN0S2bT+Wu/vZSO/p3qHdFyWOUhosm/Pb6Vq2/9KgVp6uOHgCuk/8ONSUnZrkq3UfXYPEppoFf0w0lB/QDZt3CjjJ0xUy/gx8avfu4XQxK9U8uUITZI39FsDoYlfqeTLEZokb+i3BkITv1LJl7MZmsSezcrnF8qKua/KCWdMlemXz/J+fKimXp76r595f77w69dJr4F9k7+IkNRAaOKmoQhN3Din+1EITZJsoUwMTf732VXy1LLtnswlU8vk32aP8/5cved3asjMt9VErVdJ6bD/8P7t8OEGtcqNnsekUvoPusabiyR2CxKaNB5ao5Y2vtSbaLZVDdMZMPh6NTfKLUm2UvfZPWhoomX0/Cb5ahjWgfpmaT18POfcD1c7EZq4ay9CE3fWhCburAlN3FkTmrizTmVosm/zTpl312+laEAfmXPbZ72LigQpw04cK6df+xF3F5oGRyI0cdMIhCZunNP9KIQmSbZQJoYmP3p5nTyyeLMn8/mZo+Wa00Z5f6498IJs3fhFKe7zQRk26h7v37ZvvlUN2XlKrXLzPrXKza/iagYJTXQFa989V1qaq7y6BqnAZKAKTtj8CSQSmujlCXPUTPVNllbw8Xem4S9FaOKuDQlN3FkTmrizJjRxZ01o4s46laGJvoqnb79PGg7Uyex//ZS39PDf7nhA6vcekJnXXyqlE8rdXWgaHInQxE0jEJq4cU73oxCaJNlCmRia/PK1jXL/3zd4Mt+YM1EumFTq/bnh4DLZuPafJF8NnSmveFT27fmNGkrzHenZM19GVTymVtQZbSU0iQQxujI9NEcP0WHzJ5BIaOKvZkrFChCauLsnCE3cWROauLMmNHFnTWjizjrVocniR5+VjYtWyIkfOUuK+hfLaw89LX2GDJLZX/2Uu4tMkyMRmrhpCEITN87pfhRCkyRbKBNDkz8s3So/nLfGk/nJVdNl2vC28aHNzTtl3buzJDtnsAxTK9psXPdJ79+Hjvhf6dOv8y6RQXuabN5wvZol/TWv7ty8cjVPyvclv2B8ki3VPXYnNHHXzoQm7qwJTdxZE5q4syY0cWdNaOLOOtWhyZY3V8nCh/8qJeNGSg+1EuDOVRvlpEvOkYozp7u7yDQ5EqGJm4YgNHHjnO5HITRJsoUyMTS568W18tgbWzyZe6+eLlOHtYUmra0HZM2K93t/zs4eKC0te3xN1BokNKk98KIaAnRzh1bpqeY3GTe5LURh61qA0MTdHUJo4s6a0MSdNaGJO2tCE3fWhCburFMdmjQdPLr0sL6qrKwsuehb/yLZebnuLjJNjkRo4qYhCE3cOKf7UQhNkmyhTAtNHny1Uh78R2UHlYeuOVVG9T0gG9ZcLofV5KyRLSurj4yd/KpRMEhoogMTHZzEbuVj/0hvE6O0CKGJDyRLRQhNLEH6qIbQxAeSpSKEJpYgfVRDaOIDyVIRQhNLkD6qSXVo8tYTL8naV5Z2OJPzvvJJ6Vs22MfZZVYRQhM37Ulo4sY53Y9CaJJkC2VSaFLX2CKX3vcP0f8fvZ1ZMUi+ctoC2VP102O0xkx4VnJyy7pUDBKaVG3/ruzb/XBCx0myKTNid0ITd81IaOLOmtDEnTWhiTtrQhN31oQm7qxTGZo0NzTKE7f9+JiLKZs8Rs74zMXuLjJNjkRo4qYhCE3cOKf7UQhNkmyhTAtNZt/zyjEiFYN7yffOeylumKFX0dGr6XS1BQlNmpu2ybqV53eoLnq1niSbK+N3JzRx18SEJu6sCU3cWROauLMmNHFnTWjizvp4hCaDThguZ9/4MXcXmSZHIjRx0xCEJm6c0/0ohCZJtlAmhSaa4rKf/0N2HDjUQeW6M8rlY5Mr4841MloNm7HZ00Qf+FDDKtE9TvRQoMJep8jAkn9RY1aLk2yp7rE7oYm7diY0cWdNaOLOmtDEnTWhiTtrQhN31qkMTfRV/O1b90v9vpoOFzTx/NNl0vlnuLvINDkSoYmbhiA0ceOc7kchNEmyhTItNFm7q07+/Yll7cGJXjnnux89UXrlZcv2LbfJgX1PemJ6ctbSoV+TPv0vMQoG6WlirIwCXQoQmri7QQhN3FkTmrizJjRxZ01o4s6a0MSddapDk93rtsjiR59pD050L5P3q6E5OQV57i4yTY5EaOKmIQhN3Din+1EITZJsoUwLTSIcS7dUS3FejuihOdFbq+r9oYfQ6N4lfnt/EJokeZMF2J3QJABWkkUJTZIEDLA7oUkArCSLEpokCRhgd0KTAFhJFiU0SRIwwO6pDk0ip6LDEx2UdMcJYCMGhCYBbswkihKaJIGXQbsSmiTZmJkamiTJ0mF3QhObml3XRWjizprQxJ01oYk7a0ITd9aEJu6sCU3cWbsKTdxdUfoeidDETdsQmrhxTvejEJok2UKEJmZAQhOzka0ShCa2JM31EJqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKEFoYkMx/HUQmiTZhoQmZkBCE7ORrRKEJrYkzfUQmpiNbJUgNLElaa6H0MRsZKsEoYktSXM9hCZmI1slCE1sSZrrITQxG9koQWhiQzH8dRCaJNmGhCZmQEITs5GtEoQmtiTN9RCamI1slSA0sSVprofQxGxkqwShiS1Jcz2EJmYjWyUITWxJmushNDEb2ShBaGJDMfx1EJok2YaEJmZAQhOzka0ShCa2JM31EJqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKEFoYkMx/HWENjSprn5dmpp2SUnJRzq0QmtrveysekqqqxdKXt5gGTjgXOnXb0Z7mdif9y6eckwd0RXq4+zZO6/DMQoLR0vZ0Ku8fyM0Mf8SEJqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKkFoYkvSXA+hidnIRglCExuK4a8jdKHJwYOVsmfPi+q/edJXhSGjy2/p0Arbtj/qBSb63xsbd8nadd+WqSfe7wUoelu16jbxQo+yq0TXtaHybhWAXC0DB34wbmvq+mprlqtg5aL2n2dnF0lx8WRCE5/3P6GJTygLxQhNLCD6rILQxCeUhWKEJhYQfVZBaOITykIxQhMLiD6rIDTxCWWhGKGJBUSfVRCa+IRKshihSZKAGbJ76EITHYTosKN6/0KvCWJDk7eXXS8jhn+2vXfJ5s0PSktrXXu5RYsvlsmT7lLBSbm3vw5FGhurjqkn0r6mn9PTxPybQGhiNrJVgtDElqS5HkITs5GtEoQmtiTN9RCamI1slSA0sSVprofQxGxkqwShiS1Jcz2EJmYjGyUITWwohr+O0IUmXYUZOlDRoUl0z5JIr5Tx4+/wdtUhSk3tcilVPUf0sB3d00T/OdJzJLZJIz1XdBndWyW23I59DeG/C1J8BTo0KS7Mkb01jSk+EtXr0KQwP0uqa5vASLFAQW6WaO/99VinmFqK8rIlK6uH1BxsTvWhun39vQqyPYO6hpZub5FqgN7qfbG19YjUN2Kdauu+RbnS2NwqDU2tqT5Ut6+/X3GuHDzU6nmzpVZgQO88qVXvi00th1N7oG5e+5D+Bd1cgMvXAhkVmugeKCve+aKcPP136gG7yGthPSfJ5i0PeEGK3vScJivVEJ1s9XNdPt4Qn+hbQ4cuOmTRW9N7vVx0ABPpqXLkCDeSH4EePUSw8iOVfBmskzf0VYO6p9X/uK99YSVZCOskAQPsrm9qvfHeFgAtsaLeazXWieEF3AvrgGBJFOcZJAm8gLtiHRAsweLamQ2BjApNdCDyxtJ/6hCa6NBjZ9VfvCE5etOhip7DRPcyicxpogOQ2GE+nd0aeo4UvVWM+br3/wzPMf8SMTzHbGSrBMNzbEma62F4jtnIVgmG59iSNNfD8Byzka0SDM+xJWmuh+E5ZiNbJRieY0vSXA/Dc8xGNkowPMeGYvjryKjQRDeHnrMkenhOlVpJR/cU0SFHpCfKqac82d5ysT1RTE2q69MTzUaG+xCamMRECE3MRrZKEJrYkjTXQ2hiNrJVgtDElqS5HkITs5GtEoQmtiTN9RCamI1slSA0sSVprofQxGxkowShiQ3F8NeRcaGJnqMkL6/EWxJY9zxZu/bbamWcc73VcSI9UXSvkshqObq8/vdIzxEdouhJZiM9T/TfI0sWR+or7j2FJYcD3PuEJgGwkixKaJIkYIDdCU0CYCVZlNAkScAAuxOaBMBKsiihSZKAAXYnNAmAlWRRQpMkAQPsTmgSACuJooQmSeBl0K6hC030cJtt2x+R1pZ6tSpOvTc5a/RqOZFlhnXAocvowEQvLxyZ46S2doVs2vyAN6dJZCtXIUpkSWI98WvVzr/IdDUvit70cBwdnOif6/r0UJ6Kiq+310dPE/NvA6GJ2chWCUITW5LmeghNzEa2ShCa2JI010NoYjayVYLQxJakuR5CE7ORrRKEJrYkzfUQmpiNbJQgNLGhGP46Qhea+CXX4Ul2dlF7uBG7nw5V9BYJU7qqV5fV9engJLY8oYm5RQhNzEa2ShCa2JI010NoYjayVYLQxJakuR5CE7ORrRKEJrYkzfUQmpiNbJUgNLElaa6H0MRsZKMEoYkNxfDXkbGhiaumITQxSxOamI1slSA0sSVprofQxGxkqwShiS1Jcz2EJmYjWyUITWxJmushNDEb2SpBaGJL0lwPoYnZyEYJQhMbiuGvg9AkyTYkNDEDEpqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKkFoYkvSXA+hidnIRglCExuK4a+D0CTJNiQ0MQMSmpiNbJUgNLElaa6H0MRsZKsEoYktSXM9hCZmI1slCE1sSZrrITQxG9kqQWhiS9JcD6GJ2chGCUITG4rhr4PQJMk2JDQxAxKamI1slSA0sSVprofQxGxkqwShiS1Jcz2EJmYjWyUITWxJmushNDEb2SpBaGJL0lwPoYnZyEYJQhMbiuGvg9AkyTYkNDEDEpqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKkFoYkvSXA+hidnIRglCExuK4a+D0CTJNiQ0MQMSmpiNbJXIy82Sovws2VfTZKtK6ulEgNDE3a1BaOLOmtDEnTWhiTtrQhN31oQm7qwJTdxYE5q4cU73oxCapHsLcX4IIIAAAggggAACCCCAAAIIIHBcBAhNjgs7B0UAAQQQQAABBBBAAAEEEEAAgXQXIDRJ9xbi/BBAAAEEEEAAAQQQQAABBBBA4LgIEJocF3YOigACCCCAAAIIIIAAAggggAAC6S5AaJLuLZTg+f3z134gC15f1r73+DEj5E8P/HeH2i777Ddk1brN3r/F/tzP/nq/n/36L/LIE/Nk/p/v9nWmXR3zm//3S/nj0/OPqeedl3/VZd1d1al3POvSW2TPvgNxr9PXSRsK+bHKBGvTdca2X7x7Lllv0zno+tPNOnLNk86+tv3yb/rMpfLPn7ooqfta7xy0ziD+3cU62esMYtpZ2WTPwc/+Nl+v31ldKR/7/O1xLyfZ1+tIpfq95Ue/+LN897bPy4fPO90Gs1eHH6t0eg1JxtrU5tHvjbqsqe2CNkLYrCPXl4iL6TnE1BZBbWPLdyfrriwTfY4M4t9drP1cZ6qfr4O0C2URSLUAoUmqhY9T/fqFLDrI0H8/+4yT5PZ//XT7g+PuvfvbgxT9hj9oQF/52Xe/7P3ctP/Tz78mX7vjPq/swP59fIUm+gW4q2PqN7sVqyqPCXe6IjTVGXvd+u8TKka2X6eN5jFZ+TnHrtoqXaxN16nvoehgLvae6q7WkQ89foKSiJHpnkmkzqD+pvY2naNp/1Tc14m4mM7TdJ1BXeOVT/YcTPunwjr2OvTrd9Xu6i5fW/1aRsJ4HXbbDk1MVqZzNO2fLtam84h9fY697u56XyfiYrpnTG2Bddtzp5970GSZyHNkUH/Ta4DpfjDtb7rGeOdrOmYi97XpPF08XwdtG8ojkEoBQpNU6qZR3bFvJPrF7qs3XNX+DZ5+kf7+vY92Gn509kYUpKeJ6ZiJvNl1VWfkjSf627N4/2a7mTLVOt6HpK5CrkTaM2hbhMFaP8yUDOrXHlj6uUbT70oidfo5bldlMtXadF+b2iJZ13j7h8E69rx1r6fH7vumTBpX3imJH8vo9xRdp+3QxHZ7u3hvTMQ6sk9n79G6La6+5Nz2Hm9B3ssTvefDcF8n4uLnvtZmLowjbZOp1qb72sVzRxhfQxK5r7u6zuP1fJ3oaw/7IWBDgNDEhmII6tAp8+Tx5d4Ht8i3sdEPuPH+LfqyoveP/ne/DwF+jhnbrdLUg8VUZ+XmnV5vmOjQxHSdNpoyE63juXR2T0TKpqJXT+x5hMFaf/DT93JkiJi+hq4+XJrua/2hNGid3eW+tuGS7D3VXayjr9NPLxM/93Xs+4mL0CTZ9nbx3hjU2s97dOT99vIPn+U9F5hez7vLfR3Uxc99bfqgb8M2jO+NQa2D3NeRsqbnSBv2YXgNScY6YhR9nfFCExfP1zbaizoQSFSA0CRRuRDtF3mxjIQHQd7k9WXG7u/njSuWJ+gx9f76BVpvsXOxROr2U6d+6I48FOr9Uv2inqnWse3Z1T0RGeOaijlNYj886Dlw0vm+1uer536I/ra8K7vO7tHo+zaROpN9uQrDfW3DJdnrTNY53uutn9e5rn4vXLxe++llYrqOBa8vP2Z+rFSHJsm29/F4b/Rj7afNI+0RHejantMkbK/XOpAO6mK6r6N7Xvn9kinZ15Gw3NdBrf3c17F2pudIrP0JxHutc/187e9MKYVA6gQITVJnmxY1RybTM/Uq6SxMVx54cgAACdtJREFUiLe/6Y0rduK6mTNOlJs+81Hvw6PpPKLrjk6yE62zs0n0UvFwmMnWkbludPuY7olIG/oZn5zoL0lYrCMf5GN7lkQ+DJaPKO0woaaf3xVTnTYnzeysvYN+UNATenbWuybeB4lEft9NLvGsTfd1kOtM9F6OfT2NtQpyDqbfTVvW0R8E9e+5d5+8Nx+W/nMi7fejXzzeYfLyaJcg8wH5bYewvIYkYh17X8ebrD02kDKFuX5d45ULk3VXLonc165Dk0y29nNfx95/qRyS3Z2s472Hu3y+Tub1h30RsCVAaGJLMg3rMfUGMM1p4uchKsg3J37H/UYo/bzZBa3TTzfyRJqyO1hrFz/3RJD26w7W8b4tN32DbrqvE6kT685XYEn29zcR29h9kj0HP7+btl+vg/bcM93XsSam35NE3buDdcSmq6AsyJcY3cE6SEAZ7eH3vg7y+5eId5ju60Stu7qv45n5eY7EuvN5qPy8r0T8UvV8nUj7sA8CqRAgNEmFahrUaeqS6GembX0ZnQ2NCfrGpcubjhlvpm7TSjemOqObIvLmaZqsMGjzdRdr03XGtp+pfFBnXd5Up+l+MO2fivtan9PKtZvaJ1nWDxYv/+OtLlecMl1HInUG9TZZmc7RtH+6WJvO03SdQV3jlU/2HEz7p8I68pqu/z/6G+CuPIJapiI0MVmZztG0f7pYm85D2+qebZG28/O6FPReN1mlo3UiLqbrMLVFUNdMeQ1JxNpkmchzZFD/7nJfm67TxfN10LahPAKpFCA0SaXucaq7sy5z+nSi51bQL4ir1m32zjJ6/gk/+0cviRa5zOi5Qzq79M6OqctH/0z/PfqBrivKruqMdJ+M7G97WI4fq9hrC6O1n+uMbT/bc5r4OYd0tNbnpB+qF7y+zLsN/U5M19V9nWidfl+Suot1stfp17Orcsmeg5/9U/F6bRoKlMh7QOw+tkMTP1bp+BqSiLWfNte+kc3v65Lfez6s1vr6EnHp6vXaT1v4dY1XrjtZmywTfY70699drP1cZ6qfr/22CeUQcCVAaOJKmuMggAACCCCAAAIIIIAAAggggECoBAhNQtVcnCwCCCCAAAIIIIAAAggggAACCLgSIDRxJc1xEEAAAQQQQAABBBBAAAEEEEAgVAKEJqFqLk4WAQQQQAABBBBAAAEEEEAAAQRcCRCauJLmOAgggAACCCCAAAIIIIAAAgggECoBQpNQNRcniwACCCCAAAIIIIAAAggggAACrgQITVxJcxwEEEAAAQQQQAABBBBAAAEEEAiVAKFJqJqLk0UAAQQQQAABBBBAAAEEEEAAAVcChCaupDkOAggggAACCCCAAAIIIIAAAgiESoDQJFTNxckigAACCCCAAAIIIIAAAggggIArAUITV9IcBwEEEEAAAQQQQAABBBBAAAEEQiVAaBKq5uJkEUAAAQQQQAABBBBAAAEEEEDAlQChiStpjoMAAggggAACCCCAAAIIIIAAAqESIDQJVXNxsggggAACCCCAAAIIIIAAAggg4EqA0MSVNMdBAAEEEEAAAQQQQAABBBBAAIFQCRCahKq5OFkEEEAAAQQQQAABBBBAAAEEEHAlQGjiSprjIIAAAggggAACCCCAAAIIIIBAqAQITULVXJwsAggggAACCCCAAAIIIIAAAgi4EiA0cSXNcRBAAAEEEEAAAQQQQAABBBBAIFQChCahai5OFgEEEEAAAQQQQAABBBBAAAEEXAkQmriS5jgIIIAAAggggAACCCCAAAIIIBAqAUKTUDUXJ4sAAggggAACCCCAAAIIIIAAAq4ECE1cSXMcBBBAAAEEEEAAAQQQQAABBBAIlQChSaiai5NFAAEEEEAAAQQQQAABBBBAAAFXAoQmrqQ5DgIIIIAAAggggAACCCCAAAIIhEqA0CRUzcXJIoAAAggggAACCCCAAAIIIICAKwFCE1fSHAcBBBBAAAEEEEAAAQQQQAABBEIlQGgSqubiZBFAAAEEEEAAAQQQQAABBBBAwJUAoYkraY6DAAIIIIAAAggggAACCCCAAAKhEiA0CVVzcbIIIIAAAggggAACCCCAAAIIIOBKgNDElTTHQQABBBBAAAEEEEAAAQQQQACBUAkQmoSquThZBBBAAAEEEEAAAQQQQAABBBBwJUBo4kqa4yCAAAIIIIAAAggggAACCCCAQKgECE1C1VycLAIIIIAAAggggAACCCCAAAIIuBIgNHElzXEQQAABBBBAAAEEEEAAAQQQQCBUAoQmoWouThYBBBBAAAEEEEAAAQQQQAABBFwJEJq4kuY4CCCAAAIIIIAAAggggAACCCAQKgFCk1A1FyeLAAIIIIAAAggggAACCCCAAAKuBAhNXElzHAQQQAABBBBAAAEEEEAAAQQQCJUAoUmomouTRQABBBBAAAEEEEAAAQQQQAABVwKEJq6kOQ4CCCCAAAIIIIAAAggggAACCIRKgNAkVM3FySKAAAIIIIAAAggggAACCCCAgCsBQhNX0hwHAQQQQAABBBBAAAEEEEAAAQRCJUBoEqrm4mQRQAABBBBAAAEEEEAAAQQQQMCVAKGJK2mOgwACCCCAAAIIIIAAAggggAACoRIgNAlVc3GyCCCAAAIIIIAAAggggAACCCDgSoDQxJU0x0EAAQQQQAABBBBAAAEEEEAAgVAJEJqEqrk4WQQQQAABBBBAAAEEEEAAAQQQcCVAaOJKmuMggAACCCCAAAIIIIAAAggggECoBAhNQtVcnCwCCCCAAAIIIIAAAggggAACCLgSIDRxJc1xEEAAAQQQQAABBBBAAAEEEEAgVAKEJqFqLk4WAQQQQAABBBBAAAEEEEAAAQRcCRCauJLmOAgggAACCCCAAAIIIIAAAgggECoBQpNQNRcniwACCCCAAAIIIIAAAggggAACrgQITVxJcxwEEEAAAQQQQAABBBBAAAEEEAiVAKFJqJqLk0UAAQQQQAABBBBAAAEEEEAAAVcChCaupDkOAggggAACCCCAAAIIIIAAAgiESoDQJFTNxckigAACCCCAAAIIIIAAAggggIArAUITV9IcBwEEEEAAAQQQQAABBBBAAAEEQiVAaBKq5uJkEUAAAQQQQAABBBBAAAEEEEDAlQChiStpjoMAAggggAACCCCAAAIIIIAAAqESIDQJVXNxsggggAACCCCAAAIIIIAAAggg4EqA0MSVNMdBAAEEEEAAAQQQQAABBBBAAIFQCRCahKq5OFkEEEAAAQQQQAABBBBAAAEEEHAlQGjiSprjIIAAAggggAACCCCAAAIIIIBAqAQITULVXJwsAggggAACCCCAAAIIIIAAAgi4EiA0cSXNcRBAAAEEEEAAAQQQQAABBBBAIFQC/w8KtaGYGDmcjQAAAABJRU5ErkJggg=="
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"env.render('advanced_figure', time_format=\"%Y-%m-%d\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### A Complete Example using `stable-baselines`"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertext": [
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10427.993279
margin: 1693.331400
free margin: 8734.661879
margin level: 6.158271",
"balance: 10458.293279 USD
equity: 9693.437185
margin: 2904.659027
free margin: 6788.778158
margin level: 3.337203",
"balance: 10059.737185 USD
equity: 10915.543626
margin: 4544.226100
free margin: 6371.317526
margin level: 2.402069",
"balance: 10253.053626 USD
equity: 10013.189048
margin: 3610.715700
free margin: 6402.473348
margin level: 2.773187",
"balance: 10013.189048 USD
equity: 9983.029048
margin: 97.720000
free margin: 9885.309048
margin level: 102.159528",
"balance: 9983.029048 USD
equity: 11390.181190
margin: 3811.719100
free margin: 7578.462090
margin level: 2.988201",
"balance: 10544.379048 USD
equity: 13683.987726
margin: 8466.999800
free margin: 5216.987926
margin level: 1.616155",
"balance: 13834.767726 USD
equity: 13842.496240
margin: 6438.115120
free margin: 7404.381119
margin level: 2.150085",
"balance: 13855.810394 USD
equity: 12183.961275
margin: 6448.627975
free margin: 5735.333301
margin level: 1.889388",
"balance: 12570.988335 USD
equity: 12439.138794
margin: 6302.140320
free margin: 6136.998474
margin level: 1.973796",
"balance: 12263.185323 USD
equity: 12462.221086
margin: 5418.630920
free margin: 7043.590166
margin level: 2.299884",
"balance: 12705.985323 USD
equity: 12575.547594
margin: 907.605920
free margin: 11667.941674
margin level: 13.855736",
"balance: 12854.331292 USD
equity: 12298.750082
margin: 1227.605920
free margin: 11071.144161
margin level: 10.018484",
"balance: 12472.515434 USD
equity: 12078.264306
margin: 2118.885120
free margin: 9959.379186
margin level: 5.700292",
"balance: 12412.816070 USD
equity: 12401.429005
margin: 2694.568520
free margin: 9706.860484
margin level: 4.602380",
"balance: 12303.776070 USD
equity: 12158.836935
margin: 3458.762920
free margin: 8700.074015
margin level: 3.515372",
"balance: 12303.776070 USD
equity: 11594.928561
margin: 5548.762920
free margin: 6046.165641
margin level: 2.089642",
"balance: 11750.942025 USD
equity: 12921.491196
margin: 3162.065620
free margin: 9759.425576
margin level: 4.086408",
"balance: 12611.822025 USD
equity: 12962.031448
margin: 3213.580320
free margin: 9748.451128
margin level: 4.033517",
"balance: 12865.371893 USD
equity: 12802.221682
margin: 5181.405220
free margin: 7620.816462
margin level: 2.470801",
"balance: 12771.489326 USD
equity: 15731.934346
margin: 4700.908120
free margin: 11031.026226
margin level: 3.346573",
"balance: 15663.375579 USD
equity: 14552.771889
margin: 2585.983720
free margin: 11966.788168
margin level: 5.627557",
"balance: 15812.062186 USD
equity: 14182.930290
margin: 2131.566800
free margin: 12051.363490
margin level: 6.653758",
"balance: 14182.930290 USD
equity: 14082.042901
margin: 790.913400
free margin: 13291.129501
margin level: 17.804785",
"balance: 14182.930290 USD
equity: 15119.085247
margin: 4219.979400
free margin: 10899.105847
margin level: 3.582739",
"balance: 15047.805247 USD
equity: 15743.138153
margin: 3319.066000
free margin: 12424.072153
margin level: 4.743243",
"balance: 15743.138153 USD
equity: 14965.829579
margin: 6132.479162
free margin: 8833.350418
margin level: 2.440421",
"balance: 15523.898153 USD
equity: 13436.435984
margin: 4879.889562
free margin: 8556.546422
margin level: 2.753430",
"balance: 15401.683778 USD
equity: 13824.741923
margin: 6819.349562
free margin: 7005.392362
margin level: 2.027282",
"balance: 15401.683778 USD
equity: 13449.394067
margin: 8841.740362
free margin: 4607.653706
margin level: 1.521125",
"balance: 15292.363906 USD
equity: 13281.798203
margin: 7701.740362
free margin: 5580.057842
margin level: 1.724519",
"balance: 13981.963906 USD
equity: 14140.088741
margin: 9712.288362
free margin: 4427.800379
margin level: 1.455897",
"balance: 15435.248099 USD
equity: 11744.587405
margin: 8416.071668
free margin: 3328.515736
margin level: 1.395495",
"balance: 14383.536910 USD
equity: 12079.238163
margin: 6412.671162
free margin: 5666.567001
margin level: 1.883652",
"balance: 14193.705638 USD
equity: 16341.160088
margin: 10391.466047
free margin: 5949.694040
margin level: 1.572556",
"balance: 15587.444966 USD
equity: 17336.720344
margin: 7112.775162
free margin: 10223.945182
margin level: 2.437406",
"balance: 15528.425727 USD
equity: 16574.016221
margin: 6062.775162
free margin: 10511.241060
margin level: 2.733734",
"balance: 14979.786496 USD
equity: 18271.453713
margin: 6644.557162
free margin: 11626.896551
margin level: 2.749838",
"balance: 15986.712361 USD
equity: 17694.145849
margin: 5143.695001
free margin: 12550.450848
margin level: 3.439968",
"balance: 15866.221917 USD
equity: 18706.238034
margin: 6160.446201
free margin: 12545.791833
margin level: 3.036507",
"balance: 16502.571917 USD
equity: 18930.683203
margin: 7893.830201
free margin: 11036.853002
margin level: 2.398162",
"balance: 17044.399307 USD
equity: 20183.268230
margin: 7942.592562
free margin: 12240.675668
margin level: 2.541144",
"balance: 16566.865642 USD
equity: 19571.433575
margin: 4847.817362
free margin: 14723.616214
margin level: 4.037164",
"balance: 16578.745642 USD
equity: 20642.718446
margin: 4716.897062
free margin: 15925.821384
margin level: 4.376334",
"balance: 16301.545642 USD
equity: 18899.112562
margin: 6115.079462
free margin: 12784.033100
margin level: 3.090575",
"balance: 17204.452518 USD
equity: 17746.701279
margin: 3735.079462
free margin: 14011.621818
margin level: 4.751358",
"balance: 17203.032518 USD
equity: 18935.596593
margin: 5676.595862
free margin: 13259.000732
margin level: 3.335731",
"balance: 17263.452518 USD
equity: 19040.181158
margin: 9265.998162
free margin: 9774.182997
margin level: 2.054844",
"balance: 17024.422965 USD
equity: 18667.449807
margin: 9085.998162
free margin: 9581.451646
margin level: 2.054529",
"balance: 17065.619203 USD
equity: 19682.078605
margin: 11651.465921
free margin: 8030.612684
margin level: 1.689236",
"balance: 13882.917772 USD
equity: 17342.087023
margin: 9816.175621
free margin: 7525.911401
margin level: 1.766685",
"balance: 13882.917772 USD
equity: 15176.113528
margin: 10606.175621
free margin: 4569.937906
margin level: 1.430875",
"balance: 14979.077772 USD
equity: 15335.963850
margin: 11199.983721
free margin: 4135.980129
margin level: 1.369284",
"balance: 12383.026762 USD
equity: 16001.556846
margin: 10192.264044
free margin: 5809.292803
margin level: 1.569971",
"balance: 12748.231397 USD
equity: 17176.631690
margin: 9128.378562
free margin: 8048.253128
margin level: 1.881674",
"balance: 12801.788742 USD
equity: 19347.529343
margin: 11818.378562
free margin: 7529.150782
margin level: 1.637071",
"balance: 14163.509854 USD
equity: 20190.888069
margin: 10187.165077
free margin: 10003.722991
margin level: 1.981993",
"balance: 20190.888069 USD
equity: 21081.173214
margin: 1865.619800
free margin: 19215.553414
margin level: 11.299823",
"balance: 21081.173214 USD
equity: 20750.310576
margin: 3408.495753
free margin: 17341.814823
margin level: 6.087821",
"balance: 20991.893214 USD
equity: 19968.116005
margin: 5668.815753
free margin: 14299.300252
margin level: 3.522449",
"balance: 20687.269032 USD
equity: 19255.134699
margin: 7299.541953
free margin: 11955.592746
margin level: 2.637855",
"balance: 20569.699325 USD
equity: 18677.077585
margin: 5141.252153
free margin: 13535.825432
margin level: 3.632788",
"balance: 20035.209059 USD
equity: 19539.340249
margin: 5021.853038
free margin: 14517.487211
margin level: 3.890863",
"balance: 19328.442142 USD
equity: 20271.397338
margin: 7491.283038
free margin: 12780.114299
margin level: 2.705998",
"balance: 20233.507940 USD
equity: 22380.439524
margin: 6911.600153
free margin: 15468.839371
margin level: 3.238098",
"balance: 23115.735505 USD
equity: 23172.803697
margin: 5172.950553
free margin: 17999.853144
margin level: 4.479611",
"balance: 23340.360461 USD
equity: 24762.474289
margin: 4607.864953
free margin: 20154.609336
margin level: 5.373958",
"balance: 24122.820461 USD
equity: 24082.721613
margin: 4557.099753
free margin: 19525.621860
margin level: 5.284660",
"balance: 24082.721613 USD
equity: 23289.788576
margin: 2098.734400
free margin: 21191.054176
margin level: 11.097063",
"balance: 24095.028576 USD
equity: 23132.170912
margin: 4759.879704
free margin: 18372.291208
margin level: 4.859823",
"balance: 24083.540506 USD
equity: 23297.762478
margin: 7620.265269
free margin: 15677.497208
margin level: 3.057343",
"balance: 25016.172478 USD
equity: 24550.987129
margin: 8727.875543
free margin: 15823.111586
margin level: 2.812940",
"balance: 24115.812478 USD
equity: 22224.905397
margin: 8705.593643
free margin: 13519.311754
margin level: 2.552945",
"balance: 23149.837494 USD
equity: 22254.956757
margin: 9084.210343
free margin: 13170.746414
margin level: 2.449850",
"balance: 22232.615676 USD
equity: 22079.068030
margin: 7456.766000
free margin: 14622.302030
margin level: 2.960944",
"balance: 22552.768030 USD
equity: 21124.591071
margin: 5616.766000
free margin: 15507.825071
margin level: 3.760988",
"balance: 22164.191071 USD
equity: 19197.822980
margin: 8123.237763
free margin: 11074.585217
margin level: 2.363322",
"balance: 22092.277156 USD
equity: 19160.188472
margin: 10502.648755
free margin: 8657.539717
margin level: 1.824320"
],
"legendgroup": "g1",
"line": {
"color": "rgba(31, 119, 180, 1)"
},
"mode": "lines+markers",
"name": "EURUSD",
"opacity": 1,
"type": "scatter",
"x": [
"2021-05-05T00:00:00+00:00",
"2021-05-06T00:00:00+00:00",
"2021-05-07T00:00:00+00:00",
"2021-05-10T00:00:00+00:00",
"2021-05-11T00:00:00+00:00",
"2021-05-12T00:00:00+00:00",
"2021-05-13T00:00:00+00:00",
"2021-05-14T00:00:00+00:00",
"2021-05-17T00:00:00+00:00",
"2021-05-18T00:00:00+00:00",
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-24T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-02T00:00:00+00:00",
"2021-06-03T00:00:00+00:00",
"2021-06-04T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-28T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00",
"2021-09-03T00:00:00+00:00"
],
"y": [
1.20036,
1.20646,
1.21618,
1.21282,
1.2147000000000001,
1.20705,
1.20791,
1.21441,
1.21511,
1.2221899999999999,
1.21744,
1.22269,
1.21806,
1.2215,
1.22497,
1.21922,
1.21934,
1.21896,
1.2225,
1.22126,
1.221,
1.21265,
1.21662,
1.21893,
1.21726,
1.21787,
1.21751,
1.21063,
1.212,
1.21264,
1.19943,
1.19069,
1.18597,
1.19185,
1.19413,
1.19258,
1.19315,
1.1937,
1.19242,
1.1896,
1.1856,
1.18497,
1.18646,
1.18634,
1.18231,
1.17903,
1.18449,
1.18774,
1.18606,
1.17765,
1.18358,
1.18118,
1.18055,
1.17987,
1.17805,
1.17946,
1.17707,
1.17689,
1.18029,
1.18165,
1.18441,
1.18865,
1.1873,
1.18688,
1.18637,
1.18367,
1.18327,
1.17611,
1.17362,
1.17203,
1.17388,
1.17296,
1.17962,
1.17768,
1.17081,
1.17108,
1.16756,
1.16996,
1.1745700000000001,
1.17555,
1.17716,
1.17515,
1.1795499999999999,
1.17962,
1.18083,
1.18384,
1.18744,
1.18772
],
"yaxis": "y"
},
{
"hovertext": [
"order id: 1
hold probability: 0.0197
hold: False
volume: 0.057020
modified volume: 0.0600
fee: 0.000300
margin: 73.331400
error: ",
"order id: 3
hold probability: 0.4105
hold: False
volume: -0.660544
modified volume: 0.6600
fee: 0.000300
margin: 803.510400
error: ",
"order id: 6
hold probability: 0.1222
hold: False
volume: -1.533316
modified volume: 1.5300
fee: 0.000300
margin: 1870.715700
error: ",
"order id: 9
hold probability: 0.4218
hold: False
volume: -0.078686
modified volume: 0.0800
fee: 0.000300
margin: 97.720000
error: ",
"order id: 10
hold probability: 0.1633
hold: False
volume: -1.031333
modified volume: 1.0300
fee: 0.000300
margin: 1261.719100
error: ",
"order id: 12
hold probability: 0.0948
hold: False
volume: -3.594075
modified volume: 3.5900
fee: 0.000300
margin: 4376.999800
error: ",
"order id: 14
hold probability: 0.2571
hold: False
volume: -0.755971
modified volume: 0.7600
fee: 0.000300
margin: 926.698400
error: ",
"order id:
hold probability: 0.1026
hold: False
volume: -1.941671
modified volume: 1.9400
fee: nan
margin: nan
error: cannot add more orders",
"order id: 19
hold probability: 0.3800
hold: False
volume: -3.691902
modified volume: 3.6900
fee: 0.000300
margin: 4511.025000
error: ",
"order id: 21
hold probability: 0.1840
hold: False
volume: 0.153873
modified volume: 0.1500
fee: 0.000300
margin: 183.189000
error: ",
"order id: 24
hold probability: 0.3722
hold: False
volume: -1.157874
modified volume: 1.1600
fee: 0.000300
margin: 1411.279200
error: ",
"order id: 26
hold probability: 0.1249
hold: False
volume: -0.677162
modified volume: 0.6800
fee: 0.000300
margin: 828.872400
error: ",
"order id: 27
hold probability: 0.1968
hold: False
volume: -1.363324
modified volume: 1.3600
fee: 0.000300
margin: 1655.473600
error: ",
"order id:
hold probability: 0.1383
hold: False
volume: -3.015301
modified volume: 3.0200
fee: nan
margin: nan
error: cannot add more orders",
"order id: 30
hold probability: 0.0775
hold: False
volume: 0.000517
modified volume: 0.0100
fee: 0.000300
margin: 12.175100
error: ",
"order id: 32
hold probability: 0.2227
hold: False
volume: -1.410881
modified volume: 1.4100
fee: 0.000300
margin: 1706.988300
error: ",
"order id: 34
hold probability: 0.4415
hold: False
volume: -0.828066
modified volume: 0.8300
fee: 0.000300
margin: 1006.491200
error: ",
"order id: 36
hold probability: 0.1728
hold: False
volume: 0.761568
modified volume: 0.7600
fee: 0.000300
margin: 911.566800
error: ",
"order id: 38
hold probability: 0.1767
hold: False
volume: -0.217252
modified volume: 0.2200
fee: 0.000300
margin: 260.913400
error: ",
"order id: 40
hold probability: 0.3769
hold: False
volume: 0.360622
modified volume: 0.3600
fee: 0.000300
margin: 429.066000
error: ",
"order id: 43
hold probability: 0.1396
hold: False
volume: -2.519364
modified volume: 2.5200
fee: 0.000300
margin: 3005.301600
error: ",
"order id: 45
hold probability: 0.3244
hold: False
volume: 0.483436
modified volume: 0.4800
fee: 0.000300
margin: 572.712000
error: ",
"order id: 47
hold probability: 0.0815
hold: False
volume: 1.557413
modified volume: 1.5600
fee: 0.000300
margin: 1862.172000
error: ",
"order id: 49
hold probability: 0.3756
hold: False
volume: 0.739571
modified volume: 0.7400
fee: 0.000300
margin: 882.390800
error: ",
"order id:
hold probability: 0.4918
hold: False
volume: -1.303699
modified volume: 1.3000
fee: nan
margin: nan
error: cannot add more orders",
"order id: 51
hold probability: 0.1712
hold: False
volume: -1.195292
modified volume: 1.2000
fee: 0.000300
margin: 1422.720000
error: ",
"order id: 53
hold probability: 0.1828
hold: False
volume: -0.880098
modified volume: 0.8800
fee: 0.000300
margin: 1042.773600
error: ",
"order id:
hold probability: 0.3457
hold: False
volume: 0.401877
modified volume: 0.4000
fee: nan
margin: nan
error: cannot add more orders",
"order id: 57
hold probability: 0.4052
hold: False
volume: -1.643127
modified volume: 1.6400
fee: 0.000300
margin: 1945.597600
error: ",
"order id: 62
hold probability: 0.0826
hold: False
volume: -0.037989
modified volume: 0.0400
fee: 0.000300
margin: 47.379600
error: ",
"order id: 64
hold probability: 0.3776
hold: False
volume: -0.652665
modified volume: 0.6500
fee: 0.000300
margin: 772.031000
error: ",
"order id: 67
hold probability: 0.2425
hold: False
volume: -0.522799
modified volume: 0.5200
fee: 0.000300
margin: 616.751200
error: ",
"order id: 69
hold probability: 0.0834
hold: False
volume: -1.095374
modified volume: 1.1000
fee: 0.000300
margin: 1295.415000
error: ",
"order id: 72
hold probability: 0.1588
hold: False
volume: -0.360228
modified volume: 0.3600
fee: 0.000300
margin: 425.224800
error: ",
"order id: 73
hold probability: 0.3006
hold: False
volume: -0.194337
modified volume: 0.1900
fee: 0.000300
margin: 224.304500
error: ",
"order id: 75
hold probability: 0.2375
hold: False
volume: 0.023767
modified volume: 0.0200
fee: 0.000300
margin: 23.597400
error: ",
"order id:
hold probability: 0.3316
hold: False
volume: -1.191934
modified volume: 1.1900
fee: nan
margin: nan
error: cannot add more orders",
"order id: 78
hold probability: 0.3269
hold: False
volume: -0.528096
modified volume: 0.5300
fee: 0.000300
margin: 625.113800
error: ",
"order id: 80
hold probability: 0.2330
hold: False
volume: -3.236174
modified volume: 3.2400
fee: 0.000300
margin: 3813.706800
error: ",
"order id:
hold probability: 0.3297
hold: False
volume: 0.589941
modified volume: 0.5900
fee: nan
margin: nan
error: cannot add more orders",
"order id: 82
hold probability: 0.1872
hold: False
volume: 1.363381
modified volume: 1.3600
fee: 0.000300
margin: 1605.194400
error: ",
"order id: 85
hold probability: 0.2723
hold: False
volume: -4.007377
modified volume: 4.0100
fee: 0.000300
margin: 4738.416500
error: ",
"order id:
hold probability: 0.1301
hold: False
volume: -1.840736
modified volume: 1.8400
fee: nan
margin: nan
error: cannot add more orders",
"order id: 87
hold probability: 0.4071
hold: False
volume: -1.852755
modified volume: 1.8500
fee: 0.000300
margin: 2199.002500
error: ",
"order id: 88
hold probability: 0.2929
hold: False
volume: -3.373545
modified volume: 3.3700
fee: 0.000300
margin: 4001.201000
error: ",
"order id: 93
hold probability: 0.4196
hold: False
volume: -2.363127
modified volume: 2.3600
fee: 0.000300
margin: 2793.461200
error: ",
"order id: 96
hold probability: 0.2078
hold: False
volume: -0.739540
modified volume: 0.7400
fee: 0.000300
margin: 875.619800
error: ",
"order id: 98
hold probability: 0.4474
hold: False
volume: 0.324806
modified volume: 0.3200
fee: 0.000300
margin: 376.355200
error: ",
"order id: 101
hold probability: 0.0552
hold: False
volume: -0.956741
modified volume: 0.9600
fee: 0.000300
margin: 1126.675200
error: ",
"order id: 103
hold probability: 0.2650
hold: False
volume: -1.375901
modified volume: 1.3800
fee: 0.000300
margin: 1617.401400
error: ",
"order id: 105
hold probability: 0.0559
hold: False
volume: 0.570950
modified volume: 0.5700
fee: 0.000300
margin: 669.111600
error: ",
"order id: 109
hold probability: 0.2540
hold: False
volume: -1.496685
modified volume: 1.5000
fee: 0.000300
margin: 1769.430000
error: ",
"order id: 111
hold probability: 0.0846
hold: False
volume: -1.967693
modified volume: 1.9700
fee: 0.000300
margin: 2320.029600
error: ",
"order id: 113
hold probability: 0.1522
hold: False
volume: -0.998951
modified volume: 1.0000
fee: 0.000300
margin: 1170.810000
error: ",
"order id: 115
hold probability: 0.3759
hold: False
volume: -2.432130
modified volume: 2.4300
fee: 0.000300
margin: 2845.724400
error: ",
"order id: 116
hold probability: 0.4056
hold: False
volume: -1.819777
modified volume: 1.8200
fee: 0.000300
margin: 2124.959200
error: ",
"order id: 118
hold probability: 0.4484
hold: False
volume: -1.637370
modified volume: 1.6400
fee: 0.000300
margin: 1918.734400
error: ",
"order id: 120
hold probability: 0.3947
hold: False
volume: -1.686003
modified volume: 1.6900
fee: 0.000300
margin: 1985.023300
error: ",
"order id:
hold probability: 0.2778
hold: False
volume: -0.348331
modified volume: 0.3500
fee: nan
margin: nan
error: cannot add more orders",
"order id: 127
hold probability: 0.3390
hold: False
volume: -1.351973
modified volume: 1.3500
fee: 0.000300
margin: 1586.452500
error: ",
"order id: 129
hold probability: 0.2134
hold: False
volume: -0.799289
modified volume: 0.8000
fee: 0.000300
margin: 943.640000
error: ",
"order id: 131
hold probability: 0.1654
hold: False
volume: -2.297539
modified volume: 2.3000
fee: 0.000300
margin: 2713.126000
error: ",
"order id:
hold probability: 0.3429
hold: False
volume: -1.616945
modified volume: 1.6200
fee: nan
margin: nan
error: cannot add more orders",
"order id: 134
hold probability: 0.1596
hold: False
volume: -2.123765
modified volume: 2.1200
fee: 0.000300
margin: 2509.740800
error: ",
"order id:
hold probability: 0.4972
hold: False
volume: -0.231550
modified volume: 0.2300
fee: nan
margin: nan
error: cannot add more orders"
],
"legendgroup": "g1",
"marker": {
"color": [
"green",
"red",
"red",
"red",
"red",
"red",
"red",
"gray",
"red",
"green",
"red",
"red",
"red",
"gray",
"green",
"red",
"red",
"green",
"red",
"green",
"red",
"green",
"green",
"green",
"gray",
"red",
"red",
"gray",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"green",
"gray",
"red",
"red",
"gray",
"green",
"red",
"gray",
"red",
"red",
"red",
"red",
"green",
"red",
"red",
"green",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"gray",
"red",
"red",
"red",
"gray",
"red",
"gray"
],
"size": [
8.329177057356608,
11.620947630922693,
16.394014962593516,
8.438902743142144,
13.650872817955113,
27.69576059850374,
12.169576059850375,
18.64339152119701,
28.244389027431424,
8.82294264339152,
14.364089775561096,
11.73067331670823,
15.46134663341646,
24.56857855361596,
8.054862842892769,
15.735660847880299,
12.553615960099751,
12.169576059850375,
9.206982543640898,
9.975062344139651,
21.82543640897756,
10.633416458852867,
16.55860349127182,
12.059850374064837,
15.132169576059852,
14.58354114713217,
12.82793017456359,
10.194513715710723,
16.99750623441397,
8.219451371571072,
11.566084788029926,
10.85286783042394,
14.034912718204488,
9.975062344139651,
9.042394014962593,
8.109725685785536,
14.528678304239403,
10.907730673316708,
25.77556109725686,
11.236907730673316,
15.46134663341646,
30,
18.09476309226933,
18.149625935162096,
26.488778054862845,
20.947630922693264,
12.059850374064837,
9.75561097256858,
13.266832917705734,
15.571072319201996,
11.127182044887782,
16.22942643391521,
18.80798004987531,
13.486284289276808,
21.331670822942648,
17.98503740648379,
16.99750623441397,
17.271820448877804,
9.920199501246882,
15.40648379052369,
12.389027431421447,
20.61845386533666,
16.887780548628427,
19.630922693266832,
9.261845386533667
],
"symbol": [
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down",
"triangle-down"
]
},
"mode": "markers",
"name": "EURUSD",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-18T00:00:00+00:00",
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-24T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-04T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-28T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00"
],
"y": [
1.2221899999999999,
1.21744,
1.22269,
1.2215,
1.22497,
1.21922,
1.21934,
1.21896,
1.2225,
1.22126,
1.21662,
1.21893,
1.21726,
1.21787,
1.21751,
1.21063,
1.21264,
1.19943,
1.18597,
1.19185,
1.19258,
1.19315,
1.1937,
1.19242,
1.1896,
1.1856,
1.18497,
1.18646,
1.18634,
1.18449,
1.18774,
1.18606,
1.17765,
1.18118,
1.18055,
1.17987,
1.17805,
1.17946,
1.17707,
1.17689,
1.18029,
1.18165,
1.18441,
1.18865,
1.1873,
1.18367,
1.18327,
1.17611,
1.17362,
1.17203,
1.17388,
1.17962,
1.17768,
1.17081,
1.17108,
1.16756,
1.16996,
1.1745700000000001,
1.17716,
1.17515,
1.1795499999999999,
1.17962,
1.18083,
1.18384,
1.18744
],
"yaxis": "y"
},
{
"hovertext": [
"order id: 1
order type: Buy
close probability: 0.8125
margin: 73.331400
profit: 1.200000",
"order id: 3
order type: Sell
close probability: 0.9388
margin: 803.510400
profit: -60.720000",
"order id: 6
order type: Sell
close probability: 0.5019
margin: 1870.715700
profit: 136.170000",
"order id: 9
order type: Sell
close probability: 0.7774
margin: 97.720000
profit: -30.160000",
"order id: 10
order type: Sell
close probability: 0.5958
margin: 1261.719100
profit: 561.350000",
"order id: 12
order type: Sell
close probability: 0.7855
margin: 4376.999800
profit: -1285.220000",
"order id: 14
order type: Sell
close probability: 0.5057
margin: 926.698400
profit: -168.720000",
"order id: 19
order type: Sell
close probability: 0.7416
margin: 4511.025000
profit: 442.800000",
"order id: 21
order type: Buy
close probability: 0.6777
margin: 183.189000
profit: -39.450000",
"order id: 24
order type: Sell
close probability: 0.7763
margin: 1411.279200
profit: -109.040000",
"order id: 26
order type: Sell
close probability: 0.6051
margin: 828.872400
profit: 76.160000",
"order id: 27
order type: Sell
close probability: 0.5807
margin: 1655.473600
profit: 860.880000",
"order id: 30
order type: Buy
close probability: 0.5036
margin: 12.175100
profit: -5.810000",
"order id: 32
order type: Sell
close probability: 0.8727
margin: 1706.988300
profit: -325.710000",
"order id: 34
order type: Sell
close probability: 0.5110
margin: 1006.491200
profit: 1071.530000",
"order id: 36
order type: Buy
close probability: 0.8465
margin: 911.566800
profit: -1045.760000",
"order id: 38
order type: Sell
close probability: 0.7436
margin: 260.913400
profit: -186.120000",
"order id: 40
order type: Buy
close probability: 0.8938
margin: 429.066000
profit: 15.480000",
"order id: 43
order type: Sell
close probability: 0.6380
margin: 3005.301600
profit: -219.240000",
"order id: 45
order type: Buy
close probability: 0.6997
margin: 572.712000
profit: 12.000000",
"order id: 47
order type: Buy
close probability: 0.8298
margin: 1862.172000
profit: -1310.400000",
"order id: 49
order type: Buy
close probability: 0.5460
margin: 882.390800
profit: -573.500000",
"order id: 51
order type: Sell
close probability: 0.8541
margin: 1422.720000
profit: -124.800000",
"order id: 53
order type: Sell
close probability: 0.6970
margin: 1042.773600
profit: 207.680000",
"order id: 57
order type: Sell
close probability: 0.5095
margin: 1945.597600
profit: 254.200000",
"order id: 62
order type: Sell
close probability: 0.8957
margin: 47.379600
profit: -14.200000",
"order id: 64
order type: Sell
close probability: 0.7534
margin: 772.031000
profit: 636.350000",
"order id: 67
order type: Sell
close probability: 0.6076
margin: 616.751200
profit: 113.360000",
"order id: 72
order type: Sell
close probability: 0.8276
margin: 425.224800
profit: 11.880000",
"order id: 69
order type: Sell
close probability: 0.6933
margin: 1295.415000
profit: -277.200000",
"order id: 75
order type: Buy
close probability: 0.5442
margin: 23.597400
profit: -1.420000",
"order id: 73
order type: Sell
close probability: 0.8233
margin: 224.304500
profit: 60.420000",
"order id: 78
order type: Sell
close probability: 0.6572
margin: 625.113800
profit: -59.890000",
"order id: 80
order type: Sell
close probability: 0.7559
margin: 3813.706800
profit: -1581.120000",
"order id: 82
order type: Buy
close probability: 0.8372
margin: 1605.194400
profit: 1096.160000",
"order id: 85
order type: Sell
close probability: 0.6970
margin: 4738.416500
profit: -2385.950000",
"order id: 87
order type: Sell
close probability: 0.6615
margin: 2199.002500
profit: 271.950000",
"order id: 88
order type: Sell
close probability: 0.5151
margin: 4001.201000
profit: 1122.210000",
"order id: 93
order type: Sell
close probability: 0.5584
margin: 2793.461200
profit: 23.600000",
"order id: 96
order type: Sell
close probability: 0.5754
margin: 875.619800
profit: 507.640000",
"order id: 98
order type: Buy
close probability: 0.6256
margin: 376.355200
profit: -89.280000",
"order id: 101
order type: Sell
close probability: 0.5848
margin: 1126.675200
profit: 123.840000",
"order id: 103
order type: Sell
close probability: 0.6536
margin: 1617.401400
profit: -296.700000",
"order id: 105
order type: Buy
close probability: 0.9363
margin: 669.111600
profit: -69.540000",
"order id: 109
order type: Sell
close probability: 0.8424
margin: 1769.430000
profit: 1276.500000
---------------------------------
order id: 111
order type: Sell
close probability: 0.5241
margin: 2320.029600
profit: 1294.290000",
"order id: 113
order type: Sell
close probability: 0.5929
margin: 1170.810000
profit: -57.000000",
"order id: 115
order type: Sell
close probability: 0.5243
margin: 2845.724400
profit: 782.460000",
"order id: 116
order type: Sell
close probability: 0.9654
margin: 2124.959200
profit: -491.400000",
"order id: 118
order type: Sell
close probability: 0.6793
margin: 1918.734400
profit: -900.360000",
"order id: 120
order type: Sell
close probability: 0.6516
margin: 1985.023300
profit: -892.320000",
"order id: 127
order type: Sell
close probability: 0.6824
margin: 1586.452500
profit: -643.950000",
"order id: 129
order type: Sell
close probability: 0.5448
margin: 943.640000
profit: -367.200000"
],
"legendgroup": "g1",
"marker": {
"color": "black",
"line": {
"width": 1.5
},
"size": 7,
"symbol": "line-ns"
},
"mode": "markers",
"name": "EURUSD",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-24T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-02T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-09-01T00:00:00+00:00"
],
"y": [
1.22269,
1.21806,
1.2215,
1.22497,
1.21922,
1.2225,
1.22126,
1.221,
1.21893,
1.21726,
1.21751,
1.21063,
1.212,
1.21264,
1.19943,
1.18597,
1.19413,
1.19258,
1.19315,
1.1937,
1.1856,
1.18497,
1.18634,
1.18231,
1.18449,
1.18774,
1.17765,
1.18358,
1.18055,
1.17987,
1.17946,
1.17707,
1.18029,
1.18165,
1.18865,
1.1873,
1.18688,
1.18367,
1.18327,
1.17611,
1.17362,
1.17203,
1.17388,
1.17296,
1.17081,
1.17108,
1.16756,
1.16996,
1.17515,
1.1795499999999999,
1.17962,
1.18384
],
"yaxis": "y"
},
{
"hovertext": [
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10427.993279
margin: 1693.331400
free margin: 8734.661879
margin level: 6.158271",
"balance: 10458.293279 USD
equity: 9693.437185
margin: 2904.659027
free margin: 6788.778158
margin level: 3.337203",
"balance: 10059.737185 USD
equity: 10915.543626
margin: 4544.226100
free margin: 6371.317526
margin level: 2.402069",
"balance: 10253.053626 USD
equity: 10013.189048
margin: 3610.715700
free margin: 6402.473348
margin level: 2.773187",
"balance: 10013.189048 USD
equity: 9983.029048
margin: 97.720000
free margin: 9885.309048
margin level: 102.159528",
"balance: 9983.029048 USD
equity: 11390.181190
margin: 3811.719100
free margin: 7578.462090
margin level: 2.988201",
"balance: 10544.379048 USD
equity: 13683.987726
margin: 8466.999800
free margin: 5216.987926
margin level: 1.616155",
"balance: 13834.767726 USD
equity: 13842.496240
margin: 6438.115120
free margin: 7404.381119
margin level: 2.150085",
"balance: 13855.810394 USD
equity: 12183.961275
margin: 6448.627975
free margin: 5735.333301
margin level: 1.889388",
"balance: 12570.988335 USD
equity: 12439.138794
margin: 6302.140320
free margin: 6136.998474
margin level: 1.973796",
"balance: 12263.185323 USD
equity: 12462.221086
margin: 5418.630920
free margin: 7043.590166
margin level: 2.299884",
"balance: 12705.985323 USD
equity: 12575.547594
margin: 907.605920
free margin: 11667.941674
margin level: 13.855736",
"balance: 12854.331292 USD
equity: 12298.750082
margin: 1227.605920
free margin: 11071.144161
margin level: 10.018484",
"balance: 12472.515434 USD
equity: 12078.264306
margin: 2118.885120
free margin: 9959.379186
margin level: 5.700292",
"balance: 12412.816070 USD
equity: 12401.429005
margin: 2694.568520
free margin: 9706.860484
margin level: 4.602380",
"balance: 12303.776070 USD
equity: 12158.836935
margin: 3458.762920
free margin: 8700.074015
margin level: 3.515372",
"balance: 12303.776070 USD
equity: 11594.928561
margin: 5548.762920
free margin: 6046.165641
margin level: 2.089642",
"balance: 11750.942025 USD
equity: 12921.491196
margin: 3162.065620
free margin: 9759.425576
margin level: 4.086408",
"balance: 12611.822025 USD
equity: 12962.031448
margin: 3213.580320
free margin: 9748.451128
margin level: 4.033517",
"balance: 12865.371893 USD
equity: 12802.221682
margin: 5181.405220
free margin: 7620.816462
margin level: 2.470801",
"balance: 12771.489326 USD
equity: 15731.934346
margin: 4700.908120
free margin: 11031.026226
margin level: 3.346573",
"balance: 15663.375579 USD
equity: 14552.771889
margin: 2585.983720
free margin: 11966.788168
margin level: 5.627557",
"balance: 15812.062186 USD
equity: 14182.930290
margin: 2131.566800
free margin: 12051.363490
margin level: 6.653758",
"balance: 14182.930290 USD
equity: 14082.042901
margin: 790.913400
free margin: 13291.129501
margin level: 17.804785",
"balance: 14182.930290 USD
equity: 15119.085247
margin: 4219.979400
free margin: 10899.105847
margin level: 3.582739",
"balance: 15047.805247 USD
equity: 15743.138153
margin: 3319.066000
free margin: 12424.072153
margin level: 4.743243",
"balance: 15743.138153 USD
equity: 14965.829579
margin: 6132.479162
free margin: 8833.350418
margin level: 2.440421",
"balance: 15523.898153 USD
equity: 13436.435984
margin: 4879.889562
free margin: 8556.546422
margin level: 2.753430",
"balance: 15401.683778 USD
equity: 13824.741923
margin: 6819.349562
free margin: 7005.392362
margin level: 2.027282",
"balance: 15401.683778 USD
equity: 13449.394067
margin: 8841.740362
free margin: 4607.653706
margin level: 1.521125",
"balance: 15292.363906 USD
equity: 13281.798203
margin: 7701.740362
free margin: 5580.057842
margin level: 1.724519",
"balance: 13981.963906 USD
equity: 14140.088741
margin: 9712.288362
free margin: 4427.800379
margin level: 1.455897",
"balance: 15435.248099 USD
equity: 11744.587405
margin: 8416.071668
free margin: 3328.515736
margin level: 1.395495",
"balance: 14383.536910 USD
equity: 12079.238163
margin: 6412.671162
free margin: 5666.567001
margin level: 1.883652",
"balance: 14193.705638 USD
equity: 16341.160088
margin: 10391.466047
free margin: 5949.694040
margin level: 1.572556",
"balance: 15587.444966 USD
equity: 17336.720344
margin: 7112.775162
free margin: 10223.945182
margin level: 2.437406",
"balance: 15528.425727 USD
equity: 16574.016221
margin: 6062.775162
free margin: 10511.241060
margin level: 2.733734",
"balance: 14979.786496 USD
equity: 18271.453713
margin: 6644.557162
free margin: 11626.896551
margin level: 2.749838",
"balance: 15986.712361 USD
equity: 17694.145849
margin: 5143.695001
free margin: 12550.450848
margin level: 3.439968",
"balance: 15866.221917 USD
equity: 18706.238034
margin: 6160.446201
free margin: 12545.791833
margin level: 3.036507",
"balance: 16502.571917 USD
equity: 18930.683203
margin: 7893.830201
free margin: 11036.853002
margin level: 2.398162",
"balance: 17044.399307 USD
equity: 20183.268230
margin: 7942.592562
free margin: 12240.675668
margin level: 2.541144",
"balance: 16566.865642 USD
equity: 19571.433575
margin: 4847.817362
free margin: 14723.616214
margin level: 4.037164",
"balance: 16578.745642 USD
equity: 20642.718446
margin: 4716.897062
free margin: 15925.821384
margin level: 4.376334",
"balance: 16301.545642 USD
equity: 18899.112562
margin: 6115.079462
free margin: 12784.033100
margin level: 3.090575",
"balance: 17204.452518 USD
equity: 17746.701279
margin: 3735.079462
free margin: 14011.621818
margin level: 4.751358",
"balance: 17203.032518 USD
equity: 18935.596593
margin: 5676.595862
free margin: 13259.000732
margin level: 3.335731",
"balance: 17263.452518 USD
equity: 19040.181158
margin: 9265.998162
free margin: 9774.182997
margin level: 2.054844",
"balance: 17024.422965 USD
equity: 18667.449807
margin: 9085.998162
free margin: 9581.451646
margin level: 2.054529",
"balance: 17065.619203 USD
equity: 19682.078605
margin: 11651.465921
free margin: 8030.612684
margin level: 1.689236",
"balance: 13882.917772 USD
equity: 17342.087023
margin: 9816.175621
free margin: 7525.911401
margin level: 1.766685",
"balance: 13882.917772 USD
equity: 15176.113528
margin: 10606.175621
free margin: 4569.937906
margin level: 1.430875",
"balance: 14979.077772 USD
equity: 15335.963850
margin: 11199.983721
free margin: 4135.980129
margin level: 1.369284",
"balance: 12383.026762 USD
equity: 16001.556846
margin: 10192.264044
free margin: 5809.292803
margin level: 1.569971",
"balance: 12748.231397 USD
equity: 17176.631690
margin: 9128.378562
free margin: 8048.253128
margin level: 1.881674",
"balance: 12801.788742 USD
equity: 19347.529343
margin: 11818.378562
free margin: 7529.150782
margin level: 1.637071",
"balance: 14163.509854 USD
equity: 20190.888069
margin: 10187.165077
free margin: 10003.722991
margin level: 1.981993",
"balance: 20190.888069 USD
equity: 21081.173214
margin: 1865.619800
free margin: 19215.553414
margin level: 11.299823",
"balance: 21081.173214 USD
equity: 20750.310576
margin: 3408.495753
free margin: 17341.814823
margin level: 6.087821",
"balance: 20991.893214 USD
equity: 19968.116005
margin: 5668.815753
free margin: 14299.300252
margin level: 3.522449",
"balance: 20687.269032 USD
equity: 19255.134699
margin: 7299.541953
free margin: 11955.592746
margin level: 2.637855",
"balance: 20569.699325 USD
equity: 18677.077585
margin: 5141.252153
free margin: 13535.825432
margin level: 3.632788",
"balance: 20035.209059 USD
equity: 19539.340249
margin: 5021.853038
free margin: 14517.487211
margin level: 3.890863",
"balance: 19328.442142 USD
equity: 20271.397338
margin: 7491.283038
free margin: 12780.114299
margin level: 2.705998",
"balance: 20233.507940 USD
equity: 22380.439524
margin: 6911.600153
free margin: 15468.839371
margin level: 3.238098",
"balance: 23115.735505 USD
equity: 23172.803697
margin: 5172.950553
free margin: 17999.853144
margin level: 4.479611",
"balance: 23340.360461 USD
equity: 24762.474289
margin: 4607.864953
free margin: 20154.609336
margin level: 5.373958",
"balance: 24122.820461 USD
equity: 24082.721613
margin: 4557.099753
free margin: 19525.621860
margin level: 5.284660",
"balance: 24082.721613 USD
equity: 23289.788576
margin: 2098.734400
free margin: 21191.054176
margin level: 11.097063",
"balance: 24095.028576 USD
equity: 23132.170912
margin: 4759.879704
free margin: 18372.291208
margin level: 4.859823",
"balance: 24083.540506 USD
equity: 23297.762478
margin: 7620.265269
free margin: 15677.497208
margin level: 3.057343",
"balance: 25016.172478 USD
equity: 24550.987129
margin: 8727.875543
free margin: 15823.111586
margin level: 2.812940",
"balance: 24115.812478 USD
equity: 22224.905397
margin: 8705.593643
free margin: 13519.311754
margin level: 2.552945",
"balance: 23149.837494 USD
equity: 22254.956757
margin: 9084.210343
free margin: 13170.746414
margin level: 2.449850",
"balance: 22232.615676 USD
equity: 22079.068030
margin: 7456.766000
free margin: 14622.302030
margin level: 2.960944",
"balance: 22552.768030 USD
equity: 21124.591071
margin: 5616.766000
free margin: 15507.825071
margin level: 3.760988",
"balance: 22164.191071 USD
equity: 19197.822980
margin: 8123.237763
free margin: 11074.585217
margin level: 2.363322",
"balance: 22092.277156 USD
equity: 19160.188472
margin: 10502.648755
free margin: 8657.539717
margin level: 1.824320"
],
"legendgroup": "g2",
"line": {
"color": "rgba(144, 94, 131, 1)"
},
"mode": "lines+markers",
"name": "GBPCAD",
"opacity": 1,
"type": "scatter",
"x": [
"2021-05-05T00:00:00+00:00",
"2021-05-06T00:00:00+00:00",
"2021-05-07T00:00:00+00:00",
"2021-05-10T00:00:00+00:00",
"2021-05-11T00:00:00+00:00",
"2021-05-12T00:00:00+00:00",
"2021-05-13T00:00:00+00:00",
"2021-05-14T00:00:00+00:00",
"2021-05-17T00:00:00+00:00",
"2021-05-18T00:00:00+00:00",
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-24T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-02T00:00:00+00:00",
"2021-06-03T00:00:00+00:00",
"2021-06-04T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-28T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00",
"2021-09-03T00:00:00+00:00"
],
"y": [
1.70525,
1.68648,
1.69619,
1.7070699999999999,
1.71108,
1.70468,
1.7082899999999999,
1.70635,
1.7059199999999999,
1.71128,
1.71211,
1.7107,
1.70726,
1.7044000000000001,
1.7066,
1.71089,
1.71345,
1.71356,
1.7132399999999999,
1.70755,
1.70462,
1.7068400000000001,
1.70999,
1.71255,
1.7139199999999999,
1.70927,
1.71433,
1.71691,
1.71341,
1.71492,
1.71638,
1.71949,
1.72017,
1.72173,
1.7158099999999998,
1.7177,
1.7149299999999998,
1.70721,
1.71244,
1.71535,
1.71437,
1.71059,
1.70511,
1.70716,
1.71879,
1.72167,
1.72692,
1.7307000000000001,
1.72832,
1.72767,
1.73236,
1.7407,
1.73684,
1.74244,
1.7273800000000001,
1.72183,
1.72851,
1.72728,
1.73336,
1.7481900000000001,
1.7405300000000001,
1.73688,
1.73335,
1.73577,
1.7441499999999999,
1.7412999999999998,
1.7408299999999999,
1.7419799999999999,
1.7408000000000001,
1.7316500000000001,
1.73282,
1.72889,
1.7357200000000002,
1.7402199999999999,
1.7349700000000001,
1.74061,
1.74874,
1.7468,
1.73506,
1.72784,
1.73259,
1.7377,
1.7353399999999999,
1.7338900000000002,
1.73501,
1.7372800000000002,
1.73603,
1.7362600000000001
],
"yaxis": "y2"
},
{
"hovertext": [
"order id: 4
hold probability: 0.4880
hold: False
volume: 1.039318
modified volume: 1.0400
fee: 0.000300
margin: 1467.817227
error: ",
"order id: 15
hold probability: 0.3344
hold: False
volume: 0.320123
modified volume: 0.3200
fee: 0.000300
margin: 454.416920
error: ",
"order id: 17
hold probability: 0.4845
hold: False
volume: -0.240470
modified volume: 0.2400
fee: 0.000300
margin: 340.512854
error: ",
"order id: 44
hold probability: 0.3912
hold: False
volume: 2.239063
modified volume: 2.2400
fee: 0.000300
margin: 3127.177562
error: ",
"order id: 54
hold probability: 0.3411
hold: False
volume: 1.576187
modified volume: 1.5800
fee: 0.000300
margin: 2173.400507
error: ",
"order id: 58
hold probability: 0.3309
hold: False
volume: 1.924624
modified volume: 1.9200
fee: 0.000300
margin: 2655.917286
error: ",
"order id: 65
hold probability: 0.4128
hold: False
volume: 0.552500
modified volume: 0.5500
fee: 0.000300
margin: 764.486439
error: ",
"order id:
hold probability: 0.4725
hold: False
volume: 2.047558
modified volume: 2.0500
fee: nan
margin: nan
error: cannot add more orders",
"order id: 83
hold probability: 0.4567
hold: False
volume: 0.246626
modified volume: 0.2500
fee: 0.000300
margin: 345.387160
error: ",
"order id:
hold probability: 0.4361
hold: False
volume: -0.660105
modified volume: 0.6600
fee: nan
margin: nan
error: cannot add more orders",
"order id:
hold probability: 0.4940
hold: False
volume: 2.176184
modified volume: 2.1800
fee: nan
margin: nan
error: cannot add more orders",
"order id: 89
hold probability: 0.2163
hold: False
volume: 0.546371
modified volume: 0.5500
fee: 0.000300
margin: 764.882982
error: ",
"order id: 94
hold probability: 0.2577
hold: False
volume: 0.477664
modified volume: 0.4800
fee: 0.000300
margin: 666.526316
error: ",
"order id: 99
hold probability: 0.3777
hold: False
volume: 1.273880
modified volume: 1.2700
fee: 0.000300
margin: 1762.140553
error: ",
"order id: 107
hold probability: 0.4457
hold: False
volume: 1.681137
modified volume: 1.6800
fee: 0.000300
margin: 2319.712485
error: ",
"order id: 121
hold probability: 0.3735
hold: False
volume: -0.419654
modified volume: 0.4200
fee: 0.000300
margin: 576.122004
error: ",
"order id: 123
hold probability: 0.3664
hold: False
volume: 0.936833
modified volume: 0.9400
fee: 0.000300
margin: 1290.385566
error: ",
"order id: 125
hold probability: 0.3043
hold: False
volume: 1.339601
modified volume: 1.3400
fee: 0.000300
margin: 1844.117843
error: ",
"order id: 135
hold probability: 0.3862
hold: False
volume: 1.621046
modified volume: 1.6200
fee: 0.000300
margin: 2230.370963
error: ",
"order id: 137
hold probability: 0.4146
hold: False
volume: 1.925529
modified volume: 1.9300
fee: 0.000300
margin: 2669.410991
error: "
],
"legendgroup": "g2",
"marker": {
"color": [
"green",
"green",
"red",
"green",
"green",
"green",
"green",
"gray",
"green",
"gray",
"gray",
"green",
"green",
"green",
"green",
"red",
"green",
"green",
"green",
"green"
],
"size": [
14.036939313984169,
9.857519788918205,
9.393139841688654,
21.00263852242744,
17.171503957783642,
19.145118733509236,
11.192612137203167,
19.899736147757256,
9.451187335092348,
11.8311345646438,
20.654353562005277,
11.192612137203167,
10.786279683377309,
15.37203166226913,
17.751978891820578,
10.437994722955144,
13.45646437994723,
15.778364116094988,
17.40369393139842,
19.203166226912927
],
"symbol": [
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up"
]
},
"mode": "markers",
"name": "GBPCAD",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-19T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-28T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00"
],
"y": [
1.71211,
1.71345,
1.71356,
1.7177,
1.71059,
1.70716,
1.7307000000000001,
1.72767,
1.73336,
1.7481900000000001,
1.7405300000000001,
1.73335,
1.7412999999999998,
1.7419799999999999,
1.72889,
1.73506,
1.72784,
1.73259,
1.7372800000000002,
1.73603
],
"yaxis": "y2"
},
{
"hovertext": [
"order id: 4
order type: Buy
close probability: 0.7366
margin: 1467.817227
profit: -147.473692",
"order id: 17
order type: Sell
close probability: 0.7656
margin: 340.512854
profit: 0.397941",
"order id: 15
order type: Buy
close probability: 0.5259
margin: 454.416920
profit: 148.686607",
"order id: 54
order type: Buy
close probability: 0.8395
margin: 2173.400507
profit: -740.821260",
"order id: 58
order type: Buy
close probability: 0.8153
margin: 2655.917286
profit: 1745.538580",
"order id: 65
order type: Buy
close probability: 0.5072
margin: 764.486439
profit: 59.799815",
"order id: 83
order type: Buy
close probability: 0.6680
margin: 345.387160
profit: -6.217957",
"order id: 89
order type: Buy
close probability: 0.5415
margin: 764.882982
profit: 93.254635",
"order id: 44
order type: Buy
close probability: 0.7053
margin: 3127.177562
profit: 4091.594259
---------------------------------
order id: 94
order type: Buy
close probability: 0.9003
margin: 666.526316
profit: -29.571312",
"order id: 107
order type: Buy
close probability: 0.5746
margin: 2319.712485
profit: 1474.035892",
"order id: 99
order type: Buy
close probability: 0.5758
margin: 1762.140553
profit: 447.639917",
"order id: 121
order type: Sell
close probability: 0.6554
margin: 576.122004
profit: 72.393086
---------------------------------
order id: 123
order type: Buy
close probability: 0.7409
margin: 1290.385566
profit: 332.258372",
"order id: 125
order type: Buy
close probability: 0.6324
margin: 1844.117843
profit: 106.301118"
],
"legendgroup": "g2",
"marker": {
"color": "black",
"line": {
"width": 1.5
},
"size": 7,
"symbol": "line-ns"
},
"mode": "markers",
"name": "GBPCAD",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-20T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-30T00:00:00+00:00"
],
"y": [
1.7107,
1.7132399999999999,
1.71949,
1.70511,
1.71879,
1.73236,
1.73335,
1.73577,
1.7408299999999999,
1.7402199999999999,
1.7468,
1.73259,
1.7338900000000002
],
"yaxis": "y2"
},
{
"hovertext": [
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf",
"balance: 10000.000000 USD
equity: 10427.993279
margin: 1693.331400
free margin: 8734.661879
margin level: 6.158271",
"balance: 10458.293279 USD
equity: 9693.437185
margin: 2904.659027
free margin: 6788.778158
margin level: 3.337203",
"balance: 10059.737185 USD
equity: 10915.543626
margin: 4544.226100
free margin: 6371.317526
margin level: 2.402069",
"balance: 10253.053626 USD
equity: 10013.189048
margin: 3610.715700
free margin: 6402.473348
margin level: 2.773187",
"balance: 10013.189048 USD
equity: 9983.029048
margin: 97.720000
free margin: 9885.309048
margin level: 102.159528",
"balance: 9983.029048 USD
equity: 11390.181190
margin: 3811.719100
free margin: 7578.462090
margin level: 2.988201",
"balance: 10544.379048 USD
equity: 13683.987726
margin: 8466.999800
free margin: 5216.987926
margin level: 1.616155",
"balance: 13834.767726 USD
equity: 13842.496240
margin: 6438.115120
free margin: 7404.381119
margin level: 2.150085",
"balance: 13855.810394 USD
equity: 12183.961275
margin: 6448.627975
free margin: 5735.333301
margin level: 1.889388",
"balance: 12570.988335 USD
equity: 12439.138794
margin: 6302.140320
free margin: 6136.998474
margin level: 1.973796",
"balance: 12263.185323 USD
equity: 12462.221086
margin: 5418.630920
free margin: 7043.590166
margin level: 2.299884",
"balance: 12705.985323 USD
equity: 12575.547594
margin: 907.605920
free margin: 11667.941674
margin level: 13.855736",
"balance: 12854.331292 USD
equity: 12298.750082
margin: 1227.605920
free margin: 11071.144161
margin level: 10.018484",
"balance: 12472.515434 USD
equity: 12078.264306
margin: 2118.885120
free margin: 9959.379186
margin level: 5.700292",
"balance: 12412.816070 USD
equity: 12401.429005
margin: 2694.568520
free margin: 9706.860484
margin level: 4.602380",
"balance: 12303.776070 USD
equity: 12158.836935
margin: 3458.762920
free margin: 8700.074015
margin level: 3.515372",
"balance: 12303.776070 USD
equity: 11594.928561
margin: 5548.762920
free margin: 6046.165641
margin level: 2.089642",
"balance: 11750.942025 USD
equity: 12921.491196
margin: 3162.065620
free margin: 9759.425576
margin level: 4.086408",
"balance: 12611.822025 USD
equity: 12962.031448
margin: 3213.580320
free margin: 9748.451128
margin level: 4.033517",
"balance: 12865.371893 USD
equity: 12802.221682
margin: 5181.405220
free margin: 7620.816462
margin level: 2.470801",
"balance: 12771.489326 USD
equity: 15731.934346
margin: 4700.908120
free margin: 11031.026226
margin level: 3.346573",
"balance: 15663.375579 USD
equity: 14552.771889
margin: 2585.983720
free margin: 11966.788168
margin level: 5.627557",
"balance: 15812.062186 USD
equity: 14182.930290
margin: 2131.566800
free margin: 12051.363490
margin level: 6.653758",
"balance: 14182.930290 USD
equity: 14082.042901
margin: 790.913400
free margin: 13291.129501
margin level: 17.804785",
"balance: 14182.930290 USD
equity: 15119.085247
margin: 4219.979400
free margin: 10899.105847
margin level: 3.582739",
"balance: 15047.805247 USD
equity: 15743.138153
margin: 3319.066000
free margin: 12424.072153
margin level: 4.743243",
"balance: 15743.138153 USD
equity: 14965.829579
margin: 6132.479162
free margin: 8833.350418
margin level: 2.440421",
"balance: 15523.898153 USD
equity: 13436.435984
margin: 4879.889562
free margin: 8556.546422
margin level: 2.753430",
"balance: 15401.683778 USD
equity: 13824.741923
margin: 6819.349562
free margin: 7005.392362
margin level: 2.027282",
"balance: 15401.683778 USD
equity: 13449.394067
margin: 8841.740362
free margin: 4607.653706
margin level: 1.521125",
"balance: 15292.363906 USD
equity: 13281.798203
margin: 7701.740362
free margin: 5580.057842
margin level: 1.724519",
"balance: 13981.963906 USD
equity: 14140.088741
margin: 9712.288362
free margin: 4427.800379
margin level: 1.455897",
"balance: 15435.248099 USD
equity: 11744.587405
margin: 8416.071668
free margin: 3328.515736
margin level: 1.395495",
"balance: 14383.536910 USD
equity: 12079.238163
margin: 6412.671162
free margin: 5666.567001
margin level: 1.883652",
"balance: 14193.705638 USD
equity: 16341.160088
margin: 10391.466047
free margin: 5949.694040
margin level: 1.572556",
"balance: 15587.444966 USD
equity: 17336.720344
margin: 7112.775162
free margin: 10223.945182
margin level: 2.437406",
"balance: 15528.425727 USD
equity: 16574.016221
margin: 6062.775162
free margin: 10511.241060
margin level: 2.733734",
"balance: 14979.786496 USD
equity: 18271.453713
margin: 6644.557162
free margin: 11626.896551
margin level: 2.749838",
"balance: 15986.712361 USD
equity: 17694.145849
margin: 5143.695001
free margin: 12550.450848
margin level: 3.439968",
"balance: 15866.221917 USD
equity: 18706.238034
margin: 6160.446201
free margin: 12545.791833
margin level: 3.036507",
"balance: 16502.571917 USD
equity: 18930.683203
margin: 7893.830201
free margin: 11036.853002
margin level: 2.398162",
"balance: 17044.399307 USD
equity: 20183.268230
margin: 7942.592562
free margin: 12240.675668
margin level: 2.541144",
"balance: 16566.865642 USD
equity: 19571.433575
margin: 4847.817362
free margin: 14723.616214
margin level: 4.037164",
"balance: 16578.745642 USD
equity: 20642.718446
margin: 4716.897062
free margin: 15925.821384
margin level: 4.376334",
"balance: 16301.545642 USD
equity: 18899.112562
margin: 6115.079462
free margin: 12784.033100
margin level: 3.090575",
"balance: 17204.452518 USD
equity: 17746.701279
margin: 3735.079462
free margin: 14011.621818
margin level: 4.751358",
"balance: 17203.032518 USD
equity: 18935.596593
margin: 5676.595862
free margin: 13259.000732
margin level: 3.335731",
"balance: 17263.452518 USD
equity: 19040.181158
margin: 9265.998162
free margin: 9774.182997
margin level: 2.054844",
"balance: 17024.422965 USD
equity: 18667.449807
margin: 9085.998162
free margin: 9581.451646
margin level: 2.054529",
"balance: 17065.619203 USD
equity: 19682.078605
margin: 11651.465921
free margin: 8030.612684
margin level: 1.689236",
"balance: 13882.917772 USD
equity: 17342.087023
margin: 9816.175621
free margin: 7525.911401
margin level: 1.766685",
"balance: 13882.917772 USD
equity: 15176.113528
margin: 10606.175621
free margin: 4569.937906
margin level: 1.430875",
"balance: 14979.077772 USD
equity: 15335.963850
margin: 11199.983721
free margin: 4135.980129
margin level: 1.369284",
"balance: 12383.026762 USD
equity: 16001.556846
margin: 10192.264044
free margin: 5809.292803
margin level: 1.569971",
"balance: 12748.231397 USD
equity: 17176.631690
margin: 9128.378562
free margin: 8048.253128
margin level: 1.881674",
"balance: 12801.788742 USD
equity: 19347.529343
margin: 11818.378562
free margin: 7529.150782
margin level: 1.637071",
"balance: 14163.509854 USD
equity: 20190.888069
margin: 10187.165077
free margin: 10003.722991
margin level: 1.981993",
"balance: 20190.888069 USD
equity: 21081.173214
margin: 1865.619800
free margin: 19215.553414
margin level: 11.299823",
"balance: 21081.173214 USD
equity: 20750.310576
margin: 3408.495753
free margin: 17341.814823
margin level: 6.087821",
"balance: 20991.893214 USD
equity: 19968.116005
margin: 5668.815753
free margin: 14299.300252
margin level: 3.522449",
"balance: 20687.269032 USD
equity: 19255.134699
margin: 7299.541953
free margin: 11955.592746
margin level: 2.637855",
"balance: 20569.699325 USD
equity: 18677.077585
margin: 5141.252153
free margin: 13535.825432
margin level: 3.632788",
"balance: 20035.209059 USD
equity: 19539.340249
margin: 5021.853038
free margin: 14517.487211
margin level: 3.890863",
"balance: 19328.442142 USD
equity: 20271.397338
margin: 7491.283038
free margin: 12780.114299
margin level: 2.705998",
"balance: 20233.507940 USD
equity: 22380.439524
margin: 6911.600153
free margin: 15468.839371
margin level: 3.238098",
"balance: 23115.735505 USD
equity: 23172.803697
margin: 5172.950553
free margin: 17999.853144
margin level: 4.479611",
"balance: 23340.360461 USD
equity: 24762.474289
margin: 4607.864953
free margin: 20154.609336
margin level: 5.373958",
"balance: 24122.820461 USD
equity: 24082.721613
margin: 4557.099753
free margin: 19525.621860
margin level: 5.284660",
"balance: 24082.721613 USD
equity: 23289.788576
margin: 2098.734400
free margin: 21191.054176
margin level: 11.097063",
"balance: 24095.028576 USD
equity: 23132.170912
margin: 4759.879704
free margin: 18372.291208
margin level: 4.859823",
"balance: 24083.540506 USD
equity: 23297.762478
margin: 7620.265269
free margin: 15677.497208
margin level: 3.057343",
"balance: 25016.172478 USD
equity: 24550.987129
margin: 8727.875543
free margin: 15823.111586
margin level: 2.812940",
"balance: 24115.812478 USD
equity: 22224.905397
margin: 8705.593643
free margin: 13519.311754
margin level: 2.552945",
"balance: 23149.837494 USD
equity: 22254.956757
margin: 9084.210343
free margin: 13170.746414
margin level: 2.449850",
"balance: 22232.615676 USD
equity: 22079.068030
margin: 7456.766000
free margin: 14622.302030
margin level: 2.960944",
"balance: 22552.768030 USD
equity: 21124.591071
margin: 5616.766000
free margin: 15507.825071
margin level: 3.760988",
"balance: 22164.191071 USD
equity: 19197.822980
margin: 8123.237763
free margin: 11074.585217
margin level: 2.363322",
"balance: 22092.277156 USD
equity: 19160.188472
margin: 10502.648755
free margin: 8657.539717
margin level: 1.824320"
],
"legendgroup": "g3",
"line": {
"color": "rgba(188, 189, 34, 1)"
},
"mode": "lines+markers",
"name": "USDJPY",
"opacity": 1,
"type": "scatter",
"x": [
"2021-05-05T00:00:00+00:00",
"2021-05-06T00:00:00+00:00",
"2021-05-07T00:00:00+00:00",
"2021-05-10T00:00:00+00:00",
"2021-05-11T00:00:00+00:00",
"2021-05-12T00:00:00+00:00",
"2021-05-13T00:00:00+00:00",
"2021-05-14T00:00:00+00:00",
"2021-05-17T00:00:00+00:00",
"2021-05-18T00:00:00+00:00",
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-24T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-02T00:00:00+00:00",
"2021-06-03T00:00:00+00:00",
"2021-06-04T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-17T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-28T00:00:00+00:00",
"2021-07-29T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00",
"2021-09-03T00:00:00+00:00"
],
"y": [
109.188,
109.09,
108.604,
108.81,
108.615,
109.699,
109.453,
109.362,
109.209,
108.888,
109.227,
108.767,
108.945,
108.74,
108.747,
109.139,
109.808,
109.872,
109.556,
109.467,
109.547,
110.276,
109.524,
109.238,
109.492,
109.618,
109.319,
109.682,
110.071,
110.056,
110.708,
110.221,
110.211,
110.314,
110.658,
110.949,
110.874,
110.778,
110.614,
110.538,
111.101,
111.521,
111.02,
110.962,
110.61,
110.608,
109.748,
110.102,
110.349,
110.627,
109.95,
109.831,
110.081,
109.447,
109.843,
110.286,
110.149,
110.547,
110.381,
109.774,
109.909,
109.47,
109.656,
109.305,
109.042,
109.473,
109.761,
110.217,
110.267,
110.56,
110.428,
110.386,
109.592,
109.243,
109.595,
109.763,
109.763,
109.799,
109.694,
109.679,
110.023,
110.081,
109.85,
109.913,
110.007,
110.025,
109.937,
109.712
],
"yaxis": "y3"
},
{
"hovertext": [
"order id: 2
hold probability: 0.1931
hold: False
volume: 1.619085
modified volume: 1.6200
fee: 0.030000
margin: 1620.000000
error: ",
"order id: 5
hold probability: 0.2995
hold: False
volume: 0.559512
modified volume: 0.5600
fee: 0.030000
margin: 560.000000
error: ",
"order id: 7
hold probability: 0.1458
hold: False
volume: 1.871262
modified volume: 1.8700
fee: 0.030000
margin: 1870.000000
error: ",
"order id: 8
hold probability: 0.2762
hold: False
volume: 1.743734
modified volume: 1.7400
fee: 0.030000
margin: 1740.000000
error: ",
"order id: 11
hold probability: 0.2673
hold: False
volume: 2.549673
modified volume: 2.5500
fee: 0.030000
margin: 2550.000000
error: ",
"order id: 13
hold probability: 0.0385
hold: False
volume: 1.538598
modified volume: 1.5400
fee: 0.030000
margin: 1540.000000
error: ",
"order id: 16
hold probability: 0.2243
hold: False
volume: 0.680192
modified volume: 0.6800
fee: 0.030000
margin: 680.000000
error: ",
"order id: 18
hold probability: 0.2389
hold: False
volume: 0.348899
modified volume: 0.3500
fee: 0.030000
margin: 350.000000
error: ",
"order id: 20
hold probability: 0.2735
hold: False
volume: 0.060621
modified volume: 0.0600
fee: 0.030000
margin: 60.000000
error: ",
"order id: 22
hold probability: 0.0617
hold: False
volume: 0.206748
modified volume: 0.2100
fee: 0.030000
margin: 210.000000
error: ",
"order id:
hold probability: 0.3570
hold: False
volume: 0.195008
modified volume: 0.2000
fee: nan
margin: nan
error: cannot add more orders",
"order id: 23
hold probability: 0.2098
hold: False
volume: 0.529452
modified volume: 0.5300
fee: 0.030000
margin: 530.000000
error: ",
"order id: 25
hold probability: 0.2775
hold: False
volume: 0.073237
modified volume: 0.0700
fee: 0.030000
margin: 70.000000
error: ",
"order id: 28
hold probability: 0.4724
hold: False
volume: 0.516047
modified volume: 0.5200
fee: 0.030000
margin: 520.000000
error: ",
"order id: 29
hold probability: 0.4200
hold: False
volume: 2.091569
modified volume: 2.0900
fee: 0.030000
margin: 2090.000000
error: ",
"order id: 31
hold probability: 0.3087
hold: False
volume: 0.518789
modified volume: 0.5200
fee: 0.030000
margin: 520.000000
error: ",
"order id:
hold probability: 0.3299
hold: False
volume: -1.722316
modified volume: 1.7200
fee: nan
margin: nan
error: cannot add more orders",
"order id: 33
hold probability: 0.1121
hold: False
volume: 2.503596
modified volume: 2.5000
fee: 0.030000
margin: 2500.000000
error: ",
"order id: 35
hold probability: 0.4660
hold: False
volume: 3.240359
modified volume: 3.2400
fee: 0.030000
margin: 3240.000000
error: ",
"order id: 37
hold probability: 0.2125
hold: False
volume: 1.218541
modified volume: 1.2200
fee: 0.030000
margin: 1220.000000
error: ",
"order id: 39
hold probability: 0.2143
hold: False
volume: 0.534960
modified volume: 0.5300
fee: 0.030000
margin: 530.000000
error: ",
"order id: 41
hold probability: 0.2024
hold: False
volume: 3.003322
modified volume: 3.0000
fee: 0.030000
margin: 3000.000000
error: ",
"order id: 42
hold probability: 0.2597
hold: False
volume: 2.891217
modified volume: 2.8900
fee: 0.030000
margin: 2890.000000
error: ",
"order id: 46
hold probability: 0.1145
hold: False
volume: 1.176740
modified volume: 1.1800
fee: 0.030000
margin: 1180.000000
error: ",
"order id: 48
hold probability: 0.4953
hold: False
volume: 1.828292
modified volume: 1.8300
fee: 0.030000
margin: 1830.000000
error: ",
"order id: 50
hold probability: 0.0657
hold: False
volume: 1.136640
modified volume: 1.1400
fee: 0.030000
margin: 1140.000000
error: ",
"order id: 52
hold probability: 0.2424
hold: False
volume: 2.449110
modified volume: 2.4500
fee: 0.030000
margin: 2450.000000
error: ",
"order id: 55
hold probability: 0.2389
hold: False
volume: 0.650336
modified volume: 0.6500
fee: 0.030000
margin: 650.000000
error: ",
"order id: 56
hold probability: 0.2544
hold: False
volume: 0.822842
modified volume: 0.8200
fee: 0.030000
margin: 820.000000
error: ",
"order id: 59
hold probability: 0.0631
hold: False
volume: 1.624233
modified volume: 1.6200
fee: 0.030000
margin: 1620.000000
error: ",
"order id: 60
hold probability: 0.2219
hold: False
volume: 2.035763
modified volume: 2.0400
fee: 0.030000
margin: 2040.000000
error: ",
"order id: 61
hold probability: 0.2025
hold: False
volume: 0.988367
modified volume: 0.9900
fee: 0.030000
margin: 990.000000
error: ",
"order id: 63
hold probability: 0.2832
hold: False
volume: 3.472024
modified volume: 3.4700
fee: 0.030000
margin: 3470.000000
error: ",
"order id: 66
hold probability: 0.3106
hold: False
volume: -0.475765
modified volume: 0.4800
fee: 0.030000
margin: 480.000000
error: ",
"order id: 68
hold probability: 0.2099
hold: False
volume: 0.875944
modified volume: 0.8800
fee: 0.030000
margin: 880.000000
error: ",
"order id: 70
hold probability: 0.1543
hold: False
volume: -1.213531
modified volume: 1.2100
fee: 0.030000
margin: 1210.000000
error: ",
"order id: 71
hold probability: 0.3369
hold: False
volume: 3.520978
modified volume: 3.5200
fee: 0.030000
margin: 3520.000000
error: ",
"order id: 74
hold probability: 0.3349
hold: False
volume: -0.065233
modified volume: 0.0700
fee: 0.030000
margin: 70.000000
error: ",
"order id: 76
hold probability: 0.4003
hold: False
volume: 2.671848
modified volume: 2.6700
fee: 0.030000
margin: 2670.000000
error: ",
"order id: 77
hold probability: 0.2298
hold: False
volume: -0.359446
modified volume: 0.3600
fee: 0.030000
margin: 360.000000
error: ",
"order id: 79
hold probability: 0.2357
hold: False
volume: 1.339944
modified volume: 1.3400
fee: 0.030000
margin: 1340.000000
error: ",
"order id:
hold probability: 0.2433
hold: False
volume: 0.031875
modified volume: 0.0300
fee: nan
margin: nan
error: cannot add more orders",
"order id: 81
hold probability: 0.3180
hold: False
volume: -0.184252
modified volume: 0.1800
fee: 0.030000
margin: 180.000000
error: ",
"order id: 84
hold probability: 0.3658
hold: False
volume: 2.763780
modified volume: 2.7600
fee: 0.030000
margin: 2760.000000
error: ",
"order id: 86
hold probability: 0.4354
hold: False
volume: 0.785653
modified volume: 0.7900
fee: 0.030000
margin: 790.000000
error: ",
"order id: 90
hold probability: 0.2761
hold: False
volume: -0.103811
modified volume: 0.1000
fee: 0.030000
margin: 100.000000
error: ",
"order id: 91
hold probability: 0.0856
hold: False
volume: 1.896111
modified volume: 1.9000
fee: 0.030000
margin: 1900.000000
error: ",
"order id: 92
hold probability: 0.4095
hold: False
volume: 2.787800
modified volume: 2.7900
fee: 0.030000
margin: 2790.000000
error: ",
"order id: 95
hold probability: 0.1449
hold: False
volume: 0.813397
modified volume: 0.8100
fee: 0.030000
margin: 810.000000
error: ",
"order id: 97
hold probability: 0.2304
hold: False
volume: 0.992999
modified volume: 0.9900
fee: 0.030000
margin: 990.000000
error: ",
"order id: 100
hold probability: 0.4921
hold: False
volume: -1.270829
modified volume: 1.2700
fee: 0.030000
margin: 1270.000000
error: ",
"order id: 102
hold probability: 0.2002
hold: False
volume: 1.507605
modified volume: 1.5100
fee: 0.030000
margin: 1510.000000
error: ",
"order id: 104
hold probability: 0.1517
hold: False
volume: 2.406100
modified volume: 2.4100
fee: 0.030000
margin: 2410.000000
error: ",
"order id: 106
hold probability: 0.4036
hold: False
volume: 0.300453
modified volume: 0.3000
fee: 0.030000
margin: 300.000000
error: ",
"order id: 108
hold probability: 0.1928
hold: False
volume: 0.936331
modified volume: 0.9400
fee: 0.030000
margin: 940.000000
error: ",
"order id: 110
hold probability: 0.1456
hold: False
volume: 1.636530
modified volume: 1.6400
fee: 0.030000
margin: 1640.000000
error: ",
"order id: 112
hold probability: 0.2121
hold: False
volume: 1.061274
modified volume: 1.0600
fee: 0.030000
margin: 1060.000000
error: ",
"order id: 114
hold probability: 0.2203
hold: False
volume: 2.235211
modified volume: 2.2400
fee: 0.030000
margin: 2240.000000
error: ",
"order id: 117
hold probability: 0.1273
hold: False
volume: 0.673580
modified volume: 0.6700
fee: 0.030000
margin: 670.000000
error: ",
"order id: 119
hold probability: 0.3689
hold: False
volume: -0.183124
modified volume: 0.1800
fee: 0.030000
margin: 180.000000
error: ",
"order id: 122
hold probability: 0.1026
hold: False
volume: 0.276759
modified volume: 0.2800
fee: 0.030000
margin: 280.000000
error: ",
"order id: 124
hold probability: 0.3367
hold: False
volume: 1.848964
modified volume: 1.8500
fee: 0.030000
margin: 1850.000000
error: ",
"order id: 126
hold probability: 0.3530
hold: False
volume: 2.977265
modified volume: 2.9800
fee: 0.030000
margin: 2980.000000
error: ",
"order id: 128
hold probability: 0.3341
hold: False
volume: 0.314086
modified volume: 0.3100
fee: 0.030000
margin: 310.000000
error: ",
"order id: 130
hold probability: 0.3355
hold: False
volume: 1.726230
modified volume: 1.7300
fee: 0.030000
margin: 1730.000000
error: ",
"order id: 132
hold probability: 0.3468
hold: False
volume: 2.070903
modified volume: 2.0700
fee: 0.030000
margin: 2070.000000
error: ",
"order id: 133
hold probability: 0.3596
hold: False
volume: 1.962781
modified volume: 1.9600
fee: 0.030000
margin: 1960.000000
error: ",
"order id: 136
hold probability: 0.1464
hold: False
volume: 0.665112
modified volume: 0.6700
fee: 0.030000
margin: 670.000000
error: ",
"order id: 138
hold probability: 0.0981
hold: False
volume: -0.381566
modified volume: 0.3800
fee: 0.030000
margin: 380.000000
error: "
],
"legendgroup": "g3",
"marker": {
"color": [
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"gray",
"green",
"green",
"green",
"green",
"green",
"gray",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"red",
"green",
"red",
"green",
"red",
"green",
"red",
"green",
"gray",
"red",
"green",
"green",
"red",
"green",
"green",
"green",
"green",
"red",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"red",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"red"
],
"size": [
18.125,
11.5,
19.6875,
18.875,
23.9375,
17.625,
12.25,
10.1875,
8.375,
9.3125,
9.25,
11.3125,
8.4375,
11.25,
21.0625,
11.25,
18.75,
23.625,
28.25,
15.625,
11.3125,
26.75,
26.0625,
15.375,
19.4375,
15.125,
23.3125,
12.0625,
13.125,
18.125,
20.75,
14.1875,
29.6875,
11,
13.5,
15.5625,
30,
8.4375,
24.6875,
10.25,
16.375,
8.1875,
9.125,
25.25,
12.9375,
8.625,
19.875,
25.4375,
13.0625,
14.1875,
15.9375,
17.4375,
23.0625,
9.875,
13.875,
18.25,
14.625,
22,
12.1875,
9.125,
9.75,
19.5625,
26.625,
9.9375,
18.8125,
20.9375,
20.25,
12.1875,
10.375
],
"symbol": [
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-down",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-down",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-up",
"triangle-down"
]
},
"mode": "markers",
"name": "USDJPY",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-18T00:00:00+00:00",
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-25T00:00:00+00:00",
"2021-05-26T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-05-31T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-02T00:00:00+00:00",
"2021-06-03T00:00:00+00:00",
"2021-06-04T00:00:00+00:00",
"2021-06-08T00:00:00+00:00",
"2021-06-09T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-11T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-21T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-24T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-28T00:00:00+00:00",
"2021-06-30T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-13T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-16T00:00:00+00:00",
"2021-07-19T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-21T00:00:00+00:00",
"2021-07-22T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-28T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-02T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-09T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-19T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-26T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00"
],
"y": [
108.888,
109.227,
108.767,
108.945,
108.747,
109.139,
109.808,
109.872,
109.556,
109.467,
109.547,
110.276,
109.524,
109.492,
109.618,
109.319,
109.682,
110.071,
110.056,
110.708,
110.211,
110.314,
110.658,
110.874,
110.778,
110.614,
111.101,
111.521,
111.02,
110.962,
110.61,
110.608,
109.748,
110.102,
110.349,
110.627,
109.95,
110.081,
109.447,
109.843,
110.286,
110.149,
110.547,
110.381,
109.909,
109.656,
109.305,
109.042,
109.473,
109.761,
110.217,
110.267,
110.56,
110.428,
110.386,
109.592,
109.243,
109.595,
109.763,
109.799,
109.694,
109.679,
110.023,
110.081,
109.85,
109.913,
110.007,
110.025,
109.937
],
"yaxis": "y3"
},
{
"hovertext": [
"order id: 2
order type: Buy
close probability: 0.6755
margin: 1620.000000
profit: 458.293279",
"order id: 5
order type: Buy
close probability: 0.7314
margin: 560.000000
profit: -252.282402",
"order id: 7
order type: Buy
close probability: 0.7973
margin: 1870.000000
profit: 254.036440",
"order id: 8
order type: Buy
close probability: 0.8462
margin: 1740.000000
profit: -376.034578",
"order id: 11
order type: Buy
close probability: 0.6419
margin: 2550.000000
profit: 2394.224465
---------------------------------
order id: 13
order type: Buy
close probability: 0.6587
margin: 1540.000000
profit: 896.164214",
"order id: 16
order type: Buy
close probability: 0.6287
margin: 680.000000
profit: 21.042668",
"order id: 18
order type: Buy
close probability: 0.5576
margin: 350.000000
profit: -139.083011",
"order id: 22
order type: Buy
close probability: 0.6032
margin: 210.000000
profit: 148.345968",
"order id: 20
order type: Buy
close probability: 0.5499
margin: 60.000000
profit: -3.396516
---------------------------------
order id: 23
order type: Buy
close probability: 0.7792
margin: 530.000000
profit: -378.419342",
"order id: 25
order type: Buy
close probability: 0.6171
margin: 70.000000
profit: -20.249364",
"order id: 29
order type: Buy
close probability: 0.6259
margin: 2090.000000
profit: -628.994045",
"order id: 28
order type: Buy
close probability: 0.5484
margin: 520.000000
profit: 259.359868",
"order id: 31
order type: Buy
close probability: 0.5121
margin: 520.000000
profit: 334.048121
---------------------------------
order id: 33
order type: Buy
close probability: 0.6675
margin: 2500.000000
profit: -102.220688",
"order id: 35
order type: Buy
close probability: 0.7968
margin: 3240.000000
profit: 1820.356252",
"order id: 37
order type: Buy
close probability: 0.7557
margin: 1220.000000
profit: -583.371896",
"order id: 39
order type: Buy
close probability: 0.5328
margin: 530.000000
profit: 199.723472
---------------------------------
order id: 41
order type: Buy
close probability: 0.6002
margin: 3000.000000
profit: 851.271485",
"order id: 42
order type: Buy
close probability: 0.5223
margin: 2890.000000
profit: 679.852905",
"order id: 46
order type: Buy
close probability: 0.7871
margin: 1180.000000
profit: -134.214375",
"order id: 50
order type: Buy
close probability: 0.5512
margin: 1140.000000
profit: -109.319872",
"order id: 48
order type: Buy
close probability: 0.6031
margin: 1830.000000
profit: 1169.994889
---------------------------------
order id: 52
order type: Buy
close probability: 0.5924
margin: 2450.000000
profit: 856.789304",
"order id: 55
order type: Buy
close probability: 0.8419
margin: 650.000000
profit: -310.889930",
"order id: 56
order type: Buy
close probability: 0.5210
margin: 820.000000
profit: -65.031272",
"order id: 59
order type: Buy
close probability: 0.5968
margin: 1620.000000
profit: -559.479251",
"order id: 60
order type: Buy
close probability: 0.6439
margin: 2040.000000
profit: -59.019239",
"order id: 61
order type: Buy
close probability: 0.7895
margin: 990.000000
profit: -802.839232",
"order id: 63
order type: Buy
close probability: 0.5803
margin: 3470.000000
profit: 1021.125865",
"order id: 66
order type: Sell
close probability: 0.7027
margin: 480.000000
profit: -120.490444",
"order id: 68
order type: Buy
close probability: 0.5578
margin: 880.000000
profit: -343.356071
---------------------------------
order id: 70
order type: Sell
close probability: 0.8185
margin: 1210.000000
profit: 712.023647",
"order id: 71
order type: Buy
close probability: 0.5055
margin: 3520.000000
profit: -477.533665",
"order id: 74
order type: Sell
close probability: 0.7018
margin: 70.000000
profit: 13.255283
---------------------------------
order id: 76
order type: Buy
close probability: 0.6489
margin: 2670.000000
profit: 889.651594",
"order id: 77
order type: Sell
close probability: 0.7252
margin: 360.000000
profit: -239.029553",
"order id: 79
order type: Buy
close probability: 0.5102
margin: 1340.000000
profit: 78.908508
---------------------------------
order id: 81
order type: Sell
close probability: 0.8123
margin: 180.000000
profit: 22.177730",
"order id: 84
order type: Buy
close probability: 0.9067
margin: 2760.000000
profit: -1601.581431",
"order id: 86
order type: Buy
close probability: 0.7488
margin: 790.000000
profit: -203.883052",
"order id: 90
order type: Sell
close probability: 0.8809
margin: 100.000000
profit: 53.557345",
"order id: 91
order type: Buy
close probability: 0.7689
margin: 1900.000000
profit: 239.511112",
"order id: 92
order type: Buy
close probability: 0.6863
margin: 2790.000000
profit: 1751.359773
---------------------------------
order id: 95
order type: Buy
close probability: 0.9020
margin: 810.000000
profit: 190.395496",
"order id: 97
order type: Buy
close probability: 0.7688
margin: 990.000000
profit: 382.645145",
"order id: 100
order type: Sell
close probability: 0.8424
margin: 1270.000000
profit: -428.464182",
"order id: 102
order type: Buy
close probability: 0.6205
margin: 1510.000000
profit: 179.130293",
"order id: 104
order type: Buy
close probability: 0.7466
margin: 2410.000000
profit: -445.382567
---------------------------------
order id: 106
order type: Buy
close probability: 0.5122
margin: 300.000000
profit: -19.567699",
"order id: 108
order type: Buy
close probability: 0.6629
margin: 940.000000
profit: -706.766917",
"order id: 110
order type: Buy
close probability: 0.8797
margin: 1640.000000
profit: -568.970094",
"order id: 112
order type: Buy
close probability: 0.6457
margin: 1060.000000
profit: 311.437566",
"order id: 114
order type: Buy
close probability: 0.8712
margin: 2240.000000
profit: 281.624956",
"order id: 117
order type: Buy
close probability: 0.6880
margin: 670.000000
profit: 3.661236",
"order id: 119
order type: Sell
close probability: 0.7036
margin: 180.000000
profit: 12.306963",
"order id: 122
order type: Buy
close probability: 0.7535
margin: 280.000000
profit: -11.488070",
"order id: 124
order type: Buy
close probability: 0.6745
margin: 1850.000000
profit: 527.980513",
"order id: 128
order type: Buy
close probability: 0.6833
margin: 310.000000
profit: -73.654984",
"order id: 126
order type: Buy
close probability: 0.8258
margin: 2980.000000
profit: -379.572935",
"order id: 130
order type: Buy
close probability: 0.7809
margin: 1730.000000
profit: 199.723654
---------------------------------
order id: 132
order type: Buy
close probability: 0.6961
margin: 2070.000000
profit: 120.428700",
"order id: 133
order type: Buy
close probability: 0.7018
margin: 1960.000000
profit: -21.376960",
"order id: 136
order type: Buy
close probability: 0.8817
margin: 670.000000
profit: -71.913914"
],
"legendgroup": "g3",
"marker": {
"color": "black",
"line": {
"width": 1.5
},
"size": 7,
"symbol": "line-ns"
},
"mode": "markers",
"name": "USDJPY",
"showlegend": false,
"type": "scatter",
"x": [
"2021-05-19T00:00:00+00:00",
"2021-05-20T00:00:00+00:00",
"2021-05-21T00:00:00+00:00",
"2021-05-24T00:00:00+00:00",
"2021-05-27T00:00:00+00:00",
"2021-05-28T00:00:00+00:00",
"2021-06-01T00:00:00+00:00",
"2021-06-03T00:00:00+00:00",
"2021-06-04T00:00:00+00:00",
"2021-06-07T00:00:00+00:00",
"2021-06-10T00:00:00+00:00",
"2021-06-14T00:00:00+00:00",
"2021-06-15T00:00:00+00:00",
"2021-06-16T00:00:00+00:00",
"2021-06-18T00:00:00+00:00",
"2021-06-22T00:00:00+00:00",
"2021-06-23T00:00:00+00:00",
"2021-06-25T00:00:00+00:00",
"2021-06-29T00:00:00+00:00",
"2021-07-01T00:00:00+00:00",
"2021-07-02T00:00:00+00:00",
"2021-07-05T00:00:00+00:00",
"2021-07-06T00:00:00+00:00",
"2021-07-07T00:00:00+00:00",
"2021-07-08T00:00:00+00:00",
"2021-07-09T00:00:00+00:00",
"2021-07-12T00:00:00+00:00",
"2021-07-14T00:00:00+00:00",
"2021-07-15T00:00:00+00:00",
"2021-07-20T00:00:00+00:00",
"2021-07-23T00:00:00+00:00",
"2021-07-26T00:00:00+00:00",
"2021-07-27T00:00:00+00:00",
"2021-07-30T00:00:00+00:00",
"2021-08-03T00:00:00+00:00",
"2021-08-04T00:00:00+00:00",
"2021-08-05T00:00:00+00:00",
"2021-08-06T00:00:00+00:00",
"2021-08-10T00:00:00+00:00",
"2021-08-11T00:00:00+00:00",
"2021-08-12T00:00:00+00:00",
"2021-08-13T00:00:00+00:00",
"2021-08-16T00:00:00+00:00",
"2021-08-17T00:00:00+00:00",
"2021-08-18T00:00:00+00:00",
"2021-08-20T00:00:00+00:00",
"2021-08-23T00:00:00+00:00",
"2021-08-24T00:00:00+00:00",
"2021-08-25T00:00:00+00:00",
"2021-08-27T00:00:00+00:00",
"2021-08-30T00:00:00+00:00",
"2021-08-31T00:00:00+00:00",
"2021-09-01T00:00:00+00:00",
"2021-09-02T00:00:00+00:00"
],
"y": [
109.227,
108.767,
108.945,
108.74,
109.808,
109.872,
109.467,
110.276,
109.524,
109.238,
109.319,
110.071,
110.056,
110.708,
110.211,
110.658,
110.949,
110.778,
110.538,
111.521,
111.02,
110.962,
110.61,
110.608,
109.748,
110.102,
110.349,
109.95,
109.831,
109.843,
110.547,
110.381,
109.774,
109.656,
109.042,
109.473,
109.761,
110.217,
110.56,
110.428,
110.386,
109.592,
109.243,
109.595,
109.763,
109.799,
109.694,
109.679,
110.023,
109.85,
109.913,
110.007,
110.025,
109.937
],
"yaxis": "y3"
}
],
"layout": {
"height": 600,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Balance: 22092.277156 USD ~ Equity: 19160.188472 ~ Margin: 10502.648755 ~ Free Margin: 8657.539717 ~ Margin Level: 1.824320"
},
"width": 1400,
"xaxis": {
"autorange": true,
"range": [
"2021-04-27 19:13:51.8684",
"2021-09-10 04:46:08.1316"
],
"tickformat": "%Y-%m-%d",
"type": "date"
},
"yaxis": {
"autorange": true,
"range": [
1.1623930730233536,
1.2297028027991792
],
"tickfont": {
"color": "rgba(31, 119, 180, 0.8)"
},
"type": "linear"
},
"yaxis2": {
"autorange": true,
"overlaying": "y",
"range": [
1.6823167195537918,
1.7529663271258091
],
"tickfont": {
"color": "rgba(144, 94, 131, 0.8)"
},
"type": "linear"
},
"yaxis3": {
"autorange": true,
"overlaying": "y",
"range": [
108.40712627026566,
111.74801380515137
],
"tickfont": {
"color": "rgba(188, 189, 34, 0.8)"
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAAJYCAYAAACXVBgzAAAgAElEQVR4XuydB5wUxbrFz+Zld8k5B0EyomRUwAhmxZyzIqIYr/GZc8ScuUZEvQooIqIIAiIiUXLOS97A5vyqZu2lp7d7urqnZ9Oc+j3f1Z1K/a/qCqe/+iqiRAQwkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ+BGIoGjCHkECJEACJEACJEACJEACJEACJEACJEAC5QlQNGGvIAESIAESIAESIAESIAESIAESIAESIAETAhRN2C1IgARIgARIgARIgARIgARIgARIgARIgKIJ+wAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJqBGgpYkaJ8YiARIgARIgARIgARIgARIgARIgARIIMwIUTcKswfm4JEACJEACJEACJEACJEACJEACJEACagQomqhxYiwSIAESIAESIAESIAESIAESIAESIIEwI0DRJMwanI9LAiRAAiRAAiRAAiRAAiRAAiRAAiSgRoCiiRonxiIBEiABEiABEiABEiABEiABEiABEggzAhRNwqzB+bgkQAIkQAIkQAIkQAIkQAIkQAIkQAJqBCiaqHFiLBIgARIgARIgARIgARIgARIgARIggTAjQNEkzBqcj0sCJEACJEACJEACJEACJEACJEACJKBGgKKJGifGIgESIAESIAESIAESIAESIAESIAESCDMCFE3CrMH5uCRAAiRAAiRAAiRAAiRAAiRAAiRAAmoEKJqocWIsEiABEiABEiABEiABEiABEiABEiCBMCNA0STMGpyPSwIkQAIkQAIkQAIkQAIkQAIkQAIkoEaAookaJ8YiARIgARIgARIgARIgARIgARIgARIIMwIUTcKswfm4JEACJEACJEACJEACJEACJEACJEACagQomqhxYiwSIAESIAESIAESIAESIAESIAESIIEwI0DRJMwanI9LAiRAAiRAAiRAAiRAAiRAAiRAAiSgRoCiiRonxiIBEiABEiABEiABEiABEiABEiABEggzAhRNwqzB+bgkQAIkQAIkQAIkQAIkQAIkQAIkQAJqBCiaqHFiLBIgARIgARIgARIgARIgARIgARIggTAjQNEkzBqcj0sCJEACJEACJEACJEACJEACJEACJKBGgKKJGifGIgESIAESIAESIAESIAESIAESIAESCDMCFE3CrMH5uCRAAiRAAiRAAiRAAiRAAiRAAiRAAmoEKJqocWIsEiABEiABEiABEiABEiABEiABEiCBMCNA0STMGpyPSwIkQAIkQAIkQAIkQAIkQAIkQAIkoEaAookaJ8YiARIgARIgARIgARIgARIgARIgARIIMwIUTcKswfm4JEACJEACJEACJEACJEACJEACJEACagQomqhxYiwSIAESIAESIAESIAESIAESIAESIIEwI0DRJMwanI9LAiRAAiRAAiRAAiRAAiRAAiRAAiSgRoCiiRonxiIBEiABEiABEiABEiABEiABEiABEggzAhRNwqzB+bgkQAIkQAIkQAIkQAIkQAIkQAIkQAJqBCiaqHFiLBIgARIgARIgARIgARIgARIgARIggTAjQNEkzBqcj0sCJEACJEACJEACJEACJEACJEACJKBGgKKJGqdysf7vhY/w3bS5WDX7Y5c5MBkJkAAJkAAJkAAJkAAJkAAJkAAJkEBVJlDjRZOvv5+Fx1/5xLQNRp5+PJ78z/Wu2iecRJNV67fiopse8+M0uG93fPDSveXYmfG+5epzMOba80w5D7/sXuxM3l/2m1XcWX8sxZiHXvPL4+v3H0P3I9uVy7f7sGv8/taqRWP8POFFR+2skseb/52Edz6ZEjBfTVS78Z4XMX/RKsu4VjxlAlmXR++6GhedfUK59GZc9JHefHosTjj2aL90Zu1pxVKfUCvLqi4aD2OZZuXJfI3vn1U8GTcQH0cN6zJyoLppWaowdFk8NPZ6ZhrvUJarUl9Zjx9+mR/wHdPGSy0/lfaUY8NZpwy2HDu0vIzvltkYYtZ+Zu+GyvNqbRGIu/F5Zb5W5RnHQBlXRYzX0hnrYRy7jM9k5GM2NlVWn9K3k9VcoLF1M66rtK9qHMm5MuugsQrUj1X7vd1cZuyPqu+z0/VAIPbGOtqNIdqzW7WRSt0CrR/Nxv1A87yxvmbvvZZnMGtT1f5rjGe3RqmsMcHsefR9wW4dGGj96ZaVajqzeVs1bbDxnMxBsiyztaTxvVfts4Hima39rJ410FymMo/ZrVW1cs3GCLsxMdA8HWjt4hWbYPuHPr1WJ5V9XWWOA9oY5WUdtHlCdcwNG9HE+PIEO5iFi2iidSjjy2S2YNQWGPrBLBBnmYc+X60s42BothnX+BsXjGb10gYElY2IHEi8yEOW2aZFE1NhST9YWT2zFkd7TjvRxOp348Cq5edm0HEjmmhtZ2xTra+Ytb/Z4KW1YWUtgJwOrF5OaPoFTVUTTew2JrLusu1k0AuXdhtOq36j56r1R7s+YRZP639uhBMrsUKrm9l4oz2P/j21GltVFgb6DY7qu2z2zGZlWY2tXvdps/z0m3yzhazd7xVRR60Muz4c6rpobWfVh530eycCrFaufj41m++crgcC8TKuFVTYahsus35k1sedrgklh+3J+/zGNbO/WdVVdY2g8qxexDFrVy/yDUUe+g2t2fhv93so6mSWp9M+5VW9VOcgrTzVtg+2z9qtIY3PL99hlc2s2brWbPyR+VuNX/LjreoeIRAHlbVLoL6iupb3qq9oazTt47XZekIv9KiuN7ysn7GfelkHp2v7sBVNtJfHOOmpNnQ4iSa+gc5gKaINSPoXXP6tccN65SwbzAY0q0Wa9ndt8AokKphtxmRZRush1c2V1vbB5uFkQ2bVj4xqtBeiiZOFsZtB3ShuqQxGetZ28c02nqrva7Dx7OoWbP5u0gfbnm7K1NIYv8Bafc21qqPVO6liNSLrYCc26p/NaiMj/y6DmcWckY2qdVagRaGxHoHaL9BiUUsnF5PyiKjqAsJsoWc21slnd7NJDaY/aWn175l8NuO4p1k1SUHa7dztRT0rMw/j11cr0cRJv1cdS6z6t/Z3fV2crAcC8XSzUdOe3aqfWL1fwXKgaFIxb4ZxDDSziOjfu4tvfLQT1SumxhVXipM5SNbKyV7GzbuoMhdb0VEVTWR/MLNmN+4RrNbmTtZ3Vnmorl2sntXJ2OF1b9LaVc6p8r3R76H0wp+T9YbXdQxVfk7aXtYhrEUTq0237BjGYFyYmg00VuaNxgFdezleeexWv2MvTsxIjeqr0ZTMKi87ywXVjulEMTZbiFgNEMZ8AwkQqgscJxssq+d3kofqxKKSpx1nu9/1zyMnoGAWEHZlWYkmqmWqDF5m76xqnw0mnkrdjPkbNzfSqkYe0dKPJVZ9xfh+GPuKlemo3GT+MmeRrxyzryaBvsiofNExYxhosg/0W6D3xO7dkM+xcNlapWN3wW6QjM8caNwJJNAan9fMgk6WFejZ9eOhjCePB6qIJk6EXFkH1TEsmHfKLK3+2ffuTynXxtpRRdnHzb7ymx2BtDpaIv+uF6f1G36jaK29u8Y4emtCfd3ls+mPblqNgdoYofqFU8/Mrk2d9HvVudSt0Kevt2pZMo32jCp9XCtDvzazGn+sREHVDWQgQUpVzKusdyzQps1q3tDS6Pt4E/GBTDv6rrcYVT1KbSZEq1r+6fuQPDquf7/0fcb4m1mZ8tnM5j7t/Tnx2GPKjobr19Vmzyk56NvfbCzX1/2ux97yO55u1s+151Gdn53MQVr9VK0bgumzdutHs36pKppY9WljfQO936qihR0Du7WLWV3dsPFy7tWe6ZQhfX3vtL4fSi7NmjRA08YNyq03rNahxvdY3+fHvf9NmasCfb8z7p+1OVcfx6z9tLpfdt7Jfi4c7I5vGsc0lfdLtm3YiiZmlhISomwU2Tn0qqXZRsNKNJGdTu97wswUTPubUdgwGyDMypYNJwdbzdzdzMTaytzOK9HEasFvtakyTsZWA49xwAm0MLRbNGp1sWprJ4OOah7BcjHWyW4wNZu4ZR5Wx9Hk4sLoh0VV1LCri9mza5sClUWvijDhhK/2PmsiqNmgKN+HPftSbK0NVOpmNwibvaduRRNZllMrDqvJ3OmizNhH3YomgdLZLTwkN/lFRAonep9IxjFVVYAw+v0JNDbYbfq0dtZP2lZjlfZ+6N9Bq4Wd8f2zq4f+GZxYjjjp68aNqtUGxOl7JnlIf1XSj5U2lmkMpcBg1nfk31TmX/1Zf7NxyYyV2XEO47ur35CZbeLMNoShEk2c9nurxa/KxyKtD9htJrR4qkcBtPFbvuOa1YC+T5u1nfGdsBpj9M+rYtXqV+6/fvLMNppmH86sPmAZhTlZhupCX6uPcf43im/a7yrzr0q76Pu42XyqcdWzMZuzzY5OqK6xjHPfxMkz/S5l0DZ5l5x7ku+jpP5d1Oqv52Q13mnvplmbWNXVeGQvkGgin8O4OTUT3NzMz6pzkL4djOtCs/4dTJ9188HLzKeJyuZWv/bTMw4kmqgIpirrT7u1i9nawg0bvbWv2Rijny/t9jr6sVu/D9WeRc5dZh9pJA/5cUNvmWLGSD/ems2DZs9vNpZYiSZyDaji6sGMg+p6R+MZNqKJVadRmUzM1FiVF0yWaWa2ajWRG/O026T6Bt1/J3CrBZnqhtjupdL/rvFQcYJnNeBbLeKNA04g1VxVNAlmYao9t2oeqpsT1SNDKn3A2HbaYGPm/8K4AHAyIdvVxWywVBV15DOoDF5uFlbaAslsUS/fxaO6d7R1Nmr1hcpsEW+3UPfC0sS4cDQ6RDarg9Y+br5qBxofAokfZqKvfvNk9VU20MJD3xZWTlC1Z/Ri/LB6vwLNHWabUCvuZl9YzI4MGUV1VdFEZaGnf0atPk6/+nr5nmnzlqyLDJKHfH81x8CqXwXN5l83C2ezucZKNDGbc4P9Ymr2/gWa/7zo91o/MPsaaNaXVUQTJ/ONfGZtk2bcwJn1UbP5KVA/MZubVPq80w2O6ocD/bimMkYb16Vm44Hk/dHEaUoWeWaCj9bvNC4q47JZ/9e/xzJPq/dB1YJQ/6wyPymOyD4ij4dLoVWOzdrfVdbAZuUGemetfjP2NztLE/28rbqeVV2rq8xB2lhoZblux061zzpZtwV6Pu2dtdp7qIp6Zu+5yp5OZX3vVDRxw8Y4r5nVXbb/8lUbbT8IauOsZjWpXyfqP3aorje091vfdwKltfv4p2ppYlwzqa4RVPYd+jErbEQTM9XUTMmScKw2eipfA/Xqn/7lNy48zDYLxo6v0kkDveja11i3NwRZDV7aQsZugRFoQFUVTWQdrBbxKvUwW/ipTjr6zZ20lLEzYXSyOVH5qqPvi3ZlG5/JuFkNVLdAG1t9vm5EE316s68UZl+BAn1JcDLB6DdZWj30ix0nX+FUB9ZAC0Kz9zkUliayDlabPON5Vafvgll8FYsR4yJHdfET6CYcs35i3Cx6sXk0PrPduGx8t/WbETPH1XohU/9lzc7Rpl099H1e9Qu2meBq10dC8Z5p7a61n+a/RX8bWaCvssY62y28tPhW72M4iibaYlr+r9Gq1Y1oorrBMs4Z+vL1v+nXEFYbFTsBW3sf9RvMQBtFJ/OPVlcnc4fqxxSZt6yz8dYy43rQ7N20ep9V1iROLZi0svSiRKB1hKqwbxz7tPzlxk8eJZBr3kB1tRKI9P3aShgJVP+qIpqozkF2HzXsjmvp16iB3hunQmOgOUf1HTSzZtLWZ/J/zayNjH/X10N1fe9UNHHDxsxy09j3tKOsZrduGvka5z2t70srbeMYafxYZPVBUfXSAqsx2uw9s7I0Mbt0w0vRRF+XsBZNzBYFZl82zF4Cs8bTFrz6hbGTrx/GPFWUz0BfB+TzqS6W7RbG+kWlNIUKRjDRuJt1dKsBR29SrdXFzhFiRQom2mCswtvJwshOqLBqN+MAH2jAV50M7Oqiuokz9iVtEFZZXKrWVWsPM7FJvzFVFaNU6uabcP+9njuQR/+KsDQxvmPaAkLFsk51LNDiqUxORjNb7ey31Q1TKl80zUQTYzu5XeQHYhCon9tZ/ukXZXbHcLSxxOprscr75uR9cSOYhOo9078/2pys/5tZn1OdfwPNq1YbpeommnjV742bL7uPNHbvc6BNidk7F2hDof9N1ksG4wcis36ispkOdD24LEd/E5jKeKnyhVo/f6gcQTDbOMk89GsllfWIfhy32ySrzG+BeMiNqtWHRX06u3nKOPbpP3Qa1xNmR+WMIr7Vet6sHQKN8VVBNHEzB5nxVv2YZrc2UhU5VN4jGcfJ+tlqvDJ+wJP9wc65uNN32M5KRz6LWzayn2nioJ6bfj+oMobo1+L6sVvjph8/zNYbWnnGZ3ViFWv1oaIqiSb6MSvsRRP9osBqU6gimlgNVMGIJiqLYlVzRtUBKVA8FcsO/cQfaIHkRF20qpPR5NNs8FDdFJuV4UR0UWkrJ5tMLa6dUGHFxrhZCjQ4q26s7BR0JwxkvY3l2k2+Mo0bVd6Lvq9SN33frwqiiV4okc63ZFC5KcYpLxXRxJin0bTc6vdADjTNNgRm7WS1EXbaX7U6BkoXaKFp/E11Q6iyybAaa1WPhbgVTJz2Fbv4ZmOMmeBn7HNO5t9wEE0kZy/6vVE0CdT3rcpzY2GinyutNvJG0cTMgb++v+lFSOns0GxtEGieDOb4hNMNl5MNj907pfq7V5YmdoKH2ZE51ToGGoON60GzscRqrqpJoomTOcgLC2S7tZHKsT0n7e9GNLHrk9p4abXecLJWsFsn65/VazZOOAaqh9n6zMgg0HPWNNFEP2aFvWiin3itJkUV0cTqpQpGNLEzY5TOaoOZyJ28YKrncu3M7u02HqrmmYEmXlVxJ9DzO8nDbtLQl+NUWXYrmlh9iTXbaDrZ9AYa5I2LFln3/QfT/Bwj61kYFyp2HLW+EYwQ5qTP6+Pa1U1lIjQbI4I5nqNiPWJmZumWgVU6J/1Hy8NO7LVbeFgtDM3GQ6v6BRJdAzEKtIBSWYTqj5gE2hBafbW3G0P1jFWuCNRYqnwZ87rvGPOza3f9Zlp/PMfJ/BtINLHqK9XN0kRy8qLfGxe/VvOR1Xysuh6w6ldW86XbfiLLcXtkT1X4MD6Lkzm8otZzZryDFU1U20TboAYjDKlsYs3qYzXfOhFN7CyVnNyeEwqfJk7moEDrGtUNfaA+q/pBzsm8Ytb2sv3M3BCo9GlZdqB9h5O1n8xL9T0IBRsnHFXWrPo4VtZdVtbcqsdz7Cxu7Y7Wqq6hrdiotq82F4a1aKK9UEYnV/rG1n8lCeTTxGwi1psMuvFpoi18jNeUGjcc2nMY1VTZyWUwuwlIdeOpPX8wTl+tOqtxEaI62FidVdQmY9/AJcxA7YL2shpZaAKRSh6yDFUzRhnXqaWE3YJL5nf9Jaf7CRNWz6UNemYOmlT7g9WCUyvT7GiafG6zvim9tav6NDE7NmfXvl7+rjqw+p7V5HYFvbWAnkUgk0f9O2f2bqi8L1r+gcy0tbq5XcQ6FU2sxit9e9k9m9m4pP3N+KxmfdZqoWf2jhj7kd2C3UxgNhuzrDaUZu+SWV8OVA/V/mqcA718Z9zkZdfuWp7GPudk/g0kmpjlo18DqF45rJ9ztXnJ6lpT1fnKyNNug63a77XnM47R2phr/LvZRsRs4epkXAm0zjCrh/Y3uzk6kHBk9FNmNX5I7iobHPm8RqerVs8l8zM6adTay8mRGjfvmFUalQ2m3ftp9WFDPtuESb+WWTpareFk/vqbIa3qajcG+94pk6OyZms1/XEmFZ8mVms+rU5287ZV3a3eZyfvkcZLdQ7SP4vZ5lQ/3rnpsypCo1W/NztyZ8VClmN15MpubWs33zpZ31v1O7N+rMLGy/c7UF4qAplZvzV7Bq3vqYomVmsVLZ+qIppofS9sRBOrDmOcdPULJJlGvoivPHZruavLzBZeepFEppWTn3Z3tFvRRD9h+20qDKKA1qHLLayEF3G9mm21obbio2IarjHUTz5m+ZktBoxnC82+dhq5Wi0yzeIF4mHGwmkeWnyVDacTSwkjF6u2t2JuZY5o9nwqpotGjkYfFYEW/mZxzeIb3z19mZW1kNTqEKhuWhw9R+N7I/uH2T33+kWLlo9cqMgFpt0XKxnfWI7VVdOBFg5uFmWBxgXjO2zso4HeFf2ZXLuxTP6uMn7oFzL6PM38FliJJk77ptlzWL1nxvdDRaDWzwtm+aoIUzIPq3dT42S34LSaN9z+3W5TpuVrthlWnX8DiSYyf2M+sj2kMC2PdATyRxSo7lZHV5wK9IHazKzfmPVbqysf9Vd3y3IC9UPjO202PjtZD9h9nFEpz6zPBRJ0zdZMZv09kJjiNy//u0k31iOQw2pj3Mq09vJCNDF7f6zGEqsxVYWBW9HEbL6Vbb5i7Wa/a4u19yzQXGXsk7LeUgiTQTsGazYmVIRoIuvgZA4ym8+trq9W7bN2YoSWj5VoYrXGsJqTzOayQNeSa+UHWls6Wd87WbuosnE7jzpN51Y0MZuPZL9xcjxH5mE1T8mbsPTzldnc7ZWliRUz41XGNV40cdp5GJ8ESIAEQkFAZaHndblOrUC8Lp/5kUBNIBDIfLsmPB+fgQRIIHgCcgMXihvqgq8ZcyCB6kVA5fh5ZTwRRZPKoM4ySYAEwo5ARYsmgc7uhx18PjAJKBKQX8nMrqNU+QKuWASjkQAJVGMCckMnrVP0fjQqen6vxvhYdRLwIyDFRnmiQ38qQtWJfUWjpGhS0cRZHgmQQFgSqOhFlYq5dVg2BB+aBAIQMDPzruhjSmwgEiCBqkvA6uiInY+dqvtErBkJVB4BM3cEVfUjBUWTyusnLJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJkI2TfDAnyBzCI3mLhrVAVhXT1nExUUiqFYWDh/IrpsAwL6VuYgwKi0qQlVsY5iQq5vGb1ItHSkaejzlDaAlERUagUd047E3NDW1BzN1HIDE+GtFREUjPKiCRCiDQoHYssvOKkJtfVAGlsYjmDWphT2oOSjh0h7wzxMVEinVgjFgH5oW8rHAoQO5hGEiAokmQfYBCgBpAiiZqnLyIRdHEC4rqeVA0UfONK00AACAASURBVGflRUyKJl5QVMuDookaJ69iUTTxiqRaPhRN1Dh5FYuiiVck7fOhaGLPyEkMiiZOaNXcuBRNgmxbiiZqACmaqHHyIhZFEy8oqudB0USdlRcxKZp4QVEtD4omapy8ikXRxCuSavlQNFHj5FUsiiZekbTPh6KJPSMnMSiaOKFVc+NSNAmybSmaqAGkaKLGyYtYFE28oKieB0UTdVZexKRo4gVFtTwomqhx8ioWRROvSKrlQ9FEjZNXsSiaeEXSPh+KJvaMnMSgaOKEVs2NS9EkyLalaKIGkKKJGicvYlE08YKieh4UTdRZeRGTookXFNXyoGiixsmrWBRNvCKplg9FEzVOXsWiaOIVSft8KJrYM3ISg6KJE1o1Ny5FkyDblqKJGkCKJmqcvIhF0cQLiup5UDRRZ+VFTIomXlBUy4OiiRonr2JRNPGKpFo+FE3UOHkVi6KJVyTt86FoYs/ISQyKJk5o1dy4FE2CbFuKJmoAKZqocfIiFkUTLyiq50HRRJ2VFzEpmnhBUS0PiiZqnLyKRdHEK5Jq+VA0UePkVSyKJl6RtM+Hook9IycxKJo4oVVz41I0CbJtKZqoAaRoosbJi1gUTbygqJ4HRRN1Vl7EpGjiBUW1PCiaqHHyKhZFE69IquVD0USNk1exKJp4RdI+H4om9oycxKBo4oRWzY1L0STItqVoogaQookaJy9iUTTxgqJ6HhRN1Fl5EZOiiRcU1fKgaKLGyatYFE28IqmWD0UTNU5exaJo4hVJ+3womtgzchKDookTWjU3LkWTINuWookaQIomapy8iEXRxAuK6nlQNFFn5UVMiiZeUFTLg6KJGievYlE08YqkWj4UTdQ4eRWLoolXJO3zoWhiz8hJDIomTmjV3LgUTYJsW4omagApmqhx8iIWRRMvKKrnQdFEnZUXMSmaeEFRLQ+KJmqcvIpF0cQrkmr5UDRR4+RVLIomXpG0z4eiiT0jJzHCSTQ5/4ZHsHbj9nJ4brtuJEZddTaGjhyLS889yffvWnj30+/x5eSZ+P2713x/knEOpKSX/d6oQd2y37Tf7fKQ8boPu8avHl06tsG3Hz5hWob849fvPYrunds7aVpHcSmaOMJVPjJFEzWAFE3UOHkRi6KJFxTV86Boos7Ki5gUTbygqJYHRRM1Tl7FomjiFUm1fCiaqHHyKhZFE69I2udD0cSekZMYVU002Zmagxmr9qBV/QSc2r2pk0exjStFkx5d2uPxe641jasqmuhFkVH3vYL9B9P8BA870USWM2xwb796yLrpRRN9HlK4eWP8d9DEHdsHdRGBookLaPokFE3UAFI0UePkRSyKJl5QVM+Dook6Ky9iUjTxgqJaHhRN1Dh5FYuiiVck1fKhaKLGyatYFE28ImmfD0UTe0ZOYlQl0WT8vC0YN3MDDuUU+B6hW/M6eP+qvkJAqeXkkSzjhkI0MbNECSSarFq3BRfd/HhAyxEr8UYKJ6tmf+wJC2MmNVY02bl2G7LSMtF5YPeA4OZ++Wu532PiYzHwvCG+v8t8tizd4BenfvMG6DHsGN/fKJqo9UuKJmqcvIhF0cQLiup5UDRRZ+VFTIomXlBUy4OiiRonr2JRNPGKpFo+FE3UOHkVi6KJVyTt86FoYs/ISYxQiSYHMvPw+YJtTqqC8fO24lBuqWCiBSmcOLE4aZQUhysGtjUtNxSiiTFPVWsVeaxHsywxVtYsDxlHHul5/qGbceYpgxxxVYlc40ST1D0HsWXZBp/Q0bJL2zLxwwxGfm4+9m3d7fdTmki/WaQ9+86LfX9fOXsJ9m7Zg86DDosvsUJUadKuue93iiYq3QygaKLGyYtYFE28oKieB0UTdVZexKRo4gVFtTwomqhx8ioWRROvSKrlQ9FEjZNXsSiaeEXSPh+KJvaMnMQIlWiydk8GRoyb46QqnsTt0qw2pt9RahxgDKHwaXLBmUP9jtmoiCayXkafJvqjN1aiidXfvQBX40QTaV0ihZOda0qVO81iRBXWzP9OQ9P2zcosSaRokpmaaZkPRRM1shRN1Dh5EYuiiRcU1fOgaKLOyouYFE28oKiWB0UTNU5exaJo4hVJtXwomqhx8ioWRROvSNrnQ9HEnpGTGKESTdxYmrwzexPyCov9ql+VLU2M/kxkxVVFE/1Daj5LNCsSWpo46cE2ce3EDrPk8ijOkp8WYMQt50Fak8gg85ECTOdBPZBYL6nMwkRLT9FErdEomqhx8iIWRRMvKKrnQdFEnZUXMSmaeEFRLQ+KJmqcvIpF0cQrkmr5UDRR4+RVLIomXpG0z4eiiT0jJzFCJZo4qYMWd8aqvbjps0VlSevUisHEGweiW4s6brIrl8bueI7Z73Y+S4xOXVXyMHsYvVBCnyaeNHdpJm5EE2ll0uHoTmjfu1NZTeRRn71bSo/wSCsWeXznxGtPR/1mDX1/Kyou8bDWNTcrufgmq4pp3whRTEREBIpL2Dcrgrjo2pCkibsiaAORAngxx92KgS1K4dhdYajFuC3GblEcu3fFMI8UwEvEwM2ZsmJ4cyypGM6yFK4DvWUt+25VCquTD2HG6j2oEx+DC/q0ghROvAp2osmjL/0X/5v6u5+zVXmMRn8ExyhoaI5dNSsRuzym/vIn/vvVT37+TDRLE83Jq7EMmea+p9/j7TluOoJT0USKI9KXyUlCEAkUNMexx196si/a3tRcN9ULuzRN68eTVQW1emxMFBLjI5Ga4e8oqoKKD7tiaifEoKioBNl5hWH37JXxwI3qxCEtKx+FgjlDaAnIhWL92rE4kJ4X2oKYu49AQlw0oqIikJHNsbsiukS9pBjk5BcjL7+oIooL+zKkleD+9Fx+YKiAnhAbEynWgdFiHZhfAaXV/CLkHiZcgp1PE8lBEz00Jqo+S+TNNkbhxCoPs3rob8WRosmBlHS/Zvn6vUfRvXP7kDVVjfNpopFyIppIh7DT35nk81uiOXi1Ir5uwSrfcR1NXOHxHLW+yeM5apy8iMXjOV5QVM+Dx3PUWXkRk8dzvKColgeP56hx8ioWj+d4RVItHx7PUePkVSwez/GKpH0+PJ5jz8hJjKp0PMdJvRnXWwJhJ5pIvyVS9NA7iNVuyDGzMpHxW4lbeGSQ4oq0NNE7iqVootYhKZqocfIiFkUTLyiq50HRRJ2VFzEpmnhBUS0PiiZqnLyKRdHEK5Jq+VA0UePkVSyKJl6RtM+Hook9IycxKJo4oVVz49Y40UQes1kxawkKhMAhRQ7pvPWY0waWCR9SIFn35yqc/8CVZULID69+BXncxszKRIokUjiR+cg86wlfJjKu5iiWoonay0HRRI2TF7EomnhBUT0PiibqrLyISdEkMMVocbzDq6NLFE286LHqeVA0UWflRUyKJl5QVM+Dook6q2BjUjQJlqB/eoom3vKsrrnVONEkFA0hxZestAwhnNQuE0u0ciiaqBGnaKLGyYtYFE28oKieB0UTdVZexKRoEphiQnyJ8LEThbwC/ysJ3bCnaOKGmvs0FE3cs3OTkqKJG2ru04RaNCnIycP6OYuRvHITEuvXQbfhg1CvZRP3Fa7GKSmaeNt4FE285Vldc6NoEmTLUTRRA0jRRI2TF7EomnhBUT0PiibqrLyISdHEmmJMdBG+mT4BJ/Q+AQ2atA76xjKKJl70WPU8KJqos/IiJkUTLyiq5xFq0WT++CnYtXKjX4VOufvKsBROKJqo90uVmBRNVCjV/DgUTYJsY4omagApmqhx8iKWG9Fk+7YtkP/0H3gcYmNjvahG2ORB0aRim5qiiTnvqKgiHMjejTuuHo3Op3TDY7c8ifz84K4hpGhSsX27Joom8hplp6Girm+naOK0ZYKLH0rRJCvlEKY99UG5Crbs0RGDrzsnuIpXw9QUTbxtNIom3vKsrrlRNAmy5SiaqAGkaKLGyYtYVqKJnEStwvRpP+Djj97Dh598iaSk2qbRvDD39+L5qloeFE0qtkUompTnHRMdibjYYoz5/kbs/nAvSnoXYOz192NAi2NRWBDtuoEomrhG5yphTRRN6iZGo6TY/6hYvjhGkZ+Vg+KiIiTUr4voWEMfFUrLoezQXwNM0cRVN3WdKJSiiTyaM/mhNyma/EuAoonrbmqakKKJtzyra27VVjRJTf1LfEXbh6ZNzzJlH+zvWqYynwMHZ/qVkZDQAS1bXOL7G0UTta5P0USNkxexrEST+gnRiNi8CSX79pUr5uv5f+Lz2b9i/G13olHtpHK/R3Tvjow44Qy5MHg/CV48Y1XKg6JJxbYGRRN/3pHiS35cfDFennsvflv3JRJ/6Iv8bttQ1CUdH52/AI1rtURuvrsNKEWTiu3bNVE0iY+JwMEDe/HHvHk+mNKh/sGtyUIwOTyXNGjTFPG1E32/9+nTBy1btUFuoQsTFYfNRdHEIbAgo4dSNJFVk5Ym0uJEH3qfewI6DTkmyJpXv+QUTbxtM4om3vKsrrlVO9EkO3sLDhz4TfwzE/XqD0CH9mP92Af7u7EhdyVPRMahFUKcObvsp+joRNSu3cP33xRN1Lo+RRM1Tl7EshJN5K0adRKEuf499wDr1/uKKiwuwYZ9mZgRVYJfG8Rj7PYM9GqUhCa14w5X5corUXjKcByKiveiejUuD4omFdukFE38eccKC5OfN32Pt/4YBeHERIgmA32iSUGnXTii8fF4++zJyM2LQIFuk6raYhRNVEl5E68miiaSTGJcBNasXoW1a9cidcce5BzK9gMWGRWJZl3aoX379uh99DHIzitBiTdIA+ZC0aQCIOuKCLVokrZrH2a9+RUK8/LLSh0y6gI0PbJtxT5oFSiNoom3jUDRxFue1TW3aiea5OXtgxRGUtMW+JgbRZNgfzc2pBRN8vL2litHi0fRRK3rUzRR4+RFrEA+TeREmpB2ABG33io++RUgOT0Xmw9kYnGd2DLRJF4IKf3aNkCcMPnHwIEoufMupIvbOIor6qC5FxAqMA+KJhUIWxRF0eQw75joYuzM3Ip7ZtyEnKxlQHGkn2gSHdMIp3YejVv7jRHCSSScvsIUTSq2b9dU0UT2o6RaUZg7Zw7+mbsQhfmF5cB2G3w0ho8YgYycQs+uzLZrPYomdoS8/T3Uooms7Zx3/4e967ehVe8jsXPZejTq0AonjLnY2wepBrlRNPG2kSiaeMuzuuZW7UQTDbSdmBHs7/pyUlMXoJmwNImLa1JmYULRxFmXp2jijFcwse0cwSYKq5LY5UsQ8eyz2HIgC7vSc8qJJj1b1EXddq2AN95ARkk0j+UEaBCKJsH0VudpKZqUMosVomZJVC5G/3gL0nIPIitDHH8wiCYxsa3E0Z2OuP7o6zG07UkoLnDm5JmiifP+GUyKmiqaaP01OrIIX37wCVL3HvDDFFMrFlfdeiMiY2oJi6hgCDpLS9HEGa9gY1eEaDLt6Q+RdTAdw++/FnPf/xbZ4rhO30uGo33/UuvwcAkUTbxtaYom3vKsrrlRNDEc7zE2pDwKdChjhe/P+f9auXTp8jQSEtr7/paScdgMsLp2goqot1yckFVFkAZihKlzfFwkMrLLf83TapBQnI+or7/C1g+/wLaUrHKiyYD2wtLktXHIb9EK+ZHB3cBRMU9deaUkxkfJUxGu/UZUXs2rZ8lSpMoUX6OLhEVUuIZI4SgzJqYYT815Esv2CgsTEXJztyIve1uZpUnhkXtRu84gRESUOtl86sSn0bl+d+Q78Esky6kjHHmmZRaEK+oKfe742CiI4RtZuRWoHFTgE0ZHliAt5SC+fO9jFP2rjkQKK5QzLxmJNh2PEMdFQ+/HRP+4tWtFQzo4d/JOVCCuGldU/aRYpGXlO7Z4UwUhHQ5/fvtLvuhXvH4PNv21Cn9+8ROSGtTFuY/fJMbCiu1fqvUORbwYcRw7Pi5arAM5dnvBV+5hGEiAoomNaGLsIhs2PuP7U6eOD5YuVF062Au3ricXg2RVMa0uF6HR4p9AC0G5dIhGMQofexyLJv+GecJ0WvNp0qluLXT8v7tRMmQICmuVOudjsCYQLXY5JeLcQzhv4iuyf0hLqvzCopAtvCvyWdyWJS1ACkvKL4ZTDv6Na658HBdefCyuuPIuREQe9k0UgQjkFOSgVnR5R89W9ZB7jNjoKLGxrJmbeLf8Q5VOtqvc2BW68D8Tqjp5nm9JMVb/swLT//ejL+t+xw7AcacOFX3V/S1Pbusob52S43ZxGAuwbtm5SRfqdWD63hRMfPg91G5UF5c9O9pXxe9f+By7N+xAn7OOQ9uBnbFv/z506dIVUVFRbh6h2qRRWQdWm4epAhWVfZeBBCiaOBRN9u79AfK4jrQ2kYE+TdReIh7PUePkRSy74zlaGdK8Pyk/CxsuuRbT0lJ8osk9yVkYevX5KL7xJqQXi6sivahQDc+Dx3MqtoF5PKeUt9lH003rrsPjjxzACSdm4PJrPkNsnDhipwv0aVKxfdVpaTX5eI7GQt72FF2Qi5++mSL8xeXhtHPOQHTDRpUiOvN4jtMeGlz8UB/P2bN2q+9ITpNObTD0lgt9lZX+TaSfEylGRvVrismTv8KHn/1PWOrVbMsBHs8Jrq8aU/N4jrc8q2tuFE0Moom8Ylg6mdUczMr/ri9u6ZGhqEhsMDc8I0yee/LKYYc9nqKJQ2BBRFcVTWQRCZHF+PuXBVjy/GOlliaRDTFs8mfi9oKiCnPGF8SjVomkFE0qthkomljzXrfyRPy1IE/MT3kYNPRdJCT2Dapx6NMkKHyOE4eDaCKhpGzagVgUIj8/H8lrd6LHeSc5ZuVFAoomXlBUzyPUosmmP5Zhybcz0WFgL/S56JSyii38Yhq2LV6DfYnZWLjhb4om6k3GmP8SoGjCriAJVDvRRPoY2ZX8JYoKs8SmLsvnnLVN6xvKhI1gf5cOZPfu+R7HHDPB10PkcRwpnMhyZJnSl0mnTg8K077SYwu0NFF7kSiaqHHyIpYT0WTZzjRs3HUQzeZMQfKsX9Dh4WfQ/MgOaCnMWxnUCFA0UePkVSyKJuYkS4rzsHZFHzmti39K0LLtC6hT7/SgsFM0CQqf48ThIppsmr8c6Zt3ICYhDpsWr8O5T49xzMqLBBRNvKConkeoRZPl3/+O9bMXoecZx6PLSf3LKpaxPxXTnx2PjZnbsfbQFpze/HiceOslaNyxtXrlq1lMWpp422AUTbzlWV1zq3aiSWWAlhYm8ipjKZxoYolWD4omai1C0USNkxexnIgm78zZhMnLd+HTy49C9ObNmJIRh9p16+DCY/zN+r2oV03Ng6JJxbYsRRNz3vl5W7Bp7VlijqotrCIz0LTFPWjQ+JqgGoeiSVD4HCcOF9Fkza9/YeW0eYiKjhYfowpx9hO3IC4pwTGvYBNQNAmWoLP0oRZN5v93Cnat2IhBV5+FVkcdWVa5rX+vwt9fTvcTTeISauGMh29ETK3Dfp+cPU3Vjk3RxNv2oWjiLc/qmhtFkyBbjqKJGkCKJmqcvIjlRDS56uOF2Lg/Ex9f3Q/1o4pxzvjFOKtXCzwwvIsXVQmLPCiaVGwzUzQx552V8Qe2b75Z+DFpI2562y4Ek6uFcHJvUI1D0SQofI4Th4tosnzKbKz/fTES6tVGdloGTrz9UjRs18Ixr2ATUDQJlqCz9KEWTX556VOkJe/HyXddgfqtmpZVbv54Iaas3OgnmkRGRGLY6ItqrLUJRRNnfdMuNkUTO0Lh8TtFkyDbmaKJGkCKJmqcvIilKppsT8nGJR8tQO34aPx82xCs3ZOB6z77G92a18GHVwTnC8H4HEmo5GvvhEfbzIjQXJ1M0cSLXqueB0UTc1ZpB7/B7p2PIyGpL7IzF4mjOaeJIzovqoM1iUnRJCh8jhOHi2giv/rLr/8N2zbHwW270e/SEWjXr7tjXsEmoGgSLEFn6UMtmkx64HUU5hXgnKdvRWyt+LLKLZs8CxvmLCknmpwuLE0SG9Rx9hDVJDZFE28biqKJtzyra24UTYJsOYomagApmlhzysrMQGZmJpKSkpCYVFsNaIBYqqLJV4t24LVZGzC8WzM8ekY3ZOQVYvjrc8QVo5GYfeewoOuhz6CecFQf+fdCYOlST/NVyqx5c2DkSKRkFSpFdxqJoolTYsHFp2hizm//ntdwYO8HqNfgXKSlTBZOYPugbcdPgoJN0SQofI4Th4toMu/DSdi9ejNaH90FO5auRddTBqLHacc65hVsAoomwRJ0lj6UoknuoSz88Ni7iEushbOfLL1uWAsFOXn48akPsGb/hjKfJp2H9kXvc09w9gDVKDZFE28bi6KJtzyra24UTYJsOYomagDDWTSpF1MMFFtf3rt12zaMvecO3H/PfRg0YKA1UHFXY3phJOyuDVUVTcZ+swx/b03BY2d2x6ldS01ZL3j/TySn5+CL6wagfcNSZ8deBLn5qhsnHFQ+/jiwfLkXWarlkZCAkrfeQnZUHPKiQnPFIEUTtabwKhZFE3OSydvvQ3rqj2jS4k7sS35VHNNpjSO6/BQUdoomQeFznDhcRJPfXv8SB7cmo9upg7B6xp8+8WTglWc45hVsAoomwRJ0lj6UosmBLcmY9caXaNCmGU664/JyFZPCyWdiLfD7otk+R7DD77kG9Vo2dvYA1Sg2RRNvGyvcRJNV67bgopvFel0Xjh/QC+8+f5fvL0NHjsWBlHS/31fN/rjsv0fd9wrm/vWP3+/PP3QzzjxlkN/f7PLRypL/+/t3r9mm/fq9R9G9c3tvG1+XG0WTINFSNFEDGO6iSeTkycDcuaawNuXl4Y7dO/Fgk2YYlGAhVPTogZIbbkBaXoknokmmsCo5VViVyCCP5sgjOjLcP3kF5mzYjyfO6o6Tuxw+E6zWyoFjSQuWxLxMRNx2G5DuP9gGSpkibgK5qagAYyKjMUycQ3YSSh55BHndeiK7SN4oEppA0SQ0XK1ypWhiTmbrxiuRk7UUbdq/i+1bRiEiIg5dei0OqnEomgSFz3HicBFN5E0m8kaTgVeeiQWfTUX91k1x8p1XOOYVbAKKJsESdJY+lKLJtkWrsXDCTwEFuB+nfIuvv/zEJ5r0u2g4Ogzq5ewBqlFsiibeNlZVE00OHUjDpiXrUUfcdHnEMZ09fdh3P/0eb4z/DkaR4/wbHsET917rEyWk2HHpuSdh1FVn+8qWIsn+g2n49sMnyv5b/osmskz95U/c9/R7ZXlqoswFZw7F4/dcW1b/R1/6r+/ftb/JdP/96iefQHPvLZf4iS7GOmj1vu26kWX18hSMyIyiSZBEKZqoAQwn0SQ6KkJch33YskT+d534KKFI3A+sXesHbF9GHhYIy44PmifgvH3ZODkuFm0aGG4RaNQIeOMNZEbGIb9QWK3YBBVLkxlr9uKxqavQr20DvHZR77IcP/xjC8bP34KrBrbFqOOPsCvK8e8JEUWI27wREQ8/pJx2nxBNrheiyVghmpzsRDS5/HIUjjgNhyIPn21WLtRBRIomDmB5EJWiiTnEDatPQmHBXnTsOgNb1l8gbtA5hCO7yxtK6rmmTtHENTpXCcNFNJnyf28jPysHIx64zncVbEx8HM59puKvHaZo4qqbuk4UStFk9c9/YtXP89H15AHocfpxpnVcu3olZv0wFQ33RqN1ryMx6JrSDV9NDBRNvG3VqiSaLJ2xEH9NmoO87FzfQzZu0xRnjr1QCCju53o9LaMYYUbSTLD4cvLMMmsQKaLIoIkm8t+l6NKjS3ufICL/vXHDen6/m5Uj8+ndvSOWrdpYLj+zemrCid7qxcueQNEkSJoUTdQAhotoEhkRgcRakcjMKfKzCJETWEL6QUSMEQtDYVkiQ54QQJbuSMPu6AiMb5HoE02OzC5EzxZ1UbfWYaelJS+8gNxWbZFTIoQXhaAimjz+42r8vHoPbj+hEy7p27os11nr9+GhKSsx+IiGeGnkUQqlOY9SW9zSE/O9sLyZMME2cVZ+Ef4+mImXm9TCeWn5OCc+Fg0TFY7Z9O+Pknvv9R1nKg5wNMq2AgoRKJooQPIwCkWT8jBLSgqw9p+jxQ8R6HrUCmxedw7ycjehQ+fvEBd/+OpNp81A0cQpseDih4to8s1dL/tAXfjyXfAJKGLxf9bjoxBf27sjoSotQdFEhZJ3cUIpmkgrE2lt0vfi4Wg/oIdlpbPEF+tpT32IaPGB6rxnhdVrDQ0UTbxt2FCJJtnCF8+K35xZhC79eWGZYKI9pRROOjiwOEmom4heJ/YpB0mzALE75mIULPSCiMzUTjTpPuyacpYsZi0m48m6bNm+By++M9HviI6VuKOat5seQtHEDTVdGoomagDDRTSJiS3EvqzdaJLQHAUFpUdetJAYVYLYFcsQ8fTTvj9JK5P1+zKwPzbKTzRpUz/hsLWJOJJTMOxEZEQoCAX/FqQimox4Yy4O5RZg4vUD/SxbdqRm4+IPF6BpnXhMunmwWuM6jCXcm6BudAkixr0KzJ9vmbpQiB0rk9ORXFSMd1ol4fQDOeiZWYCjW9dHomBmGRo39vkxySyJRoGCZY7D6peLTtEkWILO0lM0Kc8rP28bNq09AzGxLYWlyc/i6uEbkZUhfEV0eBdJtc2/uqpQp2iiQsm7OOEgmuQJC5PvhVASmxCPc566FTNfm4AUcYPOCbddgkbtW3oHUyEniiYKkDyMEkrRZNYbE3Fgyy6la4RnvPgp0nfvx1Bx5XCTjoc/Gnn4qJWeFUUTb5sgVKLJgR378MXD73tbWYXcGrVugsufuqlcTO0YjWapYfRtookpZr5I9EdtjKKJZgEi08sg/aXYCTPa0RztyI9RDLESTVQsZRQQmUahaOKW3L/pKJqoAQwH0SRZ3IDz57ZVuG/mfXjxlOfRu2kPtG/g/+WsTmQRov/3NfDttziYlY81ew5ZiybDhqFk1C1IK46y9WOibwU70WTRtlTc/vVSHNE4CZ9d079cA5702u/IERYe08Ycj3o6ixe1llaLFSP8m9QWLDB2LJCcbJooGgxDhwAAIABJREFUPacAK4RockjE1YsmfqKSScqSF19Ebss2ypY5ajW2jkXRJFiCztJTNCnPSwokUihJSOqPtkeMR/KOh5CeMgXNWz8hbtMZ6QywLjZFE9foXCUMB9FE+jKRR3KSGtfHaeJ4zsIvpmHb4jXod4m4drh/xV47TNHEVTd1nSiUoom8OUfeoHPG/92EhPqBbyFc/v3vWD97EbqcNAA9z3AvKrsGUQEJKZp4CzlUoom0NPlnpjNLk0U/zkdRgf9tkNLS5Ig+6r5NatVxZmlitEAxEyakqKH5EzFzBKsXSVSsQbSjOXq/KbJV9c5o9X5VtBZXydtt76Bo4pYcRRNH5Gq6aCKv612+ezdumz4aGfkZwtKkCV4bMQ6dGzUW/kwOH7WJ/PcWGZ+1yeLFWLYzDVvEdTja8ZxuucXo27Y+otu3A159FYfyS/z8o6hAtxNN3pi1EV8u2o4rB7TFLUPK+y25ecJirNiVjtcvPhp929RXKdJVnHhhLVJrxxZE3FXqjdsYNFHJKJq0rFsL7RtZmHHfdBMKhgxzZJnjqvK6RBRNgiXoLD1Fk/K80lK+xe4dj6KuuG64ReunoF0/3LjZGDRqOsoZYIomrnkFmzAcRBN5a468Padh2+Y4cexlUPFFESxXq/QUTUJF1jzfUIkmhfkFmHT/64iMjsL5L9xh+1B71m3F3Pe+rTQHxLYV9CACRRMPIOqyCJVo4qaWm5asw9TXvilLGies9s5/4EqfbxMvghREhg3u7eegVUU00R/RMTueo6+bik8TKX6YBc0Khj5NvGjtCs6DliZqwGuyaCK/xqYJPyVXfXs3VuxbUQakf4v+eOOMR9E4McnPr4a8RSapMAeQt8ikpGDSjtQy0eScOgk+nx0lwvFrTv3GyI3wP+KjQjuQaPLK809gcX4zbInviLcvPQa9W5V3HPXiL+swadkujD2xEy7uE1rT1SShJ8XO/g14++1yjyZv+FkuRKV0g6VJW2G907p+rfIoTjgBxTfehHTEOLLMUWEaKA5Fk2AJOktP0aQ8r/173sCBve+hcbPRQiQZjdQDX2LPrqdRv+FFaNbqEWeAdbFpaeIanauE4SCa7F69GfM+nITm3TrguBvOw3ZhZfKXsDZp3bszBl51pitubhNRNHFLzl26UIkm8qiNPHJTp2kDDL/v8E0cVrUsER+qvrvvNRQXFuHMR29GrbpJ7h6oCqeiaOJt41Ql0UQ+2f7te7Fp8TrEJcaj23G9IIUTr4LZ7Tl2oon2u97SRNZH7whWXz/tGJDx9hxZ9u59B9HvqC7lfJjI9HorEqNoouXJ23O86gkhyIeiiRrUmiyaxMcJnxt/f4anZ5delaUPDw+7Hjf2ubScf5NacVGI37gOWXfeg1+EXxPN0mSEGPhaPHIf8vsPRKbY/LsJgUSTay8/Dwca90HJkcMwdbS5Wep3QjB5SQgnZ/RsjodGdHVTBUdp6kUVIvKjj4BffilLJ53kSn8mOQVFyBPXIY9rloCzU/LQ9VAepLPdXi3rIikuGgfEzTqZrVqhXYzw+SItc3KLHFvmOKqsSWSKJsESdJaeokl5XsnbH0B66g/iOM5T4jjOuchIn4mdW8ciqc4wtG7/pjPAutgUTVyjc5UwHESTrX+vwt9fTkfbvt3Q/7LTkLJ9N2aOm4D6rZrg5LuudMXNbSKKJm7JuUsXKtFk18qNmD9eHEf8V4hTqd0fH01G8qpN6HepOBbWr2KPhanUL9g4FE2CJeifvqqJJt4+XfncjL5MZAy9GGHm00T/u52liVai0ZqkUYO6PmevVpYo+nzN6mDnJyVYbjyeEyRBiiZqAGuqaBIbU4JDBQfxx/Y/fTfh5IovF1qIF6aiR7euh8FtBqJeTFPkFfhfF1w7qggHJ36L5ePewe+NEzDgYA46jzwXR95xM9Ii4tTAmsTSiybyCIwMUnyYt/EAPvq/G1Gn2xAMPu0CXDOone+3QuFoVX9F8j/iaM4ocUSnS9PaGH9VP9f1UE3ou5I5QQhEd98NbNgAedmNFEyko9r6CbFo3Lx22ZXDbfdnY29GLhJiotBTWMmM79Aav+9KxoTX3kR2nQauLHNU62kVj6JJsASdpadoUp7Xto1XIztrsc+fifRrkpO9Als3XIr4hO5o3+krZ4B1sSmauEbnKmE4iCbrf1+M5VNm48ihfXDUOcN8N+dMefitSrnNhKKJq27qOlGoRBOtT3U6/mj0Pu9EpfptnLsUSyf9hjbHdMGAK85QSlOdIlE08ba1wk008ZZezcmNokmQbUnRRA1gTRVNpI8SedxGhj3puXh7ziYUFZeKI9cf2x4dGpWafeYKx6rGIAwmsGO/EAdeeBmtVizCzhbtEfPcs0KsqCvyEMqBy6CJJlnC6iKhQBwDmjsXG/dnYldaDl6ZMRH923fFcZ2OQh/hrySpfRsUd+iANBwWabJFXU8WzmCjxbPNufsEl7Vwlsx3JXPaAUSMHo3VO1OQIpzkSkuSHuL65TxRj3uLCnBNZBT6R0T6BJU04SS23fCh+CYuD/PWb8BnX3yB3ILD5onFog0++egd9O0/CD2POsZZZRzGpmjiEFiQ0SmalAe4cfUpwpptt7g5Z7q4QacVCgv2YsPqkxAd0xidus1yTZyiiWt0rhKGg2iycto8rPn1L/Q47Vh0PWWgj5O8TUfeqnPmY+KoRJ2KOyrhVDRJ27UP0qpBhnb9eiCxQR1X7RyuiUIlmiz9biY2zluG3ueegE5D1Ob7jH0pmP7cf8Xxhlo4+8nRNa5JKJp426QUTbzlWV1zo2gSZMtRNFEDWFNFE/3Tp2UX4PS35kJuNKTo8eLIXjj2iEYBAT350xqM7NkEvd56Dv9cORqfrziAMcN7oGU9E58daqihtzRJEtccRyz8C3/der8v9Ytt62CAOOIyJDUPDbsdia4TP8KhPH9LExnvog//xM7UHN/tOvKWnYoIicJ9y+bps3Dw4ccRJ4SonkIwiRcWJcaQLyxjNsY1QMuxN+LGr55FdnIxThFWKsM7DkCTpFLhpKioCNeJo0gXXHwlzjrvwpBWn6JJSPGWy5yiiT+SkpJCrP2nt++PXY/6R/x/KeKWYM3ynr6/dem1HBERAa7oDtB8FE0qtm+Hg2iy5H+/YtP85TjmgpNxxOCjfIClY1jpIHbYmIvRuEOrCoPuRDSRYok8VlSQk1dWv1PuvhL1WjapsPpW94JCJZrMff877Fm7BcdeLxxhdy/v3N6K2/TnxiNjXypOvP1SNGzXorrj9as/RRNvm5Oiibc8q2tuFE2CbDmKJmoAw0E0kTfOyJtnGibGieuE83zHX246roMloGLhjGzIy7NxUtcmGHdWZ3y1bDee+HkDHjuzO07t6t4LttGnSUJJARY9/RowdaqfaJLw3jvoctSRyEX5DdWDU1Zg9vr9eOyMbji1WzO1Rg4y1jvCSqd97Si0mzEFPRfOQm3hy8Q0xMYi5dor8f72qZi9bgcitogN4vEReH34mzixYzvkC38os9fuwX8fuwntBp2BUddcjeZ1vXOSZawTRZMgG95hcoom/sDy87Zj09rThYVJC2FpMqPsxw2rTxQWJ/vQsdsviIlp7pByaXSKJq6wuU4UDqLJn5/8gJ3L1/ucvkrnrzIsnPATti1ajb4XD0f7AT1c83Oa0IloMu2pD5CVcsiviJY9OmLwdec4LTZs44dKNJFXWMurrIf/5xrUadZQme/S734TFipL0X34YHQbPkg5XXWISNHE21aiaOItz+qaG0WTIFuOookawHAQTaat3I2nhOVIb+HHZJnwb9KvXQO8dmHpF2CzsHZPBq777G+0b5iIyaOPxTuzN+HduZtwwTGtcNdJR6qBNYllFE3kxmdlcipKHnoIL2bu8FmaHHvlKEQNFguFdubizPj5W/DhH1twRf+2GD1U/cuN20p/+fd2vDF7I5rVicc3N/ZH45efA5YtM82u8OLzMKloE97KW4CCxcIfyu5I/NU/A0c1PQpvnfksPpm3A98v34GOS17HwZaDkd92MD65un/IhBOKJm5b3V06iib+3LIyF2D7phuEL5O+wqfJx2U/btlwCXKzV6Jdpy9QK6H0i77TQNHEKbHg4oeDaPL7O99g34btGHrLhWjSqY0P2OoZf2LV9PnoclJ/9Dzj+OAgOkitKppI65LJD5V3qCyP55z+8I0OSgzvqKESTf53z6soEUdyRz4/FlEx6jcOSkew0iFso/YtcMJtl9aoxqFo4m1zUjTxlmd1zY2iSZAtR9FEDWA4iCZS8Ph0wTZc1q8NJggRIDE2Gr+MHWIJaMryZDw/Yy1GCEuOR4RFx5LtqRjz1VJ0aSYcsF7p3gGrUTR5dOoqZIjre6/qXBuvPXUHBjRujTPufwz1GwmfJsJviFn4fcN+PDB5BQa2b4hXLnC34VLrGcBPq/bgyWmrfdHvH97FJxolFmQj4tZbgfR0v2yKhh6LHUc2xagdH2FXUQzilgON98f4RBMZzu18Lo5veS5emLaxTDRJadYfp/dojodPC81NQBRNVFvam3gUTfw5pqV8h907HkHd+mejRZtnyn7cufV2cYvOb2jVbhxq1z3ZFXyKJq6wuU4UDqLJLy99irTk/eJI5eGjLduXrMVfn/+IVsLycdDVZ7nm5zShqmgi86WliVO65eOHQjTJSkkXbfMhatWrjTMfuclRJYsKCn1XD8sg/ZpI/yY1JVA08bYlKZp4y7O65kbRJMiWo2iiBjAcRJOHvl+JWev24XFxvOaDeZuxUzhelRYOnZqY+wR5YcY6TF6+C7ef0AmX9G3tO1Yy7NXZPqAz7xiKWib+PFRo60WTF8XVwZPEFcLyqMu31/XD7TddhvNGXoBzL7wioLNZ6TT2wg/+ROOkOEy55ViVYl3F+XPLQdz9P6F8iDBqyBG4akBb378nRBQhbutmRDz4QFm+Ec2bI+KGa/BXRDIyxQJp9uZU7Pz9LxxcuwlH3XyZ71hUjLiJp3F8R/y4LBUHvnkKB1sMRkrz/r5bjN66RM1BnNMHoWjilFhw8Sma+PPbv+dNHNj7Lho1HYXGzcaU/bhn51NIPTgRTVs+iAaNLnMFnaKJK2yuE4WDaDL18feRk56BM8QGN0GM4zKk7NiDma9+4fMPIsWUigpORJP9G3dg9ttfl1UtOjZGWCdcQp8mDhorFKKJtFqS1kuNj2iFYbde7KA2pVHnvPc/7F23zXeDjrxJp6YEiibetiRFE295VtfcKJoE2XIUTdQAhoNoctXHC3231EgrkYmLt2PG6r2479TOOOeolqaQrv9sEdbsOeTbzMtNvQw3fL4Iq3cfwusXHY2+beurwTXE0kSTp6euwad/bRNOIOHLT96Wc93lI3H2Wefg3Euuts371NfnIFNYqEwdfRwaJMbaxncaQR5PGvPVEsjbeqRoJMUjfagdVYyYqd8Dn39e9ufIyy5DyfkjkV0chR3CUe17772NLf8swA2PvYWhnRqLq5WL8cSPq/DLKnGTiDye869ocv3g9r7bjEIRKJqEgqp1nhRN/Nkkb38Q6anfo3nrJ1CvwciyHw/sfR/797yOhk1uQJPmd7hqJIomrrC5ThQOoon8si+/8I987nZECeFBBu34S3RcDM579nbX/JwmdCKayLzlESJ5lCgyKgrFwtn4yXddgfqt3Psfc1rf6h4/FKLJ5gUrsPjrGWjXvwf6XTLcMaJ1sxbhnx9+d53ecYEVlICiibegKZp4y7O65lZjRZMFmw9in/DdcHbvwB6xZ67Zh5lr9iIzvxA9W9bFwA4Nff+rBbvfKZqodf1wEE1OEFYiecJa5Jfbh2CaOHLy6sz1OLNnczw4ovyxEOEDVjiBnYUi8S+/jh2KhNhSZ6zjftuArxfv8DmQlY5k3QQpmny5aBtemrHel/zZc3v6BAUZcrKyEBUdjdi4w1cMW5Vxy5dLsHxnGsYJvyz9hX8WL8OeQ7m+o0jJwqJluDie9Kg4nmQMwhUL6kaL239eGwf88QfQVCxO33gDGSXRKBCcZfj84w8wf94svP3hhLLkS3ak4rYvF5eJJm36n4oXzutleRQp2OeiaBIsQWfpKZr489q26RpkZy5CmyM+RGJS6RWuMqSlTBbHdh4ud2zHCW2KJk5oBR+3posmhfkFmHT/6z6/E9L/hD58/8g7yMvMxpmPimuH61bMjW1ORRPNYW1T4Ytlr7BwOHJoHxx1zrCgGj5G3BSnzWdBZVQNEodCNFnx41ysnbnQ7wprJyjkUTF5ZEz2Odn3akqgaOJtS1I08ZZndc2txokmmw9k+UQQKXYM7NAAd5wc2KHmB3M3o0OjJLRvnIiVO9Mh//uZkT3LhBO73ymaqHX9mi6aSBFg5Hvz0UgcZ/leHGeR1iLSaqR9o0R8ce2AcpD0TmC/uO7w77+u3YtHfliFwUc0xEsj3fkSmSoc0j4jHNLKIAUbKdy4Ca8I0ee7pbswRjiCvUT4afEq5BYU4TYhmKwSjAYIMebVAM5y5YJSWpxg7FiU3HUXcpu3Qk7J4dt+5s+bjR3btuDiy6/1q5525bC0NHn3/25Hq/oJXlW/XD4UTUKG1jRjiib+WDauORUF+ck4oss0IYYefk+zMuZj++abfEKKFFTcBIombqi5T1PTRZPs1Az8+OT7pv4nfntDXDu8RVw7fOtF4qhFa/cQHaR0KprMemMiDmzZhWPOPxlLvv0VcUm1cPYTox2U6B9VfhhIrBWF7NzigMdlXRdQxRKGQjT589Op2LlsnThec7o4XuPOb5nmr6YmWQ5RNPG281M08ZZndc2txokm+8TmVQon0tJEBjvRxNhwt09c6rM2uay/+SbR+DtFE7WuX9NFk7+3pWDs18v8fGcMfWU2CoqKMf2241EnvtQMWQuaE1ijlYUmvtStFYOfxji/RWDm2n34vx9W+orRfKVECz8fdWqpe5TX6ijrIo8bNakdjyMt/LKotH6J+LqYmn845r3f/YM/Nh1A56a18ebFRyPRwhmtliJeWOEk5GWhQFjnZESqXR2sF00eHXsT+rX11lJG/9wUTVR6gXdxKJroWRZjzfJevj906bVcHMU7LCjm5W7E5nXnIi6+Azp0FsfcXASKJi6gBZGkposmabv24ZeXP0O9Fo1xyj1X+ZH6+8vp2Pr3KvS96FS0H9gzCIrqSZ2KJlMff0/4Y8nEGf93I/78ZCpStu/GgCuFL4yj3fnCiI0txoaUNejUsDPy85zP0epPWjVihkI0+fXVz5G6Yy9OHCv8mrV194Fo8de/YPOCf3w3N8kbnGpCoGjibStSNPGWZ3XNrcaJJlpDTFi4XRzPyXUkmmQJ/w23T1yGG49v7xNOjMHsd4omal2/posm0iLjpV/X4exeLXw3wMgwWhxvWSaOt7x8/lEYZOhPRieweorSYkUKFp8LC5UOwlJFNfy1NQV3flN6Te+tJ3TE5X1LhT/p06Su0GwiXxde4ufOVc0OGbmFWL4rzXespXerUp8rjsP116Pw+KE4FFNq6fH09DX4ccVuIcTE4U3hy6VVPTVv9UnCka18/+SxJpVQLK4ffHTCb/h9ew7uObOPr11CFSiahIqseb4UTQ5zKcjfiY1rRiAmphk6dvvVD1hR0SGsXzlY+F9IQuceC1w1EkUTV9hcJ7ISTbJSDokbZ/YhNj4OjTtWjBWG64cIkHDv+u2Y8+43vquG5ZXD+rDmlwVY+dMf6HKiuHb4TOcfDNzU14loot20EhkVifNfvBMb5y3F0u9+Q/NuHXDcDec5Lj4muhg7M7fivpn/wdgBY9G32UAUFfp/XHGcaRVPEArRZMpDbyE/J1dY/NwiLH/cWZTuXL5eiGA/oIl4t4aOvqiKU1SrHkUTNU6qsSiaqJKq2fEomujaVx7FWbErHc+e19P067fZ76qbuJrdjeyfTm7cazKrJ6euxvg/tuABca3tTUM6+IA8K47IvD9nM8ae1KmceHfuW3/4/IVMvGkgBohrffXh9i+X4od/kvGsOCameixm2Y40XPHhX8gSvnmuGdwOj53dvRzviAJh7nGHcAi5c6d9g4kYRcUlvtuAltSJw/HiGuRBwvmdozBEXLd8yy0oSSgVfp6bvhbv/b4JceLIzYQbB+IY4Zg2lOG1mRsw7tf1PgHpHuGQN1TB17dl5oqCTqjqES751vSxxEk7pqYuwNJll6Ne3X445piJ5ZL+PqcHiopyMHTIckQJ8cRNIG831FymEWOJ+D+/sXvZjIX4a/Ic5GXn+jJt2aUtzr+/4m6Ycfkkpsk2LFyNn97+Dp36dcVpt57vF2f9X6sw/Z1J6Ni3C04fc4GXxVrm5aRvpyQfwOcPvot6zRrgqudG+9rjvdEv+fK++oVbUbeJs/ksMz8Do6eNRnpeui+PN097E63reHcMtkIAOizECW+VrHMzc/D+mJcRWysOo965VyWJaZy87DzRli/6fhv17n+EOOm943vXlQsiode8g6hKtU8qWTKQAEWTf/vA98uSIf1JPHx6VzSpU/4IgNXvu1Ny2IsUCMgvDDWZlbw2d744Eva8ENyG/Ot0VQoOD05ZiYFCFHn1wsP+SaR4dLx0AitECXm1sOYEVsP4lXAEO05s+M8S1hEPjrA3+92eku3zEbIvIw+ndW+Gp4Xj18T4KKRk6M7EiMzjhYPYWru2AXeq36SxZFsq3uzSHL1at8a9I0YAOgeyxeJBisUzREVG+qxZ/EJCLRR37YpDEbVQKKw+JglLnI/mb/FF+b/Tuwmh6PBxGZlHKMI04dvlyWlrfI5mHzuzvKNZr8qskxAjNqYlPksYhtATaFw3HqmZeSgUzMM9SGevyduls9cz0bLtc+VwbFxzhjD734Yjuv4gXl3nt0dJS5OGQjTdl1a6YWcILQF5VDFKHKc8lF3gK0jeKjP1yQ98/6sP/S8dIW776B7ayoQg901/LMfi//2KIwYfhT4XnuxXgjxi8csrn/uO7px6r//RnRBUxZdl/aRY5OQVQfrZsgu7V2/G3A8moVmXdhhyc6ng89cXP2HbotXoPmIwug8fZJeF73f5TiXER+DxOY9j+d7lZWna1G2DcaeOE/UpqbFjW7P6tbBXOH/36gNayvY9+FVcVV2/VfBXVc968yvs37QTg689G616+d/kp9SwVSyStDRJFMfCU8S6kCF4AnIPw0ACFE1EH5BHeaQPFCvBJNDvPJ6j9hLV9OM5F334J3aKK3ClU9f2DUstK6SIce67f6C2OFry823C6uLfoDmBbSfiTdA5gdV+L3MiK37XO4k1I52SlY/bv17q8+NzXMdGvltitCuHDx7yF01k+iRh/Rs7Z7b4rPWmUsOtSE7Hy8IfSM9GjfCfhX8j4uknUSgsTgqFrxYpdmjb1mixEIzUKyeDBqEoPh4FiMSe9FysFlcry9BVWKw0r3t48okQaSIiIoXg4P0GeKmwvrl14hL0ErdhvXtZH6XndRPJ6njO/n17MfHz8bjsqhvQsFHp7UUMwRPg8ZzDDA/sfVtcK/w2GjW9GY2b3VYO7uGbdT4SDmHLO6S2aw0ez7Ej5O3vxuM5+zfuwOy3vy5XSLt+3dFPCCfVLWhHcLqePAA9Tj/Or/oFuXmY/OCbvmuI5XXEFRGcHM/ZOFccx5n0m0/wOeaCUsFn77qtmPPet0hqVA+nPXi9mAMBu28AcXFFmLT2W3y1ciKy0zJQJKxDI8SRn9qN62No26G4pe+tyMuL9ExYqAiOqmV4fTxnx9K1WPDZj2h11JEYdPVZqtUwjbfm17+wcto8v/YNKsNKTszjOd42AI/neMuzuuYWdqKJFEfkP5qDWGm+L68mfuiMrqZHcux+p2ii1vVrsmgiLUak5YgMc+4+AVJA0MIF789HshANPr+2v++WJhmsnMDqSQ4T1xfni2t1p916POoJSwazkC+Ei7FCMFkubn2SPkdeF05VZdmBRBOZT70IIWV8+gkwfXrAxpP13nowC2+3TET39h0wRjiZrJsUj33duuG3P+aXSxstFn6+J+8ujgY1box8ET9VfDFdtbvU/FiKREYfJsNOOAG169QXVzWr9SMnsTSnuo2F/5Qpo451ktRRXCmayIVyjuEhVq1YjmeeeBiPPPEcOnct/1WYlhKOMJdFpmhymFuyuFI4XVibNG/9OOo18D/uIGPt2v4fHEqdhhZtnhXWKM43FRRN3PVRt6mMoom0MJn8UHmBu5uwaug+fLDbYiot3bLJs7FhzmLfNb3yul5j+OHRd5GbkYUzHrkJCfVqh7yeTkST5VNmY/3vi9HrrCHofEK/srpNf3Y8Mvan4vgbR6LTMZ2QkWM9mcWJUx8r9y/D0/OeEs5L9yDnUHZZPtGx0T5fL9f3vh4ntT8V+fkOj8OGnFbwBXgtmmhCR+cT+6HXmYc/TLmpqbRamTnuCyQ2rIvTH7rBTRZVKg1FE2+bg6KJtzyra241TjSRVw1LyxBpKi//kUdt9I5d5W/yqI30JSF/v+T98g7yZJqPru5r+7tsdIomal2/JosmUli4bPxfPkHg6xv9TXTl9cHy2NcDwjmsPG4jQyAnsBrNMeK4zZLtqXhhZC8cd0QjU8jaLTQdGyf5BJN64sYdGexEk7LbdP7zH2DdOssGXCSO5uQWFuHdVkloWxyFe4U/lOg330DcqSdhg1BHVq4svaVHC5FCsIlq0wb5QmBZujsTUtSRwoA8xtNSsNEscLT4Rx99NFq1bou8oki1TuQi1nEvzfKV//tdwxAjRJ1QhEZ14xCRkYHCtFJrGhkKhYry699L8fZHb+LWG2/H8H69/YqOqFsH2TkFyI1Xd/QbirpXxzwpmhxutW2brkN25kK06fABEmuXPx6wL/klHNz/MZo0vxMNm1zvuLkpmjhGFlQCM0ewPz39ETIPppXlW69lEwwTzipjhB+H6hYWTig9ziKtZKS1jDHMelNc6bt5l3DGeaFwyhl6/x5ORJP546dg18qNPosGadmgBc165tg0Ev0qAAAgAElEQVSrTkW7AZ0hDsH6jvwYg9zEZhQcxC3TRiEnMwsHtiaXi1O3eUMkNqiLZ058BkfU62qaT3Vrc319vRZNFn31M7b8tdJ31KvDoMNHoN0y+uExIdodyhLHw65G3ebm6y63eVd0Ooom3hKnaOItz+qaW40TTSq6ISiaqBGvyaLJ3I0HcN+kfzBI+C55+QL/iVv6J3nttw1+t+rc8PkiyCM4b4nbY45ubX4rzbtzN+HTBdtw1cC2GHX8EeUgP/7javy8eg+aCoHv9Yt6o3X9w17j7UQTmZmcUBMyUhExejSELXC5/OWmf8GW0mu7pWjSOrcIlzZvh3ZXXYioJ59ArXvvxp/Ll2PXrl2H09YTz9KvH1YkHxIWJoePBiWKL2jG52wjxJW+ffsJx7XiiI/3J3PK6nThB39ilzhDPfH6gWjTwJ1nfbseXk9YmsQUFaDolVeBP/7wCSYrxbGmVUJYmtgsAZfvyUJH8fGxb9t/HQUKB7klt4xGWkl0SJ/drt7V9XeKJodbTt6cI2/QOaLLj4iNa1uuSVP2f4q9yS+gQaMr0LTl/Y6bnKKJY2RBJTCKJnvWbsXc978tyzM2Id73Fbw6CibyIeYJnyC712z23TYjb50xhr8n/oytC+Um+BSxCS69SjuUwYloMuOlT5GevB8n33WF8KHRtKxaWSnpWDn5NzTp0wJv7h+PcaePQ1Rxos9SVAvyQ0XthGjc/fPd2Ji60WdNk7J9b7lHk9YmtZs0QKtmbfH6aa8joqiWXz6hZFEReXstmsija/II25BRF6DpkeXHP6fPtFBce71NXHttZQnlNL/KjE/RxFv6FE285Vldc6NoEmTLUTRRA1iTRZMJf2/Hm7M34qI+rXHHif4OxOTm+aYvFkNag3x6TX/fJnnIK6VOYH8dW94JrEZznhBi/iOEmD7ihpk3hBWJPrwijpT9b+lOSDHi9Yt7Cz8hdfx+VxFNZILEqBLE/rMUEc88Y9qIeksTKZqccSAHHc4djrad2yLrswmIGjsG03/5FVlZWYiIFgLA4MHiCsUCbE71dxoZLRzFDtQ5fq1Tpw6GDx+ObOHHpEBYo4Qy3C4sdhYJi51XL+yNAe0OO5/1skx5PEe2a3ShEIrGjsXBDVuxRvhw2SZ82WiiSSvBTx7PatFD9I9x48QXx4iQP7uXz1iV8qJocrg11izvKf6jBF16ifc4ovwxvkNp07Fr2z2oXfdUtGr3iuNmpGjiGFlQCYyiycxxE8Tmeje6nNQfa2cuhBRNznnq1qDKqMzEv702AQe37caJt1+Khu3KXwNfdtxCHH+Rx2BCHZyIJpMeeAOFefk+/rIdtCAFkcL9BzHmu9HYlrcdg7sMwTNnvyAsCUt887w8sir9mHy64lNM2/CjL1lhXgH2ic2+VZBWm8d2GYrHT3sKxTGJPv9hNSF4LZr8+OT7yE7NwGkPXY+khuYfoJxw27Z4DRZ+MU04+22P428a6SRplYtL0cTbJqFo4i3P6pobRZMgW46iiRrAmiyaPD9jrc9Pyd0nH4nzj27lB0QeDRn6ymzf4mnG7UN8zmKv++xvn38PMyewWuI0Yalx+lvzkFiUiY8u7Yk2bUtvvnh/3mZ8/OdW37+/JoSAfiZCgKpoIvOoE1GI6G+/Ab49/DVTq0O6OD4iHcFqliYXZxSgU5PaqHvZRYjYsgmFu3Yj9bhjMXPePEQeczSK6zfEH1tSfMdy9MEompwqBJOY2AQUFIf+Drdnpq/B1BW7cd+pXXDOUeUX6Wq9N3AszRGsbONaO7Zg9/WjhWPeTBTedClenvEj/nPa2ejUtDnqCE/2tYYcKxzkJqCo1PuLp0FeJpNbeulGjQ4UTUqbtyA/GRvXnIromKbo1G2maZtnZy3Bto1XoVZib7Tr+LnjfkHRxDGyoBLoRZMNc5Zg2eRZPsuDEfddg2/uLhW9Lnzl7qDKqMzEPz0zHpkHUjHiget8jk+NYceydVjw6VS07NnJd4tJqIOqaJKXmY3vH3nHVLSKiynEuMnPYdKq78qqe0mfSzHq9DvFzVXRiBenqJ544SGs2rsKEcdGo1jMjynbkpGf4++oPbF+bUSLq27l8ZC8rNIPDxd0uwCnNR+BlJ2H0Kp3ZzRs2zzUSEKav5eiSXFREb69d5wQiyNwwct3eVJvrZ0jhGg18vmxiBRO76troGjibctRNPGWZ3XNjaJJkC1H0UQNYE0WTcZMFP5HdqRinBAx+puIGKMmLMY/u9J91g7SOenzP6/1XYP76BmBr8GVflJyFk9C65L9eP3tj6BZtEjiT53dAyd2bmIK34loIr9o1Y0TN9g89RSwZIlpftcKC4quYkN+V1RMqZPb2FjE3HAdIiZMQIlwCruxzzFYfOCgz/HrFnGLz650/2u4W4rbcto3KvXd0U8c32narAXyhY+Uigj//XMrPhBCk9UxJy/qoL89Jz8/H8nfTkX2a68j54IReH3RfIzoJK4xT6qNOl2PRFSDBigUtwV5HTp16oRmzVuG1D+M13V2mx9Fk1Jy2ZmLsW3T1UIQOVoIIp+Z4pRHd+QRnpjYFujYdYZj5BRNHCMLKoEmmuzbewg/PfMR5I0ymg+NKQ+/hfzsXJz95GjEJVav6y+jIkp8R0I3zluKIuEnq+NxvRElrBONQW5atwqfJ/L5zHyeWMEtEIqxwq3B5ZKriiYpwjpmprCSkcdy5PEcLUhB5Od/puDpKY+Xy/v5y17FoCOOQ1ZRFu6+53ZhLVKM3lf08Vna5GfnCQEmzpefdntOjBBMtFCYX4Cc9EyfgHJa6+GI3FaM1XOX+/xstBbiSaujOgsxrbzoFFTnq4DEXoomh/am4Ofn/1t2c5FX1desoayOkHlVTqjzoWjiLeFwEk2GjhyLS889CaOuOixcv/vp9/hy8kz8/t1rZWC7D7vGD3IX4Yfq2w+f8P1N5nFAHF3Uh/9n7zrAoyq66EnvhRQCJNTQa+i9995EBFEU8RcQBayIoqKiIgqCFBUFBaV3aaGG3iFACCUhhYQUCKT39t/7wks22d3s25JN2/t9CGanvZnZzc6Zc8/Z+tsXaNYo7wKYQ7a++Nq0j5fg9MWbheot+vQtDOvfWWizVxcvLPjg9fzX9x05j48X/oaibet29QtaM4AmWs6sATSRNoEVGTQZufosniSlY8f/upCdbgFtV5yZX04EYtOVh3izWz3EULldvo/wbu8GeKldzWInj1kSl//7Gy4ZURjxzrf4jsAWjrkkKjviuaisogbUAU24vrmpMWyzCOh4hyxLnz2Ta3Iq6XU0o9ucOcYFX3KNatWE2WuTyQpoD7IXfIlzl68hODhYqBvwOAnRiWkEsBjD2cZcAEwYbPH09ESLFi2RQqkp+opDt6Pw1QF/9G/ihgXD5IUHdTEOETTZTGlaS4/fx5f9PFFj+z8IOHFMSM+Z0LErKIEJ9vXrItdY92CRu7s7OnbqROlObHdZMWjcxa2LATTJ0yRKT7uFO37jYV9lKNxrLVI4Zbm5Gbh7sw3dxppSCo+v2tvdAJqoPWVaVRBBkxN/H8SDczfg3rw+ukwZKbR5kFxaksilRRlLQ6uOS7gy/04yysnArrUbhZ5qNJPXM+Gf5xKwEHknBHzTX71JwZfr4obXvHlzEkF2JJad+p99UkGTh2Rte7GIta2xcRbiM2MwZeMriI/M0/+SDTtHB2yftgc5qdn45vMvBdBk8thJxCJJgaWdDWq1bQpTC3ngqGg7qXFJCLx+ByHH/QUgRQzXeh4C+6SmV0NY2BJzk5yW7pMzUcqzBLjWr6kW6FTCy5/fvC5Bk0j/IJz5YxfcGtVBj7fkncM0fabbh87B//B5NOjeBl6je2vaTKnXM4Amul2CsgaapKWF48mTI7C09ICra3+dPqwU0EQRgDF26ueFQBNZ4IVBl1/W7sQ7U8YUAmOKgh4MmnD8uiiPPSa+zsBJ3VrV8OJbCwoBJIrGqtPJKNKYATTRcnYNoIm0CayooElKRhb6LTslAA8+c3opnIxj9x5j/l4/dKnnjDhKeVElAsuNJJGz09ubryHh0k5YJYUjpPkUoe23e9XHy+2LdxVQFzThdq0sTGAZeA9Gc+XFIv3oIO5IOIdHkZQS4759SNfkXaSQyCnndXt7eyMursDlgQVRRftlZ2dn9OvXDwlUmNNY9BW+4XGYsekaWtRwwG8vy1tc6mIcLPD35X/+2HEtXGjutS518BEBW7dmTMNnD0OwYOpbCLeywS3KYfd8zrgprt90EhC0oP0kJWxsbDB48GDQtkKmjPCglLrltUxlB00YyLCzMsHDp+eQ8WwTco3qwLX6LKXLef92d7rdj0WDZidhauqs1rIbQBPl08UClL5kQxv36DFcPWvCa1QvsLONNsGgSUzwI+xbnJdKJevioUoPRJt+9VHXNJfSPX3O4/L1K6hGB11lEX0/FNlEG3FrWAsmZsWDCs3I3t6zfgNyeZP2eVm0T6mgSVGtFTP6fLa0yMW7B99FcNQDhU443Fcj54ZY3P9HfPH1F5Sqk4EuLl4CwNFvzsuwrlJYi0zKGrCIbrjvfXAaU3ZmgbWxG+mMxQRHEGulID/Ta1RvNOjRRkqzeiujDDRJIV00Dmv6fSYlGCC6+d9JBF24hdptm6DDy0OkVJNUht2b2MXJ3s0ZAyktrryGATTR7cqVJdAkLGwdgoKXIysrz7HR1rYJWrX8VQBQdBGqQJPb94LlwIui/Sprg4GT2z5/5RdXBZpwQQZjmpPOEDNMvvhxHaLp8oBBFf63393gfKBGF8+uqg0DaKJqhlS8bgBNpE1gRQVN7kYnYsr6y/AkodcNJPSqKDglZ8xv5+BAlsAMhuSJwPaANQm5Kos/zwbjz3PBcAs5nA+aFAfMyLajCWjC9e1MsmF2gITq1q+XtKi5P/yAnHqeiCdBV+4zOzMFB/bnCd3JhgnlBQ8eMoTkKs1Ix0RS0zorFE1zP5rm3sXWHHund9NZu2JDrPnCwrz3aB9wfNi/EUZ7uQtMgIDzpzD/xx/w7aefI7u6Jzbs2ItaDuZws1NsFcoaMszSYZtnjnoEsNSg1CYx/G/fwuPH0ejVu1/+z/r17w9LaztyWND5o5XZBis7aGJpkYOt/ptxKnA9Fvf+COnkQGVp21fpegXfH4u01Huo23AbLK2aqLWuBtBE8XQl023+kZ/WC7f7YrCjTf/3XyXLWPUPw2IbDJocXrYZEfdCBfHXFkO757evynlGrYUthcKJj58hKfQhwmIiEZdTOIVTHE5mWgaeEmjEwqfsJGNfzVlgZSiKatWqoXv37khKy9EYiJcKmlzZehjBdEBv80I/1O/aCrbWxjjz8DSCY/PYlQlRT8kWuoCKbmlHTm2sMUXpRo1cGuHs3vOIJTYKgyasWzL6W2J1ahGs5yGCJxG3HyhtadTCmWXKaUkZaLJi6feIjHiEhYt/UTkr/J7j9x6/B8VQZmGtsjElBcRUuMGkvWOrQHtH03b1Wc8Amuh2tksKNMnIiEH4o3/VGmxY2F/5gIlYkYETdRgn5uYu8HB/WWG/qkATrsRlXMgeXUzHKdqQMgYIp+SI6TZcR13QhOtwG8xYYQBGX2k54vNVWNAk/G4okonW2KhT8ZT805uOym0azi3tNFpeuT3YN4DaTETzXgXovQE0kfZer6igyZE70fhi3230algV345srnQy+ODOB3gOVSKwXGby35eEA7QsaMI/ZzFZWxWUXk1BE8rAgQMZcBj/shw4dar4hZ06FZm9+iDRqCAP28rcGI+jI3D+3LlCdbt26wZnFzeN6NPSdlfxpbr/lOdWxEwgBp50FVuukJ30iQChuRbuDni/b0M0dLPLb94oPQmZz2Jg5uQC/9gshEZG4/K504IjUlpKkiAIaO/gIJRnVg67FWURhVs2mCHDYBtHwP079Oc+xk+YhMTERLRp0wbuNWsjPUt/6U66mjtt2qnMoImFWS5uPL6G7899h9SUG+hcoxk+6vkbsrLdKDVL8ayGBU1HUuJp1Ky7Erb2PdWaegNooni6RJHWoq9qe7v/6OptnPv3EKwd7QRHEFkhyksbDyKU9D46TByM2u2K18NSa5H1VJgZNFfoGfpNHQ6/hwEEAD8u1DOn5sSERBAQVVgg1dXTA7J6H1zJ0tISg4hhl0XaWLLWvuo+ilTQ5OTqbXgc8JAcVcaSs0odWBMzMzOnsOp2enIqpc8kklaJlbB+HLf2nUYG6dJs8t5OAEqqAJowuMZghq4iLTEFp37bLtghF41eM14UUnXKSigDTZb/+C2BJuH4bskqlUNlcWR+/8mGruf0woZ9CLt+D63H9iWQzEvlmMpiAQNoottVKSnQJCmJUv8uDdXtYCW0ZmvbGB07yF9yclUpoAmXK6ppIpt6oww0KfpzVaCJmNYjC44ww2T7vpN4YRg5jMnom0h4bK2LVDjQJJYQfwY3gq8HwL1xbYXghzhrGXSr8TgkstAkxlH9IKo7Ys74Qj/nNi/sOoWqdaqj7+sFVEADaCJtD1ZU0GQtsUH+IFbIKx1rY3oPT2EyqhB1HpmFv1DdeBSHJ4l5t5Ju9pZCuohsZNMBOiG3gHnyzcE7OOAXWQg0YbCEQRNVoSlowu2amRjDjg5mmD0bCFNiidirF3KnTafbQhPBalc2rAlD8b/th/t0uOfgfPO6xEZJz9a9loeqeRBff/GP84Jr0aY3OqG2E90AahmJaVlYfOQejt6NFlp6uWMtfETuPMn0czHYlYjDgtKW0tnWhiKMdF6CyXUo6N4dXDl/Eunp6Rg6JO+XZVpGNp6SY5Js8NwmZuSQY5Et3OvWxtbdGxH+IATz5pMNJQlCerVugxRiGVQCGZNC81JZQRNLcxPEpkVj+sFpwnykJF2kG/lUvN1tFfrVG0VMrwIAU3bCIsO+QNyzHajm8QWqOI9Ta/cbQBPF06UMNGH9EdYh0SQ4teIQ6ZakkG6Foptz8bDYamQvNOxZMqmGmoxbah1mRJz9czdaDuyEVkM74eCBA/RrsuD3ZFpiMtkr532mygYLnhZ12unVuzfs7KsQYCy1d8XlpIImBxb+gWRikqirJ3N50yGEXL6NC09vCHpTDJrI6tRoN/qC2re9SYfD+3yh5hhIGPrZm2WaacKsEd7XOw5vQxIxVUe2HgIGenjsyuLc2j145Bco93L/91/ROj1ObDT4oh+ubPFGDXovd32uKaSrtdJXOwbQRLczXVKgiSZMk9DQ3+h3fwHLkZ9U30yTorMrghuyoq1FxWS5jhSmSVEh2KJsEinpQbpd/YLWKhxowuwSBk7C74QKT6mIMVLcZB5bdwBudasVYpNwexcJMKnbuqHQrgE0UX87VlTQZMF+f3j7R2HeoCYY1iLPDtCWiAHmVy8Df/4p/H8yHYj9yD0n8zmLwJgoHa08HGFDhyAhXn0Vma1aI9G0IBUjMj4NY38/Vwg0eaNLXbzRVbU4njagCQ+HD2dWEQ9hNEuBTkLt2sDSpUigw3rWczBAdjeIegs+Pj7gtBxmmTB9munWpRWztvricugzLHmhFTrVVU/ToeiYL5Kl8g9H7oLXx5rm6SNKxxnXvqYwFyJowowdRwtjGO3eBSM/PwI18p491dgMyZROc+XmTew8fZysmbNI0LcVs7iFtK1CN6a2REmvXgM3IhLgRWrjtetVwTcrP4F1rDmGvzMRI9qMhr2ZjcI1KK151le/lRE0Yc0gG0tjzD48G6Fxeb/bkhJO0n9ziT3SA1/3/hYNqzRDanpeapdsPIlaiZjo1XBxmw7Xam+rtUwG0ETxdPFhb/enKwq9yGk5nJ5T3IGvuMm/sfck7vtcgXvTuugydYxcUf/DF3D70Fk06d8JzQd3VWsdy0LhkEt+uLzZWxAo7fbKICTGx8LH50T+0JSBJrbODkKajhheXl6oWauOTpzCpIAm/Pm9/bnd89jFc4j9I52tKIICmw9tItAkByM7DhcO4ZrukeLWURZMYC0YTiVSx4FIH3ukKNNEBAKvxvoLoEnPqu0EfaBeb7+odDjKmCa6BIhSiFG+/6vfBU0dth4uj2EATXS7aiUFmmgyShaAvXkr7/KEw9TUnpjHG2FHKTq6CFkNEbE9Re45RfuSZZHoUtOkaD8G0EQXq1ykDT+fa0iKTVILNOGUnmsHL2DQ9NEwf27/xiDMsXX70X1CP8RFPRNYKAbQRP0Fq6igydR/rgjCrr9ObIuWlKIhhgMp65v8QzagpPFxJyoRT5MLo8KWpiZoV5ssA+kQnTNlCuJzzITDs2xwes6a1T/jWVggXv14MXo0cJU08dqCJtyJLZFezM9Sis5yStWRidxffkFqFVekkRuHsjAnPQ9To2wYk3tOBqWOaEOflvTAKgp9T65De29G5OuNaNqmyCri+u1rO+HDAWT96GgFWcthsW2BsWNKqTZz5hRi7EQ6V4flpAmYu2Y1sUTS0du9trDuhVxvzMyRSwydsIQMuk21w/A+nfG+93tIuhQDmzgLJBDR7aPOi9C9NqWDlR4Wpek0al2vsoEmDMJZkI7JWt8/cfiBtzB/uXTLlJx0nlxGLGBj2xmOlo74ZdAvMMm1kXu/xT7dhqjwBXB0GovqNeWtUYtbEANoonx2WAD22M8bKc0uD6jqMGEQahMgoEnEhkfj6JI88dcRH78KCzf5z/oHZ31xbccxeJKmRpuxBbpGmvRXGnUYEGJgqGGvtmg1ohdsCFgOuH8XfgQs5+3pHDx5EI4sGYEmYwILneu456fn1KpVC+3atRcYdrrA4aWAJkkxcYL9Mwu3Dp3/pkZTt+ib+cgkO/rPvlLscqVRowoqXd1+FEHkusTpW5zGVdaiKGhy4Js1gjaJLGjCYy5Oi4WBqKNL/wGvCwcDUJwWp2uA6MhPGwSR5x7TXiBRYrosKmdhAE10u2BlCTThJ0tMukPuOYdhRoBJ9epjBeBEVyGmv8gKtjJDREyH4ZSadVsOFtIzEZkmYh1laThF3XOKgjFF3XMUPZMBNNHVSsu0owlowiyTeq0boK5XA6ElTt9hzZNGnZvBg1J9OEWnKGgSn1w4DaMEHqVCNMkHy4o4V90Xn0BCWiZOvNcLTmSvKwazSSxZimLePFzcf4b0PORvgLsRTdlk2VJKzVDOxFixbAn8/W9h1W/rJO8DUzqwW5gZEfNBvk/JjVBBq+wMGK3/i7wuD+ZVmzUb2W3aIt3KVmUzLB3C53nKOir1WHMmCCvI9nkKsXRm9cl7b6sTzCpZSLbFpwNjhGpsHT2zdwEF34oYJ9l0G5lRROXWjL7wm4URK2B2wU3VPQLQsjt2xNrUp4h4Ql/IauQ5ITHIYkViupk0YRn1GyLJzBJVSEywc+dWWHX5b+wPJAZcgAPs4q3wqG8WHdSccX7aBlgYm2ssgqjOHJSlsnZWpkgmZk4R+ZeyNESdjoV2Fo6HHMUa3zX57WZnxZNOyTWYmDrA1i5PY6t1tdaY350OZwRUyqZsxcWdQOC96XBw7IEGjX5Xa2xk1AMbmu9EtsgyRKEZyErPxD9zlgj2uLl0gvca2pX+aCY2fXTVdoT7PUDzPu3QfeIApBI7sWgEX7mDk2v3om7bxuj5Rp4NcXmKa3tO4qb3BbQZ0QMtB3UmG2wC5olsef4CpU+G5zmPsZ5JAgnGpiYkC3vY1skOVTzyHIns7OwwaOAg0jEx0tlnnrUlfeaSVTF/7iqLiLshOLx8C6qRm8+g2RM0mvIFn88j4cZMfP3tYo3qS60UfjsIR1duQ40mdTDgncIp5lLbKMly9tZmSCTBc/Hz6dDSTYgirRhZ0MScQJCJP1F6cDHhf+IKLm07Btd6NdD5pYFwer5HdDn2q7t9cOvwRTTv3xHtRvfSZdN6aYvZiXyBJps2rJeOK2gnfIapTCECJ+IzF9UPYTbK3cCHhaZEFmRh0CTmWYE4NheUTbORrS8rDGsATUppl6kLmigCRO5duC2k4zCQwiGm/bTo3SYfWDF8IElbYHYFqGhzFZOUjp4/+ghCnec+7iM3EXxLaxoXC9+RLyPu+a2IWMjW2gLt9m9GloMjsolZoCx8ThwTBPNeHC/9yxr3y5aIrJOhTQg33PSLF598QlYu9ZA7cSLSLbTXBNFmTJrU3XczEh/vvInBzath6Ytewpd1qeEbFodtV8IpxSoLDiTYMq6NBxpXKxB75XaYWUPMa4VfvM2QA2NKVTJakecKcCHoKdkDZ2Nf2/qkCZOFto4uws+dbSzyxlWzFnJdnJFrYopWbVoiPCUMR4JOCiBB7KVIJIXFw3J0WzjyWFrSAas2adzkFG/LKfVZy0s5K9L2Sae9XYidU14Gr+Y4c4wyEZ4Qhg+OvF+oZkZ6FJKT/WFm7ka5zAXshtGNR+PFpuNhggJNAC5368ZosvNsjJat9qg1AiPalAwKpmgrHqFWr+Wj8LNHT7Dzqz9hU8UOybGJqFrPnVgir6g9+AeX/HHiz72wsLHCy99NJyckSzkAlht95B+Mg8u2wJ0OxINnv6R2P6Vd4cw/h3D3tC+6vTwQjXu0FoZjTL+rjOjD89Chg7Sf82xnOXg+Y0jfxMrOSphXjv79BxBAaEdgvPT0GFXPbMlANaGv2QpSTcW6PGYee8MuLdFjsmbWtlnPtVtMzUr24BUbEYMdC/6AQzUnjFvwP1WPr/fXi34PPLvpMO4QK1wWNGkzrBvaDC8efDz5135yp7uFrhMHoknPvL2k62Cw7MDSzXCu6YbRn72u6+ZLvD1dfQ8s8YGWkw547xrCMAMVTtNEXFJ1QBNmlBxavUtI5WGhVzFYJJZTdsSIjXwmuOd4NKktaJ5wCo9BCFbam6gipufcCI/D9E3X0Ky6PdZMaqdwIqxNSKjT9zquvvle/uumlLZS/4cvYd+1M5KMdP8lShfpOeJgmeJpnZECI1tbxKdm6+yGT9qu0U2pm6QnM23jVTSrYY/Nr7SGGan0484ducbZwYa1RTgcCQh7EJNMArIpwv+72FoIgnc2BXcAACAASURBVKzmffsggbRnZPVcFKXnyDYupGqt/1tg7LBFMVsLb69mgxyP6hjl1RYhQUFCf3AmsKROHWSC0BO6ZW3UqAEyc/OYbBnkUnTC+zBu0F7q9r/5GOPlAXtiAGRRaoBxboEWjm5mrGy3UlnScxj4NDHLxMwDbyMmJY/lxJGbm0UWwreRnRULUzNXshEunBLyUZeP0NqtAwFLeeWzsmIQcLsXsVKc0LCZClesIktvSM9R/l6IIGbI2bW7BTeV6PuhAttk+AICPdhuVo3g1A9ONWhDTh0t+7YD3xArYmWKKTyOdKve/z31wRk1hlQiRc//tRfhNwPQefJweLRqmN8Hg3LJSXE4euRI/s9yCMiIuhMi/D/Pb8dOHVGturtOdExkH05Kes6t/adx99glNCMdmaakJ1OWg9lPuz5ZXma1OGTTc9hN6cQvm4XpvJEUgLiUeIz0Goz+H7yqcooP/7hecAvqM2sinGsXfGdXWVHNArvmLqd0sUwhLYvTs8pTGNJzdLtaZS09R7dPZ2hN6gxUOtCEQRBmj8gKxDLAEh0cVUirRNEEKmKjGEATaVutIoIm+25F4ttDdzCoWTV8PkS5BaS9KZ2At27B47X/0CE3B1VenwTrF8Yg3thS2uSpWUqXoAl3zfaK2SmpSDdRzohRc4h6Lf6YXItG/XpWSJ/a/3Y3OJrkwGgliTjK2CqzWO8d0qZJy8pj55jQDTun3HCwRTRrl4CEcTNat6XUmcKHIlWgCR88HazpluLjjxF//ZYAnGxzs6Y0Jwss/uRTnPU5jpRM0rwhHZMsYqwUZVCY0e3k4CFD8M3in3H9+lXUGTsPC4uxt9br5JZCZ5UBNOEbeEvLHCw++wMuR5Co9PPIzUmjG/krhJwUpMtYWjUm8KRafhkzEhz+ZfAKsg93RfrzlLG7N70EsKVxy2vEaJL+PjaAJso3uOigU7+bF5LIWSXqTrDadsC3D5HryeHzcK5bA33emUBiv6ZKQRPWfmANCG20NUrh7Zrfpc+qrXgSGIae5I5StYgNrjXpmzwMCcK1awVWsk9DI5FONr3tenZGx+5die2n+9FLAU0urCf7Wd976PjyENRqqxuhRd0/SUGLe+evAtsfD18wjQA8EhQvQyGCJtn0i+7okg2Ij4xBgx5tcOLOaTy4fQdDGvfBEHL8KS5y6Hf0jo9+FoqM/WE2jEkfrqTi3Dpy6rkViHYvDkDdTi1KqpsSadcAmuh2Wg2giW7ns7y2VuFAEwY2bp24hkxijzCDxMbRFm0GdxI0STgYILl3/jbGfpJ3U8Nl/lu6RRB6lWWZKFpQA2ii+TaviKDJ6lMPsOFiqKBx8XrnOkonhw9ADkQkMFr0fZ4V8fz5iKcvgNm6ULJT0KuuQRPNV73s1Oy5xEdInzk+uyfsSGymqK2yL7GGRJaJOGpmBDWhVBxOvwKBFjkTKc3KSN4KURVowu0JjB26TTWaMQPJlK//NR1gk+jni9u0g3G/XjgQGYksUzNkM8ukSPTo2ZP0KJzx/ZKfceXKZRj3mYUNr3UoO5Or55FUBtDEzCyLdGz2YqPfxkKzm5Z6F1mZUXIzbmPXjcCQAvpwQ6eG+HHAj0hIyRRYUYF3BpAQZQTqNzlEKT0eklfMAJoonyrfXScQcPoaiZr2JF0TY8E6VR0BzkTS7jj0fZ5WVc/p41C1Qa1iQRP+TrN73i8wtTDD6O/elbyGZaXg4cV/C4dkZhI41igsdMupiSwMe+3qFYSEhAhDTqZ8eJP0XIwcNxomTk4l4hQmBTQ59vO/ZIUchT7vTiBR2hplZTqVjoMFhZmV1Hf2RDjVKjkWhiYTIYImlzcfRvDFWwJLhNkiO7dtxK0jZ9HUth6GffEWrByU66YxmHZ82UZhD0lhpWgyTrGOKL5c06sROr06TJum9F7XAJrodsoNoIlu57O8tlbhQBN9L0RlYprwoXK/H+kqpGWhuoMlhjSX/gu5IoImn+y+hZMBT/DV8Gbo19it2K3HVHs7crxg+8JkE8pZZ0pBCYUBNJGf2PF/XEAYpdr8O6Uj6hJzRNZWmdNyLgQ/lauU73DUlFhE336rND1JCmjCjdtQqpb5LV8YLVyIBaRnkkA5OD8RK8Doh0WItLGGz9nzcmNo2bIl6tT1JAaMETlGZKPfspOCaOxJEh6urFHRQRMz81wEPPPHlye/kFviFGKZ5GQz3FY4bGw70cG9MHNtgOcATGn1BtLSTRASOAmpyb6oXX89aZvkCcdKCQNoonyWzv65CxEkvNnl9RGwq+oE70V/wYJSc0ZQio6UEBkMdTs2R7vxA4UqxTFN+PUdH/4suPWU9A27lPGrW2bfgt+QGp+k9FDMaUks8uzt7Y24uDgiU2XDq24ThN0MRrtJw9XtTlJ5KaBJPnPjS2Ju2Jct5oaihzy3bi+xI+TToCRNSAkXYtDk3IGLuLL1CIG8Ruj33iQ4uucJ/Z76dbuQ5tZ1yijUaO6pdCQPzt4gF6mjgltOe3KsKskQnZPMrSwxcqF6du0lOS4pbRtAEymzJL2MATSRPlcVuaQBNNFydSsLaMKAyTcH7+AUgQRitK7piJUvSfsCXhFBk0nrLiKIdC/WvdoejdwKi4Mq2lacu21ECvopOboTslPUjwE0kZ+V2dt8cSnkGX4a2wqd6zkLBWyJQGJ+Js9W+ULwM0qNKQxksThrk3puyF2xAilmVkgngENRSAVNuK69URZMd26H97atIAgNI4YMQ86kV5BpYYE7/rdx9+7d/C48PDzQsWMnEoFle828VCFOM+J0o21vdoY7pwxVwqjIoAl/0U3PTcT0/dOQmpUqt7rpaYHEGMlzGskPYpjYEtNEUbzd/m10du+OkIAPkRh/BO61f4S9o/SDhgE0Uf4G8/7hLyREPUX/918RDn6HvluLxCexkhgJEX6BpIeyh3RmTDH40zfyb9ZVgSb/ffkr0oipNuxLuo23V+1iVpY+HjilglMrxiyaJWhuKPvdlZ2ZggP796Nrt26IufkQl3adRLc3x6B6k7o6fxxVoElmWjqxe1bA1JzYPd+XD3YPM544dYwZUA17KdZa0/lESmzQLDkBm774Q9D/aTuuP+p1bplfU9SOaUK6Mc1JP0ZZXCXAJejCTcFmmFN7SjrE93mvmePJrUc6S6+kx6WqfQNoomqG1HvdAJqoN18VtbQBNNFyZSsLaHKAGCYMmhSNvyd3EAQyVUVFBE3ElI+js3rCmr0Ty0gYQBP5hVh0+C723IjAB/0bkYhqnhsDhyjS+njrbtx/nJj/czE1x/7br5DetEWxQJc6oImQqkWSEkbEXEEKicx+/z3in9u52lqZ4DTprERFRcHGxoYygoYQu4TsMGVYSe9uvY4robGFwJ8ysu30NoyKCpowQGFnbYJ5x+fB/4m/wvlkXRJmjOTkPGebEGAiaJqY5rkwKYolA5fCOvUqgoM+g1uNj+HkKl1E1ACaKN/WOz9ehuzMLIz6dibMLC1wfedxBJ65jmYDu6DpwM7Fvh9EIcuWw3ugUe/2+WVVgSaHf6AUl6gYDPhwMhyqK19zvb0ZJXaURarEuz6h1CIJ4IOlmREBg6kwI1e5q/suCJov9bt6oTUJ5eo6VIEmcY8e48hPG8iNxgUDPpqs6+5LpL37J6/ixh4f1O/eGq1Hy7v6lUinEhs9s2oLIgPDIcuuEquySDCLBbPwb/f/jVXa4tGllH4UFg19gRgiCKUKzJE4BXorpmvQhFPoZK3s9fYgZaQjA2hSRhailIdhAE20XIDKAposOx6ALVfD5Gbrs8FNJKXpVDTQJCI+FS/8fh6udhbYM035rYiW20uj6gbQRH7a1l8Ixa+nH+DlDrXwds/6+QXyRVrnzsX5A2cEnRk3e0vUcLCCzWuvIGvIUCQo0DGR7UEd0ITrmVOqlm12GnLT05FCTjzpxnm3rvxzU2KiHCSXHdYxsbCypTSuws/y49F72Hn9EWb1aYDxbWtqtD/Ke6WKCppYWuRgy+1N2HVvV7FLJIjBJl0QBF051aZoWk7Ryu527ljc+z08DPoaLlVfgqlVP8lbwACaKJ4qTjPhdBMLW0rH+SovHSfiNrnp/Llb0L1g/Qtlcff4Zdzad0pgpzBLRTZUgSY+K7fgyYNw9Hqbbr09y8+td0psAvZ/zSK2duREotoK19bSBKkZOXgSEoFjP2+EjZO9SoFQyZtapqAq0OQRHeTP0UG+RjNPdH1jlCZd6L1O/pib16dUl5F6719Zh767fYgBc1UA+zgtx9ik8EWTuEfMyXp75NczFDdDp/btHy4VmCqjv3uH9H2ki1prOhGRJPB8Zs1OOJH+Sl/SXykvoWvQxMyUWLImFkhNzxPLr2xhAE0q24orfl4DaKLlPqgsoMm1sFjM3HxdbrZWjG+NNrWqqJzFigaaXKR0jjnbfdGWnv0XmoOyFAbQRH41Dt+Jxpf7bqNvo6r4ekTzQgX4y0XmkyfwG/UyrElrpA2lnaF9e+R+9BHis4zpVj8vNUZZqAuacDtW5EhknJWF5OzCwq8WhJ8Ykxws+fsgnfouGlsJuPyZAMzRxJb5kFgzlTEqImhiQTomV6Iv4qdzP6pc0uzsBGKbXKNDh71kfZKO1epjZvvXaC9nwdysZb6rjqrODKCJ4hkS7VJZaJMFNzmyKfVkF7FPWLeKgRQGVIpGSlwi2GKY01T4EM6HcdlQBZqIbh6so+LeooGq5Sszr+fbJSsAihQNkvedKJS+nxyDUsg5qCSETVWBJvd9ruDG3pNo0L0NvEb3LjPzWdxAmIXBbAxFoFxpPcDD63dxccN+ofs+77xEblEFbE/ZMe376nek0ntk0NwppBMk/71S3Ef2bk4Y+PHrenmcHBKQZ1ZZLqXvlkVHImWToEvQxMQ0m8wLYlDFyhFG2VYlqsmnl0XVoBMDaKLBpFXAKgbQRMtFrSygCU+TIrZJjwau+H6Uaiu2igaabL8WjiXH7mNUK3d8NKBsHV4NoIn8m/rWo3i8tfEqmla3xx+T5PO8bz6MQQ7ZXdZevQSeRA8G6Zgk0k2+bGqMso8KTUCT4j52WAwxKTWLFE/kgwVr39t+o0yCdVp+lEquXtFAExYlTstNwJqrv0uag6ysGKSl+AkpOZbWhQFAZQ00q1oPyRExOHb9JFa+swEpadLcuwygieIZDb3ij0sbD6Jm68bo9MrQ/EKnf9+JqLtkPfzyYNRuK29Df3mzN0Iu+VE9cuN4Rd6NQxVocmVLnutIebNAZYFPFvqs2rAWek4bJ2mfi4Wu7TgGdjFpOqAzmg3qolZdVYVVgSbXdx6jlCtfvelnqBqvlNfTk1Kw9/PVMLcm8dJvSl+8NJnsuI+QvXBmajq6v9QP1Tu2UprmIYKCyuydee/ze6BWm8boOKngfSdlXrQpc5qYJppYimvTp7Z1dQWasImBmXkWZh6YiZr2NTG32ydITTNSeZmk7fjLWn0DaFLWVqR0xmMATbSc98oEmvBU9fn5JNIys/HZkCb49VQQYpLSMbBpNXwxVP4LouzUVjTQZCkBJtsIOHmnV31MaF9Ly12k2+oG0ER+Pnmfjlh9FlWszbH/bXnRTNYKGeTpgMF3zsCpdzek1ayDVImCvboGTeiSlYRfFe8JMS2sKqWF7S5jaWG63cXKW6tooAm7huQYpUuevrQUfyQlnha0TGzte6qsZ05io2lZcZjyzXhk+1ph6Bej8HIrEh/OUCxsLNugATRRPL2ss3H70Dk06dcRzYcUfJ6IehKKrIdF4IBbHPQJ3aS7yt+kqwJNblJazz1K72kxrDsa9yk/tuNhxDS4QEwDTaxbxfSIKjXd0G/OJJX7XZ0CqkAT8bCsytFFnT71UXbX3OXIysjM19vRR5/K+jj12w5E3wsR1n707HGIik1VCprcOXoRfpQmywKvLPRaNK4TgBZIAFrL4T1JC0h/IrcBpBPjSzox6liKqzvnDCqxzbboJqRu/aLldQGaGJOQiaVlDn46/yMuProodPFC0xcwutEL9PtDsZiztuMuq/UNoElZXRn9jssAmmg535UJNEkmgYX+y07B0swEx2f3hH9kAtiVhJ11VDEuKgpows+65UoYNl15KFjAjmhZA3MHNtZyF+m2ugE0UTyfvZb6CLTSY7R3rWgPi5FJ9Ft+jd1yTszpAaSmCiwTqaFr0ERVv+JzHJnVAzbmleuLC89NRQNNVK130ddjolfjSdRKuLhNg2u1mcVWZ9DD1toYnx77ENcPHYL5HQJ4J+RgTte56FijG0ifU2V9FwcLRMcSNcUQ+TNwedMhhFy+Lcf4YDcddtuwJOvh4UWsh48v34SnpNHBIrEsFqsoVIEmoh5Koz7t0XIYfVaVk+CDLh94Pbu2Qpux0jV1xMdjEVkWkx087w3YulD6pI5CFWhy6Pt1SHz8rNwJ77L9dUL001If9+1DZ0nI9wJp2dgL+j21PaoUC5owuMIgiwul7/SmNJ6iIb6HmK3ErCV9RcH72kZI0dF1PAkMw9l1ewQ2DkdxnxFS+9YFaGJmRhprD/bhn1v/FOp2bre5aOnaFhkZhdOLpY6tPJYzgCblcdV0P+ZKA5rExl6kN/hjuLkNVziLmr5emUCTkKfJmLj2ImpVscbmqZ2Eebz6MFYATjj/mBkXzLxQFBUFNPnzbDD+PBdc6BGliuHq/u2ruEUDaKJ4Xib8eQGhz1Lwz+sdUc/FJr+QmPLSjFJ3/n6tAxhEUUclXt+gyat/XULgkyT8+Uo7NKlmr69tVWb6qeygSVT414h9ugXV3D9FFRflgqO8YHnisv9g4/WvYOxvK4AmycPPw9KmEX4buRPOFtWRRuCvsiiOaWJKee4mRmaS9VHKzAbSwUBEQdae0+nw1qDw4e0gWQ8nFbEeZlcddtexJXbJYGKZKAtVoEnwBUpP2HqY3EdaoN34ATp4Ev00kc/MUWEnq2w0FzbsQ9j1e4KuCOuL6CpUgSaiTfLo794l0VHVzCxdjUvbdk7/voPSxELQbepoVG9aT9vmNKof6R+EM3/kiVp3J8voamQZXd3JqljQJIPyBvd8thLGpiYY+8NsuX5FxypOO+L0I30GaxElxcTpXFsnmfR6jvy0Ph8wEZ+pC4n4upOYr6ahLWhiapqDoPh7+NxnvtwQLE0ssXzIL7Azca40n/8G0ETTnVix6lV40CQlJRgxMcfpzzE4VqHDUt1ZhVZQ29crE2hyOfQZZm2VFz89ExiDj3bdFOZ1Spe6mNq1rty7RF3QJDI+DQFkAVudXEykWBrr4215m5g175OeREJaZqHubEm98/C7ZefWzwCaKN4NrAXCAMniMS3R1bPArnPVyQf451IoXulYG9N7FBZmlLKv9A2afLbXD8fvPRZS4jg1rrJFZQdNwkNmIzH+KDzqLIWdQ3+ly8/GEldJXPY7n1lITwuE2X2PfNAExrloVnMSlg1aQfo52cjKVpwPpgw0YacnY7NMWJP7U0JKptL6FXVv7ifBShZ1HfLpVNg4OxR6TFEHQ7Qe5oMgH7j4b9Y/YR0UZaEKNHl0i9xc1u0lEdj66PJ62XFGUbXOom2r16helHrRVlVxuddFDRm3RnXQ4y3ldrTqNlwcaMKCpCxMamlXMuwCdceqTvmr244g6PxNYvX0JXaPlzpVdVKWdVWOLPlHEHWVteBWBZpw5yK7hx12qni45Y8nPjIGhxf/LTCNmHGk77i2/SgenLuB5oO7gu2HdRWP/AJxbu0euea0ZZtoA5qYszg+kjBj/3QkZyYjIzkNaYnJYFFc/rwzszRHY+fGWNRvEX3+Z4F1uZLTilj96WqCykg7BtCkjCxEKQ+jwoMm6emPwcBIbNwFYaqLgibavl6ZQJMDfpH45uAdDGpWDZ8PKaxhcoTcSb4gdxIOtnRla1fZUAc0YWtjZnRwKgzHkObVwWwOfcaTxHQwSHI7Mh63I/jvBIGBoCgY1Pl7ctnJLzeAJop3yg+H72H3jUd4v19DjG1dYNf5xoYruBOVgJ/HeaFDHSe1t5m+QZPfzwThr/MhBFDWIYCydG4R1Z4kHVao7KBJSOAkcs/xRe3665W65/CX2Nj0aEw/MA1pqX7IyoyRA03MLGpjYKPXMa3tDKSnGytkVykCTfhnVnTJu/D0N3CxdsEbXlOpvolC4WIdLnuZaYqdb5iBYET5/i/89J7cuETrYZe6NSjFYAIxTPLERKuTU043Fba1qkATthtmlotrPQ/0mjm+zMyJqoFc+vcAQq/eQYeJJJDbrnj9M0VtiQwEfm3Uwpkws7JQ1aWk14sDTZ4E0Vyv2KLSQlpSR3ouJGqDNKY0rhalkMZ1nmyaw8mumdklzDIRQwpocunfg7RX/NF2XH/U69wyv64InHm0aojOkxUzxktymkXAUtfvvbIGmvDnu42VET4/8Tn8nvgJOivxkU8LTa1TLTcBTBxUfxAmt3oVZsbmyMoiQfNiWIsluTb6aNsAmuhjlst+HxUeNBGX4FHEZvpiFy0Hmmj7emUCTfigxgc2ZTfye29G4Hvvu8KUftCvEca0LrCVkwqaMMNk8t+X8gETcX20SYFh8GU/AT5JhISz248i5ooAkEQQQCIAJQmIiEuVe/fWpZQOBk7CSchMNt4gds0bCtg1pfX2N4Amimd+w8VQrD71ABMpjWzm8zSyuNRMDFlxGvxFwWdOL+FvdUPfoMmh21H46oA/+jV2w1fDm6k73HJfvrKDJoF3BpEIXzi5PB2AuYV8Xj8Ly9pammD24dkIiQsRWCZcvijTRNgIRqaY3n4u+tYbTf+uLbc3FIEm5hZZ2HNvF6X9bBHKT283HV09ehIwUzn0dRKin8F70TqlN97ZZCW+6+PlgvVwtzdH48yavBQF1nRQJfKoCjQRb9sdqrlgwEeTy817WXQV6kYH6Op0kNYkTq7aisek/dCkXycS3+2qSRNydYoDTVizhrVrarVpQk4tQ3TSn74aYYCKgaqi7k766J+FilmwmNNneM+znokYUkCTgNPX4LvrBOp2ohS0FwtS0FiIlQVZWXiZBZj1HVnpmdj1yXKh25ELKT2IkWMdxZGfNiDu0eP81kxIvJu1U7QBBzVlmrDw61b/zdh5Z6cwnscBD0lUuDCLxMLGUgATm7o2xtsdZuC3K79jQc+viW2SU2FZhwbQREebvZw3YwBNni+gpqAKU5MrS3xz4A62kgjqPGJ9vNS+psLH3nAhFIvpRp/jm5HNMaJVDeHf9tZmAo1bVVwOeYY31l+RKzaJUic+Gqi+tW8iASVT1l/GvajE/Dan9/REfWKHsA3tzfB44e+iLBI7S1O0dHdEC3cHtPBwoH87wMHKDNzeDwQM7bkRAS7Tp1FVGldj4d9lJUyNjWFuZoSUdOVaBWVlrPocB4MNH+24if5N3PDTuFZC197+Ufhw+010rueM3yapTxvnNvhWP4c0fVhkVh/B+/XlPy+icTU7bP1fZ310Wab6sKX3Gu/tHHWEZ8rUE2g3mKuXWtN+S0Wb9ldhYlKgzZPfqlEG1t5Yi8MPvIUf5eZmk9vONRjfccxPzzE1dyRmSC6yyVWHY2Hvr1DDLI1+YgMnl6HkmFBH+Dm7J1gTAMMW2BxGxtm49fgGvjn9NSB+j6aPvp8GLEFte0/6wqyf94B2M6hd7XC/IBxZuQ01mtTBwHfl2R4ZJOa4Z+E6JJHVqhjN+3dA+zHybiBFRyKkPRFwq+zGNiU+CVvmroSVgy1e+r707WSlzuR/i9YjJiQSwz56Ba7EwFE3eE4P/PQvYh89EaqaE9Ok7zTSydBSDNTawoQ+t3MV7tvr+87Ad/9ZtBrcBW1GdFd3yKVaPjowXJivqvXcMfRD3ToOFfdgUQFhOLhko1Ck99SRqNO2cCqaHX2HSqKLCiXmcEK9x0GPsH/xP3DyqIqRn76e393BpZsQdf8h+s8cB49mpcOwPPTzZkTeC0Uvera6RZ5NmwXn/f3vez/nN8GA04QfZsLYpECwXt32TelzxJwE71OeM7al1OfPd9+oa/ju7LdCcU7HCb9dWMOPf25KAvTNW7fG1DZvYNHZRUjPTsdgzyHEWpyO3Jzyo/0jZU7EMnyGMYRhBgygyfM9oCloIn6ZrAxbaeama/C5/wTLx7dGn8ZVlT7yb3Sb/8uJQOH1pS96CYdUWyvT/C/exc0VgxKdFx2TKzKDgI4ZSkRmi2tvlU8gWLNCVTCIwiBJy+cASUM3O1VVBAClLIEl4oBN6KaZv3ynGkCTQmt4IzxOABua1XDAljfzcpK/2u8vAIGz+zbA1G6afRHjGx22CM7UE2givkfYxerKPPWdKFRu7DJewJpAkzS6+cqp+OdzuZXIzk7ClUtt6cu0Ndp3uC73uolJLhIziCmXGCH32uFdO3Bk11ksXDOfGCp5drfZ2YnEwIxELqXvNHKpjxs3/yf83N6hM1wIPHFxGUbuO3ZCvjqzTp6lPcGMAzOQmUM6JnvSYWRvDJPeZqhuW530UZaB4FoBQKzI4e9zDec3H0bj7l7o+vIguUe9sPUobh8vDPzX79gMPV9XnVJgxqAJkd3SMxVv7mxKDfpr5mJBKPP1FR+Wm2neNv9XJDyJw7iv3oJ9VXmrZVUPco0ADAYxZIOBk1eWzlFVtdjXGfBmoE+Rps/Jv/Yh8IIfur8yBA27FqSJaNWhnionkbjolnmrYO1ohwl6AteyM7Owm8DCOHKQakEgYYexfeSeVvgeyNoXxXxE5GRnY93bi4W6k5e/Twf0vMPqhjlLweDChEUzYU2gYWnETe8LuLzLB426tUK3SYN1NoRH/sE4tHwL3Dzd6b1tKgAzHV/oi+b92mvch7rfA7n8k5QoTNtf2B0oipgmGamFbdaYafLBmLk4E3oa2+9uhxVpWzVzbYaprd9Er9p9YGZkpfG4y2pF3ruGMMyAATR5vgc0BU0qU3rOa8TYuB+dKMm1g9MgOB2CY+kLXhjdzh1S5+qF388jIr4gBYbTaVa+1AYsuKpuzN19yYG+OQAAIABJREFUC6cC8m6nZKMpOaV0rutMB2h78L/tLSsOimxIz1G8S54mZ2D4qjNwpNuuAzPzbg5fIkedh+Sos2ZSO7B7jiah7/QcHuOI1WcRk5SOnW91QTV73dGENXl+fdfRZXpOYMA9BN6/g74DhsLMrOx/BmSkh+LB3aEwN68JzyYHFU49H7wVxe4dW7F103ps2LKHGCryN5jJSVcR82Q7EmIPEDsljxVoROk7blWH0yFlFKpX7YwPDn+A+8/uC6/l7qMv0nbGMOqZ97nc2aMz3uv8Pjl2G1VoFtCNvSdx3+cKaUV0R+M+8lpWB75ZQzoACYWWgGn2rMWhKlSl53B90X539HfvkKOLdGt0VX2X5Ou7P10huINo6nrCQpms/VA0hnz2JmycNPvc5raKS885sWIzYoj10HPGi6haXzGztiTnTNu2t7+/REgRG7t4tlaMBanjEG24XYjd0numvF0wtyMlPYfLHV1KrKKwKPR6ezxcPT2QSG5Uh8iVikGgoZ/nAbulEbHh0ThKAreccjR0/ps6G4LoLtWwZ1vw/LHYMwuustC0pqFOeo6Q0mllgjnecxAcV5hZkhKbgLiImELDGNvxBVg522LJ5SX5P3eyckZdx7r4pud3qOfQGKkVTN/EkJ6j6U6sWPUMoMnz9TSAJqo39tCVZxCbkoH/ZnSDs43qL2tLjt7H9uvhsKAv8f+SRXENO9WHu/vkmPPa35cLDYYPuHzQ1SRYVHbZ8YBCVRl8YeHW6g6qx6NJn6VdxwCaKF+B3kt9kE6MkCOzeiCO0sXGrTkvAGaH3tGcfl0aoMnMzddxLSxWY/Ha0t6j2vSvS9DE+8AebFz/J35duxlW1tbaDEsvdVOSryI0cDKsbFqjTv0NavUZ9OA+ggID0Kf/YEoBUQyscIM5OWlIiDtAfw4iOfE8AScmqO05D9vuHsXB0KswNXFEZmYEzA57IMcmFdld42FplUfDn9xqMvrXHUT6Jpp9Xqv1QKVUmA80LArZ6dVhqOklnzKqCDThgz0f8FWFFNBk/9drwAcZbQEDVWPR1eu5RAnb/sFSpcK5UvoR3XdkyzIQNZTmVBvdh+JAk30LfkMqpUOVl3kuOo8HvvlDEPFkpxl2nCnJeHD2Bq7tOCqAM/3fnwR70txRFFJBE9GpptWInmjYq51gN8220zWae6LrlFEl+Sgq22ZHJXYFkqJRpLKx5wVOr9mJqDvB+Z8pDMwwQNNu/ECyF28utZlC5aSCJpSBCTPzLPx94y94Pzgk19fTkAikk3uOrYsDpQXaoTkBIu1rtsP7R95DriUx40wKfpfUtK+Fxk6NBVe22NB4hNwIEMBSdszSBtzUaAJ0XMkAmuh4QstpcxUeNGG74UcRmyh3O5komMmwsKiKWjWnogrZD3No+7pU9kQ53R/5w2bNj55LfASK9un3VedmixUXktsOi7AyyLKEGCeq7IPn7bklpAC90MYDF4KeIpwEWTe90Qm1nTQ/0ExadxFBMcnCkBgwmd2ngeDIU1HDAJooX9mJay8i5GkyNrzWQRD8ZeHi3g2rYiHp72gapQGaiE5A7/VtKLxXKlPoCjTh1JT9u3/Hjm0n8fOqr1DFSf/WnOquW0LcYTwKfY+shvuR5XBBDry67Ugtn535kEDvKPgEH8fPF38sVM3qhJcAmqR3uAdTs2r5wMmXvRagiVPLCpseKIo29pvzMqrUlLf8DjhFQpa7TxSaK6n2oVJAk6NLNtCB6jGKWrJKXVN9l0tLTMF/X6yGha0VRnw1Q6PumbnDYJRsSJ3T4jpUBprc87+NdYuXwKtKY7y0pPykQck+K7sssdtSz+njULWBvGC0RguhoJLIvuCXVB3ypYImwRf9cGWLNwnZNiKb7mG4te807h6/BF2subbPzePi8bUc3gONemuePiM7jj2frRQsyZm9wiyWkEt+uLzZWxCOZnBGk5AKmnA5mHD6jXzOVGpCMhg04XTAGk3q0fd/Y1hbWGLWnndwJ9qfNK4oFZwEcbkmazERMgpTAtkbWjbGmzVfxZn1R5FCbXB0mTIS7s3ra/IoZaKOATQpE8tQ6oOo8KBJSc9wZQFN2E3mBbqV51QATglQJz7b64fj9x6jBjE7fh7XGh5VFOc7niOQ5IMdN8BaDTtI4HIB6U1cImHYH8e2QhcS6tQ0rj2Mxcwt1wVmyfejWqoEbjTtp6zUM4Amylfifdpf52mf/TCmJY6STfZh+lPUgljddSwN0GQz6bAsPxEgACYMnFSm0AVowoBJeMi7OHniPo4ddcac90JQq+6HcHLV7AuqvuY/NmYjoh59iyrOL6Gax2cl3q2paTbScmMxde800j+JIwbJY3LiiRS+YMuCJuzCY2vXTRiPvYU9fhm8AmawRYYSbY4SH3gJdrB73i/ITMvAyK9nwNxG8e8yBk4e3SLXorR01GnfTPgjhREhBTQ59et2RN8PRY9pL8CtobzjUQk+ukZNJ0Q/Jbehv2BX1QmD5hYIe6rbGLuLcIrOfZ+ryErPgDLQSp12lYEm3rt3YePmdRjRdCDGfl5+BHdln/3SRrLuveKP9i8NRJ0Oml8KqJrPYz//i2cPowR7YLYJLi6kgibxEU9w+Mf1+Q5Vp36jPU86H13p4F2jlA/eYdfvEutlv/De4/egtiE6YhVlox389k8kxcSh82sj4NGygdrdSAVNuGEW/FYU58g6+gk5VjUd0Elgi5hbZGPjrX/wX8B/eEbpUxnJnEbPdfMAF36PWxOrjtdqTIMx6OfUG1e2nxVek5qiqPaD6qmCATTR00SX8W4MoImWC1RZQBNfEtGcQUKw7Cbz20T1XUbm7SUGyb0n8HSxxc8kDqsoved//16FH9n+TuvhiVfJLWfxkXvY5fsIc+hQOE6L2/Sd1MaP1NbwFjXwyaDCau5aLn+ZrG4ATZQvC+8D3g+8p9ZfCAHrnGyc0hF1nBW4kEhc3dIATc49IIBx5w10qOMkpOhUptAFaPLsyQZERyzC5csO+aCJhUUO6jfxJqpygVV6WZvXJ1G/ICb6N7hWexsubtNLdHisjWJJc/Lh0fcQ9Oxhfl9JiSTImZtVCDQxNrGFtU27/DIt3Vriy55fIjmVHHoqkDBselIK9n6+WrhdZdtRXYcU0OTC+n0I870n3MDzTXxZj5jgRzjxy2a4kGtO73cmaD1cMXWj2cAuAvNAm1AEmnA6wb9LV+DEzZMY0XgAxn6pWotGmzGUVF2/g2dx58iFEmFn8EE6joCNp6GRlDpzV2BEMPPJSMnhW3xGqaAJlxe1e4YvmI7Di/9CelJqPhOjpOZMSrvMCGFmCMeYRbNgYqa+1p5sP8EXbuHK1sP5rBrxtYBTV4mx5gNX0tPpRbo66oY6oImithmYZYCWnXyGffEWbGxNcf7RGSy7mMdwZAYZg2VFw4iIK7nPdazndv4Yrs+ccPfkTQNoou4CGsqXyRkwgCZaLktlAU2O0I38F/tuoy9Z7H49Qv1bC2cHC7z463mwgwmLry4jxok1KdeLsfdmhJAq4eFoha1v5n0R2nj5IVaQ+834tjUxi1JqNI0lx0hb5Vo4ZpL7zsT2JUdT1XR8uq5nAE2Uz+g/l0IFN6VBTavhENkNM/tox//UY04Vbb00QJPw2BS8+McFjZhfut5v+m5PF6AJAyYMnBQFTWp7roO1rW4o1yUxL5HhXyDu6Q5U9/gCjs7jSqILoU1mWjOI9Mvl5bgceZ7cXArsyzPSQ8B/ZJkmFpb1CWwqnCY2stFIvNRsIrnzaG6bWWIPqGHDz+iQeGzZRlTxcBMOiboOKaDJtR3H8OCsL9qM7QvPrmUfMI0gdshZEnKt0Yz0KN7QXo8i0j8IZ/7YBada1dB39staLUFR0IQBk/2UBvTgaQhuxt1HP7dOqNmwPgmSqn9o1WpgOqgcRIfxq3QYZ5YJs010FYpEefvMmgjn2qpTntUBTU6u2orHBM5wyg+nxFja2WD4gsLOLrp6JnXbYRCQwUBdMF8YMGHgxGtUL4HNIQZrAf33xa+kJ5KqEatMW9CE32P8Xms2qAuaD2qPeHJYe+dQAYDIejnxkU8VTp0xCcvmZOfC0tQSy/svQ9TFh0gjN8fy+D4SH9DANFH3XVIxyxtAEy3XtbKAJiKA8VK7mni3t/oABn/g3AlPwKxtvoIDT7vaVQTghC8mckjhnR1zohLS8NmQJhjSLO+X70lyvfmE3G+6eboI6RSaxqytvrgcqn2aj6b967ueATRRPuPH7j7G/P/84OlqiwdPkjCsRXXMG9REqyUqDdCEB9zjpxPIolv847N7Cilt+ojzZ07CsYoTmjRroY/uFPahC9BEEdPEioQl6zXanc80YaYF25HSx1OZibDgmUhK8CE9k+WkayJv6amrgVqY5+Jw0AH8dfMvwb5cFjThPjIzwmF80FZOCLZo/++Tm05bOnhmZCqmf+tqvPpqR6Tme7RqiM6TVVsIqzsuKaCJyCBoNrgrmvbPs04vyyHqU+jy8L5z7nJkZ2QK7iLsMqJpFAVNRD2ahymR+aCJpYmFTkU/NR2ruvWi74Xg1G87BD0T1jXRRXB6FIMmRUOqKKo6oMnN/07h3onLgtgyM6uqNa6L7v8bo4vH0LoN0e2mPoGWrQm81CYO//A34qNioAh4uu19Dv7elBZPeiKdJg2RlOInjkUb0IS1cFgTx4TsnscunAFbezO8e/BdPEp8lP+oaYnJxDSJlnv0Kh5VCeCyFvR0sjKy0MSlCX4a+hMyjM1h7eqkzVSVal0DaFKq019mOjeAJlouRWUBTdiBhp1o3uldHxPaqc/W4A8cnisGRhjECKOb8jY1HdG6ZhVcDHlKaTkJ8PJwxKoJbfJXJJAOta/+dQl1KXXiX0qh0DRG/noWTxLTsY0YLO7EZKnoYQBNlK+wP4m/Tv3niiAInJSehc+HNhVYJ9pEaYEmosDxX5Pbo2FVO20eQa4uCz4rig9mTUM9z/qY8e4HCl/XRyqGLkATHnzQvdE4c/pxfnoOu+c0aHqMBO1shBxve2sTJGaQO0wZcoIJCXgJqSl+qNNgI7n9aA4kF7dZ2MU2KjkcSy78JNDtFYEmXD9i0wMY26bCaYAd5bor1tYwJq72/B6fw8akCgEvzznbOt2p+m3sztGL8DtwRhCAZCFIXYcU0CTgJNH29/jQrXQbup2WLsqu67FKbY8PvnwAbkQuKC3JDUUXIaYotR7TB/W7tda4yaKgyfWdxxF45jqKgiblUcQy8fEzHPp+Xb4uiMaTJFNRkcgxv9x+wiBBt0dVqAOaMFDC62zrWgVJZDncuF9HtBiSp5tU2sHiqMeXbxLGNviTKRoPR0z1YdchtoYuGklP43Dw27WU75KH3HMaFLOG+G9VoQ1oIjqEtSBgtvXwDlh+aRnOhuVpk8jGk6BwcsdhEdm8MLMyh0udGiQQm+eow8CKiZkZhjcdjsleU8o169AAmqjacZXjdQNoouU6VxbQ5FMScz1BYq5fD2+Gvo3d1J41ETThisHkZDNj8zXEp2YWaueNLnXxRte6+T9LJUp4359PwpwszXze66V2n1whMS0LA385RTRBExyfo5svbBoNRI+VDKCJ8slmsG48pbWIsWd6V7jaWmi1OqUFmnxCTlMnyWnqK3pP9tPgPansoe0tTWCamY7cFBZ5K4hEApnmfPoRatWqjXkz34FpEdtaIztbJJFGTIaZdvOpajF0BZqkJF3C9s1zBNDkk0+tKQ/bD45Oo1C95jfkBpOJQw/2C7dk9as0LTNOMIF3+gtCrCWpvWJnbYzM7EwQx0ZgArJlfGpGQXqOuD6rly0i4IbeTxNHkgVyAditaP2ys42Jrq0fNpSq/aPN6yKVvs0L/eDZpZU2TSmsKwU0YXFPFvms3a4pOkwcrPMx6LpB0fmkxdDuaNy3g06aD718G5c2HdKafSALmvDN+KVNB5FCTj2yoImdrT0xTV4td5ap2ZlZ2PnxMsEGWNGBXJOFUMY0kQoqqQOaJD+Nx4GFfwjOLTlZ2QKzixlepRV2xoU/A+8cu0SAehZc63mQi5Yb6RwV/N7LJZAjKVe11gnbDLPdsAu10XvmeLlHE5kmsi9ItS/XBDTh9LSI2w+EzxcGPl766W0cCzuCdTfWKZ32RAK0skjwmkWxrR3t8gGTohXe7fAuOtToQmLiqueltNa4uH4NoElZXBX9j8kAmmg555UFNBFFWn8lEdiWJAarbsiCJlz3bQJNrofFFWqGb/8Pv1v49m7E6jOIScrALnLscSPnHnWDhWV57I3c7LDu1bKrVaDucxVX3gCaKJ4dZpbwvgt4nJRfoChQp8k6lBZosvrUA2y4GIqpBDROIcBRV8EsEwdLuin6/HPg1i2hWRbM5XlbXd0a1egAPfppuiAKbSPqEg0ejJxJryAORFMo4dAVaPIs5l/s271KAE2Wrf4OkWET6UYvGw2b/oPwdHN8cfJzVLGqghXkBGOUbYWMrNJnSty92ZouHTPRuMVV+nJasuAULyPvBRfSo4qOTZNb1ZTkqwgNnCwwXpj5Uhni5OpteBzwkNIExtKBvY7OH1kKaCJqelQnyn63N0frfAy6blAEmthZhR1WdBGs87B3/iqhqVHfvgMzS80+d0TQ5Ib3BYENw2Flb4t7UQFCes6g2j3Q+YXBklgUunguXbfBVs8s2MlCnlYOtjppXrTcFhtjhgkzTaSEOqAJuyWxfhADJhwlBVRKGTenatqZEtvj77+B2FiBQREbFl0oddPV0yNvH3qQttP48XiWnKWy6duHKP3m8HmlzDVF+jHc6JDP3lQJ4qkLmjBAw0wiBk44Ok7sC4vm9ph3/BOVzyG1wM+DlsHV0h1pCkB4qW2UVjkDaFJaM1+2+jWAJlquR2UBTUb/eg7RiWmCaCaLZ6obRUGTyX9fKnR4Fdtj0ITBEzGmb7pK4rHxWDG+NdrUqqJut9h3KxLfHrqDgZSC8QWlYlSGMIAmileZ08s4zaxoaLqnxXZKCzTZ7xeJhQfvYEATN3w5TDU1WureDwl+gMD7/hjWpTOsP6A0nKQksHsWg05r3G0F0GT4k1RywLJAk2qUFtSYHKkWLUJ8SpZenFJ0BZqwqGrA3f8IDBmHnn0/QFL8DhLdOwIbl5H46NS/SM15/mW9ehvM6/YpyDQBOaXoBJOdHY/7fl1hYmKHhs3PS11OrcoVB5pkkTBggH8vGo8DjUeeuq1Vx2W0Mt988w34IKLk2xE1X9chBTQRUwNYeJN1EMp6iFR/Ta1TlT2fCGB1fGUoarXWzBXPClnwWX8IDykVhKMhpRC1ohSi494H8Pe6X7F4ya+oWqNGWZ9ipeMT7YD7vDsBzpQ2oYsQAStmsLR9sb9agJJU0IQP7j4kBMvAiWxI1U7RxXMWbcOSLgiswoJh9N57KJqWwmWt7K1RpVE95K5ahRTSwUk3NlM5DNacYe0ZZe8Nn5VbSRskTK4dTs/x7NoK9TopByHVAU0UMYiGz3lRcO7R1h1IdvBGZE8ckxwHk1zN3QpVTmoJFTCAJiU0seWsWQNoouWCVRbQpOuPxwVU/dT7vYmWr76oX1HQ5Bs67B2gQ59sNKhqi78nF6bvfn3AHwdvRwlWwWwZrG6sPBmIfy89xP+61cNrneuoW71cljeAJoqXTdTlKfrqipcIkCNtHU2jtECTW8SieotYVI0JuFj7iu5YVD7HvLFuzUr8/utaVHv6BEafz8eZBzHC9MiCJpzy1q5RdeSuWIEUC1v6kqgf2q2uQJOQgImkD3ITomMOAwSm8Mfcw9NwLy4aFpaNKT0l75nGNhlLf14k15jSSzFJT3tAOiwjST+kLjwb/6fpdlWrXnGgCTd0z68zpd0komGzUzAxLb8if1ImhSn3299fkrcfFs+htIe8vH1dhhTQhOnwh75bq7Wegi7HXVxbLCjJqS9sm8qHMF3FfdJ2uUHaLrXaNkHHl4eo3SynIfjuPIbk2EQhtYDdiFh0lOPk8SNY+/svWLpqHZycnNVuu6xUOP/3fwi/cZ/sqYeSpa1mwFLRZ4kJIgvpFZs1ci+SCpqwpTGDJkWDLabZarq0wpZwEHOf44h4W17Ty9TcFK4b/kB60xZIyZb2HXn3vBXIpNQWZUwgRfNgSqJTWel5OiIWttaUJtiSGFyt5JhE6oAmlynVLYRS3oqG1LSr0loPffZrAE30Odtlty8DaKLl2lQG0ORJUjpGrj5LN8vm+G+GZkJcRUETvrVmtklkfB7tm9kl349uIXd4XXsuGH+cDcarnWpjWndPtVfrw503cZYOfN+ObIFeDV3Vrl8eKxhAE8WrpohpwvuOgTpN2FNiL6UFmrAm0OAVpwXr7qOzdKPXw+/LTTt348ye9Zg6fxn6NK2J6HX/IOr3v4THLco0afzL98ho4YVkiV8SdfF+0hVocu9We2KOpAosCWZLWJLF7ma/v/Hv1XlCCgzlv1C6To5gpcuWuh93/RitqrZDRoa0L8S6eFbZNpJJg+XhgylkidyOgJ689SjpUAWaBJMwbRoL09bfQLommgtylvRz6KL9pBgWZfwT1lXsMXT+m7poUq4NKaCJeNNvbm2Jkd+8XSLj0GWj3uQOkkDuIAM+nAyH6i46azrxMYFH368VHEVGLSywQpXSgehAxGXdm9WD15i+wrqKkZKcjOTkJNja2cHKylpKk2WyzI29J3Hf5wpaDuuBRn10A6wHXbhJVsZHUJvScjpITMsRJ0cqaKJMO6UsiB87mmQh5pMvkbXvQKE1t3jrTTi8NQUJEtMm4yKe4MiP62Hr7IjBn76hdP8w28Z3t4/wunuL+gKzhwG/oPM3BdtjMep0aCaAJ6L1szqgiSLtFG7XAJoULIsBNCmTH3F6H5QBNNFyyisDaCI6jmhzo10UNBGn/RTZCttamgruH7JpOeLr3v5RWLDfn8Rnq5IIbXO1V+vFNecRHpcquO+wC09lCANoonyVZdPCeL/N7tMAQ5rnWVxrGqUFmvB4h648g9iUDOye1hVV7bTTuGDA5ONdNxF0/TSqhh5DcMs3UcXJCfMH1If1Mrphv3gxHzRhTZPm71Oe/MjhiDfV76FCF6BJRnoIHtwdRoBIDRJVPQx2jLkRfRXfn/sOrNXB7AnZYNDExrIeVgxdCTsT51JxgkmIO4BHoR/B3nEQ3Gv/qOl2VaueKtDk0cOPkRC7HzVIPNeBRHQrckTfD8WpX7cLbAlmTZRESAFNmPK57TnjZdxP7xO4VxIj0V2b/335K9ISknWqqyGOjg+dfPjs8dYLcGuk2MFJ9kkY+Lq2/Sh4LTnajeiOJgM6l0uNBSkrFHD6Gnx3naBUDi+BSaOLYHYPs3w0EfaVCppwes6Rn9YjmUR5xWBwrOvrI3XKVtJkPkxNjGCZS8DJWEqNC8hL9zXu1BGOy35EmiXZsEv0qGfQ4+q2I6jVhphSZCesSTwmRk7Q+RsIu56XXsZRtWEteBJ44tmuMWytzPA0IU+jRDb279mBuvUboGmzvPSe07/vRNTd4EJlXD3pc+7tkvmc0+RZS7uOATQp7RUoG/0bQBMt16EygCYnCdj4ZPctdK/vgkWjNRNyUwaaqJp+Uci1cTV7SkFop6p4odfTSbix91IfwQHizPt9hL8rQxhAk+JXmYG6SLK+5pQcTgnTNkoTNJm+6Rpp/sRh+Yut0a625ilGPAciE8ch5lY+aJJlZoMJ7Wvhgx5kM/7OO5gR/QjV0rMxv0sX2HzxGeKzyBVFzzofugBNEuMPIzzkPdja90SDRr/iWVoUZhycTufRLCQnnpHbEkbGlrCx7YSGzg2xuP9iJJJ+S1Z2ng2kvuLZkw2IjlgEJ5dJcHOfq5duVYEmT6JXISZqFVyqvgnX6rP0MqbS6kQ85NTt2Bztxg8skWFIAk2o5z2frQTblY74egYsKLWkLMeOD38mEDIbY3+YLTih6DLY/pltoKUwEB5evYOrBJhwaoONswOBCP3QtH1DpNDnWXkUppQyjxF+gTi7dg+qNyXR4Km6EQ1mtxd2fek6ZSRqNK8vZRj5ZaSCJlyBGRb+3ufxmDQ9bJwchDWWYmus1oA0LMwsDqunjxE7YizSza1gt3kDoRVuyFRDLPzyZm+EXPJD69Fkm91dO5ZeUkyswDzhP5lpeak79lWd0Lx3G7i1bgpT88L6Km9OHod+A4Zi/MuvQRSbtbCzQbWGtYX3BwPDPNcMVBkibwYMoIlhJ/AMGEATLfdBZQBNtl0Lx9Jj9zGmtQc+6KeZ5ZumoAnfovNtur2lGQ69012t1bofnYjX1l8WGCbMNKksYQBN9LvSpQmafOd9F//djMAH/RthjJe7Vg/+7tbruBIai6KgyfejWmBgs2qwfBiEKTNnomquCeZt3AgTG9tScZTRBWjyJGolYqJXw73mXLJQfg2zDs1CaHyoUtDExNSRXGK8hPkd6DkQr7eagjQ965s8jlyKp4//FMAJBin0EapAk3himUQQ28TecQCxX/L0PipqiNa5zQd3RZP+nUrkMaWCJgdJ0ySJtE1KSpBWVw/HB7gTS/9BckISRn/3rq6azW9HFMW1dXHEmAX/E8APRRf913cdR+Dp60I91vZoS5bRfCCUtRzW+eDKQIMMPLDbDadFcXqULuLAN2sEBsigua/Djg7m6oQ6oIk67ZZGWRuTXKQfOYZ4At1SXGvAtV0LtYbhvegvJEQ/Rd/ZLwv6MLqI7KysfPAkIeqp0KQJASae5FrFzlW8XqyT8smXs9G6SRt4VctL9WHHqG7/GwPHGpUjhV2TuTaAJprMWsWrYwBNtFzTygCarDr5AP9cChU0RVhbRJPQFDThvgYsPyU4dxyc2R0ORDeUGofvROPLfbfRu2FVLBypfmqP1H7KWjkDaKLfFSlN0IRFjlns+MW2NYVUI3Ujihg3e25EYM/NR4hLIR0PiqKgieguZGtuhL0//IxsNw806dcPHq7qW4+rOz5F5XUBmoSHzEZK4lk0abUDG/wOs4YpAAAgAElEQVS9cfiBd35Xaal3kZUZVahrTs9hbRMxvuu7EDXtPKmcfsRvud+IsE8R/4xujWt+DUcn3dwaq1oPVaAJ65mwromFVSPUa7hDVXPl+vUL6/chjFxWmErPlPqSCKmgyXGyYn0aGglduqKUxPMkP4tHUtBDXDl0AUPJJrUkYt+C3+Hgag8Xsl5383CHk3PB+zQ2PFpIx3n2MO/97DWqt8BYEKOigybMRmJWkpkl6b58q57ui6K1ykrPxK5PlgsiyCyGrG5UJNCEn90k7hlCLtxCyMMYwYZcaoi6ROxMM2ZRyTD0ov0DEXz+FsJuB+UPi0ERTlH7L/Q46ti4o4l9PYGp1v2tsaji4SZ1+JWynAE0qZTLLvfQBtBEy31QGUAT1hRhbZH5Q5piMN04axLagCavE1vkHrFG/pjUDk2rF4i1qRrHmjNBWHc+RHDNYfecyhIG0ES/K12aoMnpwBhBh6RTXWcseaGV5AfnlB4GSw7R+1qMlu4OZCuejrSgy/npOWM7Ncas52AMp7eFRD6D74PHMLF3wLAW2mnBSB5skYK6AE0e3B0CZ9dBuJnijrU3N8kNJTMjHJkEnLBQLHKzSQi2AYEmeUyeTh4dMKBBf3jY1oK9aVW9UfvDgqYhiVKHatZdRWlFPTSdPrXqqQJNskn75T456BhT+lKjFlfUaru8FT669F/EhkWVKFAhFTQ5s2YXIu8ECSkXnHpRViMnNREhgf4wTjZGnU66ESIt+qy3D5AGUz1nfPDlXAx+cRhef2k6Uolx8uCsL67tOCYUZ4tW1vQoartb0UETfvbd834RUjZYNJjFg7WJZ7T/j9H7wKG6KzFXXlW7qYoGmqQSKHjoh7/AqS1DPp0qaT6MyaUtJvAhjq3YWqL6SKIQbIBfqMA+Cb54K398ByNP54MmukzdkjQB5bSQATQppwun42EbQBMtJ7QygCZvb76G62Ha6SZoA5p8ttcPx+89xoJhzdC/iXQ0/FOqd4LqfTm0KQY01Qzs0XJ7lEp1A2ii32kvTdAk9FkKJvx5ATUcrbD9zc4qH5zBTwZLfAk0EWMAvadGtnJH65qOwo/WbNouuOfM+nol2jQobBG69WoY1pCb1Wud6uDlDqRzUgqhLWiSk5OC8KBJsHEZDXP7/sU+QWZGFNkS+8LYyELQP7Ews4SDhQ3+8P0Tb7amm/NcU6Sk6kcsKfj+C2AWTN2GW2Fp1VQvM68KNOFBBPj3IsZNDAnqHiFgqXSANH1Mxp75q5CRnIrhC6bBkg5JJRFSQZNLGw8i9Io/OkwcjNrt9LMX1H1eS3L1Cg33xyt/TcDKYavQwqtriQCMWcmx+MN7Bc5vvQzL1tZY++nfpIVxHb77zwpD5rSENpSOY6RA1KwygCaHF/+N+MgY9H//FQE80iZ4z/HeY2vmTq8OU7upigaa8ASwDTnbkTNjhJkjqsLMLEsAXw8u3oLGfToIgrolEUXdc0S3Ke5LFjThPcF7wxDFz4ABNDHsEJ4BA2ii5T6oDKDJi3+QA01sKja/0Qm1nDRzytAGNFl96gE2XAwV2CLMGpEak9ZdRFBMMta92h6N3OykViv35QygiX6XsKRBEz64mpmS/a2C4Pz9D3dcQ8TuH/Haq69gwIDBcqU4te1i8FMc8IskEPGJ8DprBI1sVUP4U8OhsJCkzzFvrFuzEstW/wXHKoVz1jlNj9P1GDB5u6d6IoC6WhVtQZPUZF+6/Z5EzkDEFqnzs8phRT6cj5SUG3Cu+gpcq43GissrcObhGYxrOg6jGo4hC2LVX5RVdiKhQIB/bwInnqBB02MwNZMOHktoWmkRKaBJaOBkwXGolucfglhuRYyMVEpz+HQlTC3MSkSbQ5wzqaCJ7+4TCDh1DV4je6FBz7ZlbsrNKH0jKyEWUza8irCEMNS0r4k1E9bCwskVmdk5OhuvuVkuLt0/jY+3zEE1X3ckusejadsmeL/tHFzYehJNBnZBnQ7KU3MrA2hy5g9iJfkHkXDrKBJu9dRq7m+R8O5dEt5tOrAzmtHcqhsVETQRtUn6f/B/9s4CPoqra+NP3I24kgAhuBV3dyjWUqAGxaFYoYXq25ZSg+KlpQWqSIu7W5DgkkCMeELcdTey77mTboivzS5kM/f78X1f2Tt37pw7O+z9zznP86ZMTRADgxKEpgciJPAhXFMcYO3eEK4KiunKG/PqLIelejTloYk8IsrynlOb+wnQRJtXV/5rE6CJ/LGqtmd9gCbMgYY50Zxb1AcmBsqp36sCTQ6R0OW3JHg5gqxhPxomfy15z9UXOPu3C4v7wqiGTaeKy/9CHi5AE80ui7qhibm+BIbpqZAEP7MVLH+Fl0MSsPrw75jSow8mdnu2ac0uKEIc2W0/pT86NtbQb98Oq888KYMlujXYScVER4L96fBSF8poqAhUjvrHY9XJQIW/i3yuiKrQJCP1X8THfg4rm9Fw8Vglc2q5OTcQHfYOCZ3Ow51sR/z+cGfZMR/3/gRt7DpwDhzqboEPmNCgBM3aPKC35so9hxWdozzQJD7mM2Sk7YOT2yewsZ2o6CnqRH+mjXH2h794FdSs7sLlhSaPT/vh0UnS5CFBWiZM+yI17rEizsaX+z7B5ejLZVPr7dEbn726CiV6ptWKtSp6DWxTmClKwvj1I8jxo6gMmuQ4ZmNy+yl4q89M6BjW/rKkPkCTu/vOUqnSA15cWq7tOIQ4/yfo+sZIEtT1UXTJoI3QROo+0+2tUXBrW7NRArtfC0qyMPf4HET4P8ba/j+gZdvu9H2QX6dPkYBXB02YCOzFH/8pyzTp1rwrZ58uuOTIjqwATWTHqD70EKCJiqus7dAkM78Qwzb5wsJYH6feVb6OXhVowhw9mLNHOzdr/DjpmYhbbUsXmZqLydtvwJXKFv6Vo2xBxdvghTpcgCaaXQ51QxO2B7HSL4bu1q3AudIafWkrIrvfm3GZ+NrFFMOyCjHxP2tBJvDKnKe4ZmoKyx2/QkSlJY1dFHM7qBxJqYZKz8Z2+G6ccvbjqq6OqtAkIW4V0lN2wsFlKemavC3XdLIzdyK+IBWfXfmV0zeRNhN9E2wcvglmujYQFfL3Br3ypIqKUhH6qA/09G3QtKWvXHPmo5M80CQ1aTuS4n9AA/s34OjyAR+nfeHGiH0Qguu/H+EsVpnVqrqavNBEqtfRuEc7TqvjRWqGhiU4dHsP1p78vsq0Fg5agtGdJ6K4ULWNor6eDixNDTD/wFz43b0MnRKdCtDExNIUa6Zslgk06wM0CTp/E8z5yadvR7QZ3afKmhTmiyCmP2YNZOvFnfxmB7KT0iBPVkV196Q2QpOHRy8j+PwtDl7W5KrFnqMWZnpYcXYFAg49gJgyt226WOPveXtBSWxqsa+vDpqwNWHrPWfGZPTs1hdTps0UgImcD08BmsgZKC3vJkATFRdY26FJaFIO3vr9JhrZmeGvqcrb9qoCTeIzCzB+6zXYWxjh0Gz53qpdCknGikP+6N7YFqvHyS+QqeLt8EIcLkATzS6DuqEJuxpuk2BCZSCLybEg/Jkavv/TTCTTW9a1Hhbon1aATln/gRI6hmWSOFkaw2H1Kui3a4e8YtW1N/wJ0MzaeQetXKywdcrzKQtQFZpEhb2NvJzb8Gj0M8wsZD9PDClLrVgnBdP+6YL0gnSYpneBznU96IygjZ+FDlrYt8CqfquQnV+MYoJY6mii/GCEh4zngE0jnwPqOEW1Y8oDTbIzzyE2ciEnTstEarWxHdr2BxLvhaHzwH7kwNJXbZcoLzSJuRcEvz+PKa0toa4LYOUHcdlRWHBwLjnWJFY5TQMPR6x5eR2aWLdAvgrZWUaGRfgr4C8cDT5MgriRVaCJua0VZT65Y+OITTDVsa4RaNYHaBJN98oNuldYFgTLhijfWJlX5K1H3EaaZRv0mPoyJ05aXZOUlGDv0rXcR+O/X0QOOopnu2kjNIm4EYDbe05x2kJMY6i6Zmxcgt0BO3Ew+CCKThWgJLcIeV3y8HL3VzCn4zyIRLq8ZF+VP3dN0IT1mfHWKxg4eAQmTnlbXY8CrRtXgCZat6RKXZDWQhO/8FQkZYkwup1LrYE5F5iEc2RNmyMuQmtyj+hKKuzs/1ZuNY2n7dDkGsVx6b4HCrtzVI6fKtCEjdX7hwscjT+/uA+M9WX/Y/27XyR+9g3H5E4emN/3+WgvKPWN5OEgAZrwEEQFhtAENGHTYT+CTNOSoDN3LsjWBbnkEHEvJh1ieotVHpqwja6HjSkHTPRI56RoyDBk6RopcEU1d41Jz8PEX/3gZmOCf6bLFp7l5aSVBlEVmoQE9EBxcSZpg5wnbZDahRFZLE1NdLDy8pfwi/wHheI4GCY0gsENJ+iMJmhiVQqiRniPwJTWb0AsUo++SW72NUSHzyTIQ7pSjX5VR1irHVMeaCIqeILw4DEwNGqIxs2OaWxumjzRwulvwKzYGFOnzYV3r/ZqO7W80CQxJAqXf9oLx6YN0Xv2BLXNR5GBGVw0MdLBlZgrVM4r4tx9SqisV9qMLc04W1MTIxP0cO+BrFzlMrNob4/rcVew4/4ObuishFTkJGfB9IY5ChuKUOxeRHHxgI6uLnxsffBhrw+RnVc90KwP0CQ18inOb9iFBh7OGLBoctl6xAU8ASstKd8YOGHW0NWVazAxWSYqa2Fvg6Erpilya5T11UZokhIRhwsbd1eJb9l9bwjcTLiOH66vISHpAkjOF0KnUAe5nXO578M77d5B74b9ISni599o6XlrgyYP7t2Bg6MTnF1KHeGEJjsCAjSRHaP60EProAkT/mQQhMGQro0aYNHAmmsM2QL/QhvrRnbm8LI3Q0BsJvffq8a1LgMnssbTdmjCnDa+PR2EUa1dsGJoM6W/E6pCE+YQwpxC/pzaGY1pvWQ1qU3yhzTnkTT3+tQEaKLZ1dYUNGFXZUZ7csO7t6Dz7bdgpTl+JPBaGZo4WhjD24G+I126QLJ0KTILdTltHz5aVkEhhm70hbmRPk4vUL5cT5W5qAJNCsVP8SRwMPT1beHd8pLMaRgaFeNw8AHsfrSb3gSKkJvtB/04WxjdbgrR4DAY2ruT3W7p82hhl4Xo6tITIrHqGT2VJ5aZfhhPoz8kHZaRpMPyjcx589VBHmgikRQi6GEpSGje9iH97+pFi/mak6bHyU3LwgeLZ8NS1wzvLluhVotfeaGJVGPFxs0BA5e8OM4XzDGHtYy4JAScuMo51jDxUVMbS9g2dOGEdFljbiPKlrNZUplDUUlRhdsgIyEFM2a9g1fGvYLxkyZC778yRWknsZiEaemlS+VWH6BJfmYOjn7+Mxi0GvW/2WUhuLXrJJdlUrkxjYvqsk2elag15kRllWnaCE1EOXk4/OkWDjSN+Wp+hbCw70OaKIHTMckle+LM+FQ0eGIH3WJdpPgkwcLBhoNQq/qvQmPr5iplX1Vej9qgiTJrV9+PEaBJfb8DSq9f66BJEtXyM9DBMkNYkwVNKt8GC3bf47JNJv9npylrPG2HJr+Svej2axGY1t0L03t4Kf2tURWasGwXlvXy7dg26NXETuY8pv1xC0GJ2fh58kvVZg7JHKAOdxCgiWYXT5PQhF2ZFcTQ27MbOHyYsw5OKyyukGnSmkpnrBq6QrJpE3LIErew3NtePiLTa80Frgzl8nv9oE+ZGJpuqkCTnKxLiImYRxkb3Shj45dap25oKMHjlIdY6fsl109SUoDcnJsETRpw0CS//z2UWBZyjjE6OqUZJpuGb4adkQvv1qqpSTtIN2QN6Ya8RbohyzQWcnmgCZvMk8ChlIUTS5kmRyjjRPl/JzR2YXKeiAknXiXxy9NRvrA2sEQnpzYYvOwtufQf5DxFhW7yQhMGcpgTBoMRIz4h6+sXrF0isckkil3Lod3RYrD6M9LEIhFXcsDKDYaPGid3NOoDNGHB2LtsLSTkWjTuO7LF1S99VkkdmCoHqyZr4senr5P48LVSm9yRytnkaiM0YfE7THbkIrIjH/m/WTCxLIXozEGKZSkuPLEQ0VnRSA6PpTIocQVookt9nJp5wtbEFhuGbYBOsQnEPP17LUATuR8DcnUUoIlcYdL6TloHTaQrtvNmNJXnFCgETXJJG2DB7vuY0cuLAyflW03jaTs0WXUyCEf9n+KDIc3wchvlMzZUhSZrz4Xg37uxWNDPG691rL7mtvx69V93CQW0mWTitUzEtj41AZpodrU1DU3YRtbKmN7mf/opRPceIJBEjz+xM8LAdBFeMTAgC2FjSFavRoGLO/IlskvZFI3WyB+vIC1XjCNze8DW7FlKMeMnapL0qDBFVaBJatIvBB/WE3x4k+DD+zVeOvvBmVOUhnnH50JcUqoTw6AAK0XRj7N7Bk0s8slhqBmV+ThxfRpaNcTaIWuRVyDhVdwv8en3SEv+HQ7O75H18VRFl0zp/vJCk+jwWZSFc5U0TTaRtklfpc/3oh14Zs2fXNbEhaSbHDRpb9MMnp1aotOkoWqZqrzQpEgkxoEVGylzw5AskN9Vy1yUHVSqt2JiZY7hVOrBNobqbsXFRTiwdxfatusIbx/5HfbqCzQ5sWobclIyuLIaltnAmt+fRxFzr6IjG7O/7V6D0PGNv44h+m4Qd++z74AyTVuhyYWNu5AS8ZRzomFZOsxBysioBL/e+wVnw89woaoOmrC/d2nZiPu8o3NHfNBzOQnD6lD1reqZoQI0UeYOrfkYAZrwG8+6OpoATcqtHCvNYUKHX49tDTNKPy/faoImuWTrqc1t5l93cPVJCraQ6GNvb9kZHjXFgv0YVCVWf/pF4RsCOJMoA+jj4bX/KIolZfIh6y/DkTQdzi+pqhavzevFro1tdAyovryANC+Epv4IsFp+9huniN7kaaqxNdbPzoLO/HnIz87GWFEBZtAbxPF6+pDMmAlJ374Qk3aAOtqYH6+CCUQfmNMdTR2fWXqye47vrJbq5m9Cz+YC0qBSpuLoSch7SEk5isZNVsHeYXy14eF+8JK1+tLTSxGSFlLWJz8/AgX0pzI0MTNvDUND+7J+fRv2JXG/uZTGqZpDSPnJPQldhpTkw2js/R3s7dXn3lI5ICyPiMU7j14o1NYiI75EQvxfaOi5nOrkNQd11HF/lx/z11mlpVDloQkTGX1t1Ry1nFqfAAODj/K8bd4+73vSDCnG1M3LKHuAfziq7AXu/2Ib0uKS0X3SYLToK5/bnbLnUvU49j1nz211CTirOj++jj/+wy48DY7CsEWvwbW5J67+fQqBl+9Bn8qYPNo0QSTBkxKKw9iPp8HWvXqdpwMrdyA1JhGjl78JBy/lXqCp+juQr3jwPc7l348j5NpD9Hx9KJr1aocSnUKcfnIK2x9sKztV+tNkZCVnVsg0MbUyg72nc1mfCS0mYLzPBOjpqK5vIvwO5HeV2b0rNCECAjT57x44fP8pzgYlchtyB9psV241QZPM3EKtvovG/3QNT5Jz8O/MbhU2SIpeNHsbr0qsmBvOgj330IOsTn+cXPsPsSsEeebtuosuXrbY+vrzcfhQND589mc/vI0MSGisQIAmfMa1prFMjPS4N0PK1ugrO0dDSTH0Q4JQ+MnHeKtQjNfJzWD4wEGQTJ+BfP2qzzBlz1P5uOl/3MatqDT88kZHdPYstTDW1SuBuDgfJvoWagcnFuQilEfOG4psdBjQYZujgIejkZ8Xguat9sLMrFW1IdHRK8TfD//C4dDDFT4vofKc7MzrVaCJqVlzGBiWZppI2/R20zHAaxCBE1IB5KGFBE1FFp27abNtsLSS7fjDwylL15V28GbGeiSkWTs0SUr4E9FRXxGIeg0Nvf7H1+mf+zh7P/kJOamZFaCJR1tv9J8lfwmIIhfB3g6zmMvjLLNn+SbkZ+Xi1a/nwZSyOl6EFnTpLvz2nIGNqz1e/kg5sVBNXge7t8VFErU/szR5TdWd6/KOIwi/9RhdXhmIHNLWeHSOdLGIDg9691W4UHnIxV8PIZKySLpNGgIf2vRX1/5cuIasoosw5YdFMDBWblPPbKKz8wuVAt7PO4a1nd//tB/uHLyElgM6oeOE3ojNjsSysxXLKFl5VHxINKwCbThNk5yXstGANIn0DCtuxpf3WI72jh2pHFQ1EMoc9xgUVOVl5Yscc03Pje1hhCZEQIAmdA8wIMI0UGoCJuw2qa/lOYM3XEYOvWU8Mb8XrEyUf2ioWp4TQSUIU7bfgDu5guyZ3rXWb+6uW9HYePEJJnRww5IBtQsBa+MjQCjP0eyqaro8p/zVWepLoH9wP7BrF+BFWhJr1yKLYFl1ood8ReWjwwG4EJyEL0e3wgAfB+6HWVZhMpaf+wAbhm6AnsRMrjflys5H0fIclglkZCSh7BQRHt4uBa7N2tylTUNVoMH2An5xV7HuRqm1ZuVWUpKDoidJ5J7jhoKBj1FslsF1MTFtTW/7K5Z0ft3/azSyaoZ8HjK+woPHUmlQKBo13QcjEx9lQ6fwcfKW5+RkX0FM+GzSd+kCj8bP3q4qfMIX7ACmaXKR9DmkmSadXdpyKfjWrrW7Lil7GfKW57DxT333G+ccwzRWrJyVzwJVdq5Vvhu0KTz+5S8EcnLQ9Y2RcG+vuftU2WuoD+U5rLyM3cPMVrh860FlOC5UjsNauN9D3PnnDFzbeKP726OrhJOV9rASH1U1dLS1PCfOPxTXdhxGq4Gd0Imgyb+B/yJPnFcljvGBEQi58IT+7dFF7zkDqr1t9XX18UqLVyiLzEilf8eF8hxlnwrVHyeU5/Abz7o6Wr2DJgyOsD9Sgdh1Z0M4a+KPRjSvUpJTflHrIzTJox/7A9dfghFtOi4s7qvSPa4qNBHTD7K+P1yk1GWyNFzar9a5fH0qCEcePsVSck4a195NpXnXxYMFaKLZVXue0IR9H6wMJND5YQ0kU6Yg38YeBVDtDZWs6H1/JhgH7sfR98sHr3Z0A8v8WHBoAaKSItHKvTU+H/IF8vIlCmWCyDpn+c8VgSbsrb2JsQTfXvkGQxv3gp3oNNLS76ORT0WrTTa+nl4xMsUpmH9yXu3TiSyBxLeIsxwWGYVxWiekqU7gpA2Bk1K9ANbsTOw4cT8JWdWqWrYU8qgXiovSOccf5vyjqSYvNBGLYxAWOAwGpO3SpMVZTU1PI+c5/tWvOBp4Bh5unnj3/Y/UJgLLLkYRaHJx0x5OJ6HvvImwb/z8/517fIqEQk9dg4O3B/rMeUUja6PqSeoDNJHq8pSPVaNubfESZZ1IG3N2Ob7y1xo1cp4+CsPVbQfh5OOJXrOqL2uUZy20FZoweMkgpjnpxbz8WfXlibnpWQg+fwsHfI9BYqSLld+urjVkmXksc9NUnrBW20eAJkqHrtoDBWjCbzzr6mhaB02Y1TADHEzUlf1hpTblhV3ZZ6wUZ/fMrtznr231q7J27Jhtb3Xk/l7WeNosBMssfpnVrzzZHbK+AKpCEzb+2J+vIZHEff+d0Q2u1jXrNczeeQcPSZtm48T2eMnj2SZG1hy15XMBmmh2JZ8nNGFXykpPLOhHmJjU+3OgfDaYvFH75Uo4dlyPxOxejTCzrzt+e/gbTl6gH4IXCCQMN8DYHuPoTdlEiEXqqQFWBJoYGhbjaOgh7AzYCUNk4fves6FDWTGWDWZVudwinWxkiNJQUFRQayjCHofi8J8HMHPFXJiRU0JB/iO61hh6e6gHU/OOBF+ePXMsjCxgb2IPsVj5dZFQGVbQw7Y0Jx2y9PWXd5l46ScvNGEnC3rYjtLui+DT+haVmPCnp8MyhViqOSvJ0nQryM7Dkc+2cJkmbbt2waz5S9Q6BUWgyTVy9Ynzf4LuU0fDtbW3Wucla/ACKhM6RlkmJcXF6D17AhybNpR1yAvxubZDE5ZlwqBJ5Vad4Ovp1X8gk3Q3+lAmlQOJmZZvwRdu4eGRy/Du3QHtxtT+0qq2hdVWaCIpKcHepaXZiRNWL4aOblXx4ydX7uHe/vPw6NQcHV8dQv9OqPflhgBN+H3ECNCE33jW1dG0DppoeiG0GZrcjkrHgn/uoQOBh00EIFRpfECT+aRpcjc6HeteaVempVDdnIZu9KUShcIq7h6qzL8uHStAE82u1vOGJuxqjQ31NCb8++/dGKw9F4p1E1ug2MAfP9/9GZIY0na6SBkvBE1gq4Nl3ZehvUNniAv5tySWF5oYUgZOSNpj/O/yZ9wNISoIQ1MrS3w37C/SX/GokgnDNufKtuTEn5Cb5QtdfXNy5fmAyoFKHRFYY1oqqpghFBUmIvTxAHLosYd3iwvKTlGp4xSBJuHBL3Mx9mq6l3MU4qOx85uSPE9uYS7hQHON6wZJ0+7zbCTo+dooEuJVb8mJItDk9p7TiLjhTxuwwfDq2pqPcCs9BtsMsk2hW9um6PbWKKXH0fSB2g5NWEnOwY82VQlrdQ5QDw5fQsjF22g2sAtaD+9Z4Zhbu08h8mYAXpowEI26M4CrXNNWaMKiceLr7chJTseQ99+GpVPVbMAbfx9H9J1ALsOHZfqouwnQhN8IC9CE33jW1dEEaKLiymkzNDn+KB4rjwdiSAsnfDaihUqR4gOafE3uOUfI/njZIB+Mbeda7XxSckQYveUqp7/CdFjqYxOgiWZX/UWAJpq84tOBibgRlYi+zfWxLeBTrjylKCoDxn5Nkd/nIQyd3chxxR2bhm+Gpb4d7xtdeaAJ+8FYUJKFOcdnl2WO5Oc9pBKXNExouwJvtFtA81Y++6O6eMdFvYesjFMENxzh0ehnGBmX6gWo2gryHyMi5FUCEc0JSPyr6nAKHa8INImNXEhCuefg2nA1LK35seQ1MirG/qC9eJz8GF/1/4oEaRUTAFboYqvp/PDIJQRfuI0Wg7uh5dDuqg4n83hFoMnDo5e5dP/WI3uhWf/OMsdWV4fM+BSc/v53bvhB772hNr0Xdcxf26EJi9mtXScReetRWfgMTIzQY+rLnDVu+ZYQFAnfrftg4+6EgYunVPjs/PpdSI0iS10VS8G0GeqyyLEAACAASURBVJpc+fUA4h+H15j5JbV91tR3RIAm/D4xBGjCbzzr6mgCNFFx5bQZmvzuF4mfyYb5jS4NMad3Y5UixQc0+YNsh3/yDcMUsh2e16f6DckdykR5lzJS2rha4afJ9c85hy2SAE1UulUVPri+QZOQpGykk8jdF5eXwtYiGXm596EXbwHjG805aFJinUOCoF3hY9cGqwevRlZeoUqCdpUXRBY0YRt9SzN9LD+7HIEpgWWH5+ZcJ0cCETe3Jd1WoLNLD4jECi93rQfERMxHTtZFGBp5wJ3AiaFhxY2JMmfLybqMmIi5MLfoSWP+pMwQSh+jCDRJiv8BqUnbYe/0Luwcq5Y/KToJI9LpfZhwBx8fW87ZoU7oMBFvdpzKO+yqbV7nN9BmMfIpes0cDydyGVF3UwSaBJ2/Cf+jvvDp3wltRvZW99RqHP/Gn8cQfS8IjSkDoQNlItSlVh+gCVuP0Mt3uVIua3I1Ylkm1QkZS8jDff8H6zkb65H/mwUTKj2UNpatwrJWRn8xB0bmyutsaDM0eXD4ImXq3EHrEQQxB1SEmPmZOTj6+c/kOmSIMave1chXRIAm/IZZgCb8xrOujiZAExVXTpuhyWoSfNxPgo/MgYY50ajS+IAm54KS8MmRAPRtao9VL1efjrzvXizWkLjv6DYuWD6EnxRxVa77eRwrQBPNRr0+QRMmPFsIEd7a9ykCkm+jpUMOlWQ8gV6CTQVowrIsDAzdMLjxYExr+w4KRPzVb8uCJsbGJdgV8DcOBT8Te5VICpGbfZVkQfQ5+MDa5uE/wtbQGQWFfGplSBAdPpPOdZ0yTby5jBN9A9WcVjLS6A1mzCewajAGLu4rNXpzKwJNMtL20Tw/g5XNaLh4rFJpnuwHf1pWHF7dMoZEdKn067/2v7Er0a/lcN5hV3WTLabN4/7313Efjf36XU4kU91NEWgS4eeP2/+chleX1ug4cbC6p1bt+FJ3IWZfO/yTGTC1tngu81D2pPUFmsgbH2m2RKdJQzm4wlp+RjaOfrGVgyUMmqjStBmahF8nB6J/z8Czcyt0em1IhTDFPSR3nd8Ow5GEdHurIKSrSOwFaKJItGT3FaCJ7BjVhx4CNFFxlbUZmnxw4CF8n6Tg6zGt0cfbXqVI8QFNghKyMe3PW/B2MMfvb1WfjsyACQMn7/bzxqSOqr/lVemin9PBAjTRbODrEzQxMiqhcolDWHhkPeeq1d61BAV5AVWgibFpK3J5KbVBnddpHrq59UKRmB9h2NqgCb3Iw82E6/jh+poKNwFznsnPe0Die1YwMSvVZ/K09sTaIWuRm1/CayZMSUkB2e/OpAycu+So04rLOGHnVbalJP2C5Pj1sHV4Bw7Oi5UdRqnjFIEmeTm3ERX2Nl1zW3g324VCyg5RpjHRV0tTA0zdNhn+kQ8rDKGrp4t9S47D1ohgFw9WzrXNLyk0Gpe2/FttuYIy1yXPMYpAE6neimvrJlQS8LI8w/Pe5/LPe5EYHIXmg7qi1bAevI+v7gEFaFIxwiwj5f7BC2j4UnN0njKc+zAxJAqXf9rLOTSx8hxVmjZDEylAtPV0Qf8FkyqEiYnoMjFdTZX5sZML0ESVO7XqsQI04TeedXU0rYUmsUFRyM3IgU/XUlpeU/PdVdUekaXQdR1bmu4acT8U4fdCUVhAad30FsXBy7nCmNoMTab+cQvBidn49fWOaOFsqdI9zgc0ySZx1yEk8mpKopdnF/apdj5MuJYJ2K4Z3xbdGmnOmlOl4PB8sABNeA6ojOHqCzQx0C9BVHYYlp9bgWvhKZz9dzcvK4IDt6H71KQs0wT0tTMxbUduMs8gyQ8EJ1xMPXnZ6NYETZgYbpooAXOPV30bWnIgH4WeMUBzHS4DRNr6efbDjA6zqORDn5xf+LtvioszuYyTgrxHMDV7iTJOtpKjgpFSJ0iM+wZpKX9xArMN7N9QagxlD1IEmhSRK1Ho436kveKJtu1Pkv5IkcIxZbLBTMfkT/8/8dupn6gkoGr9VNdufbBh6EbkFBTzCrsqxyjwjB8CTlxV2TFEkdgrAk2Sw2JxcfMeXjazisxR2jf2QQiu/36Ey0AYQVkmegb8QFFl5qLsMQI0qRi5rESyzv32NxhZUFbJ56XP0Se+5Ppy4DwnAMuEYFVp2gxNmIPUkf/9BCMzE4z+cm6FMEntwXvOGAfn5l6qhFDuYwVoIneo5OooQBO5wqT1nbQOmqSTXzoDHREEOlybNSyDH9WtpLhAjKTI+AofZdDxDJKMXlxK1AMu3qU6RCM4eDpxEObGgcvoMKwrvNqV/vDWZmgy8scrSMsV4/CcHrAzV+4HvzS4fEATNtbwTb7IyGfOOD1ha/YsXTqH7KNXngikzJhk7of6/L5NMLmTh9Z/gau7QAGaaHbZ6wM0MaRyiWLkccKqOeIcXI9I5dxnunnZEjwphuhJMIz8vFHQ9zGM3VpVACZsNVwtXLF+6Hoqq9ClcgvlMhCkq1odNDGgDAQTcllZdHIRorOiq9wAkr/EKGwaC512xlQ25FLh85kdZqKPR38UFvK76SsqTOLACStfMrPozoETZVpc1FISmD1JAqvfkcBq6dtfTTVFoAmbU3BAVzi5TYPYpB+czBuiuFCxkhYDg2Jcib2ILbe3IIv+Lc5JzaxyqRb21hjVeRxmdZhDVs56CoMZeWPnu3U/EoIi0PXNkXBvp17XHOmcFIEmUgFWKyc7DH7/LXkvi7d+Z3/4E+mxSZwFLbOirYtNgCZVV03qAtN/4WQ4NnLB7X3nSBPlHi/rrM3QhEWyJu2XfcvWcXbcL6+cB0NmB6aBJkATfoMsQBN+41lXR9M6aMLABgMnsYFR3JpIM0bkXaBzO47D0csJrfpW/yOAZabYODco+1xboUkRbYh6r7nAvU2+srSfvOGrsR9f0GT6X7fxOD6LE3llYq/SNm/3XdyLyahw/k2vtUcHdxuV517XBhCgiWZXrD5AExtzA2SJs1FYUqovcS0sBfmFJehO2VwmlOHh5/sHfl5/Cu9/Ng7NW4+vdgGM9YxIP6QIuiXKCwmygStDE3pEkeVyCTbf3oTL0ZcrnFsiKYJYFAnDve4ETeIgaUuZJkZV3/R9M+AbeFn6IJ/nkg+xOAYxYTNpcx8DC6t+cPPcWCU2rByFwQkRxbO6xkpeWOmLR+PtJGKrWZcURaFJRtoWxObn49s7J/H1wA3wtmmJfJF8mjF6+sUQS3Kx/d42LgySkhIqDYjmRGBZ0yFHaMl/ITI0NcK4bhPRyrU977BLugYHP9xIGaZijPx0Jkw0pNWhCDTJzyJxyf/9DGNLM4z632yNPvTCrz3Anb1nYeloiyEfvK3Rc/N5MgGaVI3mXYIkYVfvo82o3mg3rCOeXHuIa3+dRS/S4nAiTQ5VmrZDk3PrdiItOh793n0Ndl6lDo9pUfE4t34nNA03BWiiyp1a9VgBmvAbz7o6mtZBE+lCsAyRnPQchaAJK+m5e8IPQ+eMhSErji/XWEYK+zw9Pg29Jg0s+1xboUl8ZgHGb70GR0tjHJilutUiX9Dks6OPcIYsTz8Z3gLDWjpxKxSalIO3fr9Z5TvYm3RYviE9lvrWBGii2RWvD9CEbZ7Lt2X7H9L3LhvfjyP9CtIYunl1DC6cF2PwUB2073SsxgVg2SmqtsrQxJDKOc6Fn8a2+6Wb7fKtID8ARYUpMDvcjYMm4mbRKK+3Iu1rb2pPJR8baINupHImTOU5sEwTlnHCMk+YFS+z5JU2BnzYi0cDPf0a7XTDgkYR+IlAI59DVFqkmouZorFXBJqwbKScvGuYcWgiivXdYW/RHBuHbeQgmfi/7CJduo/YnVTdfWBIGjlFKKgwxQi/hyjIzoNDUw9YOthSuU4BZX9EQpSbz/XTszNDk9b8u6Slxybi7A9/wdzeBsNWTFM0bEr3VwSaMJeTfSRUq6uvh/HfLVL6nAofSKmcx1b+grz0bHQh3QsP0r+oq02AJlVXjrnsXNtxCN3fGohwu6ewSCRr9mAxmg7tCVMb1cq0tR2a3Nx5AlG3H3PCzEygmTWpToymBZsFaMLvU0mAJvzGs66OJkCTcivHskwatfcuK70pv6jss1xSEXfwdK4AYvisg3+RbqJbkWl49efr6OBhg31zVIcmbHPAR6zWkKPPpvNPsHCANxYNbMqFLIu0Ttp+frpK+Ca85IbvJ7R9kcKqmblQrNnGhI94a2bCdfss7N5mrT7F++0dN3EpJBnb3+5Ebla2uHCx9LvIWq+ed2BgYK22ReWeJVzAAXGxGJGZEVh2ZlmV8xUXFyA9nRxzqJWHJoaG9rC0bFOlf2eXzni/x/sw0FWspESeC83K9seDB29RVkQmnJ3Go3nz77jDREUinA47hYTcBLze5nWY6FfNwrns2x5FRVlqj2tN1yHvs5sURrD06Ou4GXUEJqRrYmbWGB2cOuCj3h9BX4c2XtQKaE3YwhnrmcgMW1ZyBn5btol7QTH7p/ef9ad1v7TzFB6cucX9nUdLL/SeMgQNXEqFh/lokQ+e4LHvfa7Et+3ATnwMKdcYij5Ltsz+jsuGmf3TMoqTaiW0ck2QOt06cgXX912Eq48Hxq94U97DXsh+5Z8lL+QEn8OkCsmH/fSOwyjx0MWWlF8gisoj+LkBLTqq/ltK3mfJc7hsXk556zB9N/ZfxEvDu6HHqwO4MU9uOYCQG48wYOoItOxTKkKukSb8DuQ1zNJnM6+DCoPVuQgI0OS/JZMKvg6YWnvNOCvPMbMxR4ehXbkj49NK33hpWzvLsjmOPEJ/Hwd89XIrlS+PvWHgI1bH/OM57ZKhlGXy2YgWKKGd6pfHAnHycUKVOW5m5TkEfepbM6I3j2YmJIqZXVVEsb7FQhPXy5w+ioolyCNdnfrSPj/2GCcfJeBTyvga5KOPkEd9SceE6UsUU0bEfhIDfQZR+I6JvZUx0rNFVK6hA109MeadmIfU/NSqp6HSnJysK9zfl4cm+gZ2XLZJdW1iy4kY7T2GskJKN/l8trzcO+QuM4tKTApgYzeRSnU+RHxuDJadXcqdZlHnRejq2rOCna6kRITAhy9RbA3QvO09Pqcj11gs08TW0ghJGRUzQCofzFyV/nm8G/883IKC/EDOZtnYtAXXbVyzcXil+US6bl0EpvkjS5SJTk5dUVxce4zDrpaWgLi3bYpub4+qMl/2RvzegQuU8ZDF3Qvtx/ZDk541b0psjKm+x98fiCFBYBktLToB+Zk5sHZ1gFmDcm/XO3ZEvqUN5cPwZ6FdfiqmRvpg5VpZec9slmub6tEvWMZHFifEWmGesi5Qyc9FOfk4+uUvKBYXctapTs08lRzpxTjMxtyQKx/j13b8xbi2yrNg95aYspPYv1W1NQPK+EqJDMes/TMgtihBdlI6enn3xjdT1qGgQIf7zaVsc7IxQWJGvta+YIi5XyqOzBytekwrdbQ69uWvyE3LxBDSHbJy5g/syloD5m5nZmJAvwNFsroKn8sRAbaHEZoQAQGa0D3ABGEZDWb6JyyTpLbGyn4SIxKIGpfCFW0tz9l1KxobLz7BxJfcsbD/M7cJZb8yfJXnXA9PxXv7HsDOzAjz+jbm7IUDnmZxugotnCxxJzqdKxcY3sqZm3t9bEJ5jmZXvT6U51SO6IYLodh9O4asvZtgXCsRwoPHQlfXFCUleWSxuwXmFr3UtgisPCcjRwx9w2J8e+Ub3Im/U+O5mLNPSXFOBWhiZNyExGDdajzmk96forVde4Jg8mlxKHKhudnXqFRnFmW6tIWr5wosvbARKfkpZUNsHv5jBTvdQnEcngQOofk6o0nzM4qcipe+8pTnGBpI4J98D19fXUUgJBuip0EwuusDvf4WgEVpGta3A7+BvZk9Znw3ncRhi7Bx2RbYG7vW6qZ0dfshPA14UiHVvfJFsSwLZpEaeTOA+8i1tTfaETwxrUaDhLMyNibYsWQJEB5eYaji4gxOsJfdK3r61shJNENhnh4cmrhD3+g/uPPKKyge/TIyddUn5KhIeQ67gDNr/kRGXBIGLnkdNm6OvKx5bYPcP3QRoZfucJvC52VzzOdF1pfyHPaboFAnh8uiE4tqFk9m5XPGBEA/ObQcF+6fIScYYyqFK+C+T7MGzyegPFYlDSFtL8/JeJqMM6v/IK2fBqT1MxV5lJ1+7IutnPgrE4HVZBPKc/iNtlCew2886+po9Q6aMF0SJhJbXiC2Mggpv5gsA0XqlMPgCss0KS8Uq63QZD1tivbQpogvFxo+oAnTWXmTtEtyK73RZ5CEvfFubG9eV7+HvM5bgCa8hlPmYPURmvzuF4mffcPxZpeGeLNDKmVQTKPsAjtOP8TZ/XNYN6heDFZmMOXowKBJZn4ODgcfwq5Hu2o9gmV15Oc9gMnBdqRp8pTccwxqBSZsMFMqkdk0YjNMdKxqFGeVY5o1dsnLvQpjgxx8d20tHqQm0ia9VNBaX98OntaeWDdkHXLyS98I5+c9RGToZLJwbgVP792qnFapY2VBE2PajGWQVsucY7Op6Ib+h7J7CsIDYHytBXSGEmyw14GLhTPmdJyJP8hGOPSfEEhEEni+1gRryYY6r0BS7ZtvCb3N3v/BejDdjpGfkRCrFQGYWlrUnce4T1kn4rwCGJgYcU4fnp1aVjmCPRtN0xKhM4fsVP97Y86ASX4eQReau7SxrJi8xIZw9GlY+ldtqTTh00+RScl7fOjy1HQpikKTyz/tJbHcKPSePQGOTf+bq1IrLfug7KQ0nPxmB9dxwOIpaOBeqilWl1t9gCYMFlqY6mPxycUY1GgQerv3I92m6p3CDAyLcDTkEP648xuSw+Iok48yS+g5xCCAuZ01Pu3zGVrZtlMaKGs7NCkuKsL+99dTZqAOJqxZAqktt1MzL/SaOU6jXxUBmvAbbgGa8BvPujqa1kETBjn8L9zl6nwZ5DCzplIasgh2o9pk1hggCb7+iGpx3+D+m/U5snYPJ+5aXZYJy0BJT0jjxmFjWjvZ1gsh2I8PB+B8cBK+GNUSA5up/gaLD2iy/KA/LocmV/iu6dObkdMLe8OYSlKEVhoBAZpo9k6oj9Dk0IOn+PZ0EEa3ccHcLlGIi3oPhkaN6C1mOOwc58Leaa7aFsHWSg+3Y+/j88ufy3WOvNx7MDnQApKW5NzT3kyuY1rat8TKfisJXpTwvklmG5ODj3/BjlufVJyLjj4HRwY0HlNmp5uVcR6xkQtgbtkX7l6b5Jo7n51qgyZsM2ZOZYCLTy1GREYEd9qSkhyIIsIImjSHuG8U2U83xMzOcznAdSnyPJreb4qSAoITQyXo5zWCYMo8iES6VdL14wMjcOWX/Wjg4YQBi6bIdUmsnIZlnbCNCmsMmjB4wiBK+WZG+0XDOzeh812prgxzV2J/KreiXA9YOzcCpQVBsmkTco3MywRt5ZqQEp0UhSZ+fxxFzP1gdH1jBNzbN1PijPIfIhW59OraGh1fHSz/gS9wT22HJkyHgQll//7gN5x8coJbidWD1sDdvFEVpzCWMRaUFoAv6LnKOVcFR9H3ubQUx9zWEpZkbW1uYM6JOxvpWkFcg9tXbcut7dCEXfvxr6gch6zShy6finA/f4RcvI2WQ7qjxZBuGv0mCNCE33AL0ITfeNbV0bQOmqhrIZiNsRmlKFZ21dHWTJNZO+/APy4TWyZ1QFs31UUd+YAmzCGHOeVUbvtmdocz6RwIrTQCAjTR7J1QH6HJJYKXKwhiMoeqD3o9QkLsSpiavQSm22FtOwHObv9TyyKwH4IletmYfmg28ovk05PKzb4Kk+PtodNCHzqt5Rd5Hek9EpNbv04b6urfyipzgWxjEpz2iIDP/5BPMKe4OLPiMAROzC16YkaHGejrMQBJCQcotpS5YzueYiofJFJmXjUdUxM04WyejUuw4/6Oss0YyzLJzfGDXpI5l2lS0Msf4/tPpUwUY2y+tY7gUw5a+neEcYkxcnvcIs2TlpjdaTn6ew4iS+aK0Pv+gfMI9b2HFoO7ouXQHgpdErNLZfCEWRWzsgIGTlzbVCwxtdIphN5uylI6fJgryykUx1Y9R5EXzBs0hOSLLyDyboY8yj5Rd1MUmtzdd5bsYR+gw/gBaNyjndqmlxIRhwsbSzOdhn88nfRTSrOj6nrTdmhioF+EyzEX8PPdn8uWysHMgXMKKy4yLHMKY8/VPEkG5h2dy4k1Zyenc1om5VsDD0cYW5ihlX0rfNn/S3LKUhwo1wdo4rt1H+fwNXjRJNw9dAkpEU8py0Tz+j8CNOH36SRAE37jWVdHE6CJiiunbdAkh0pftl2NwL77sVza9ItUnrP+PJUM3ako4sdgCYMmQnsWAQGaaPZuqI/Q5H5sBubuuos2blZY2f8mkhM2c3a6WRknKSuiF2VFbOF9EdgG3pLSzD+99CEeJj6m7ATZgoQSSSEYNMF/MELRSS3qsggvOXchHQ7VhWHZj9iCkizMOT4bBUUFHGBg5UOVmxlBEx2a79cDvoadJBpPQhZS9s4syt55V9Hpq9y/JmhiaFCMi9HnsPXu1rJzFBUmkAhsEPSSrTlo0nSiJTq06473z67g+kgkJfB+0BamEsr2GZREGSbxHCBa1X8VGls1r/Dm++TX27mNW793J8HOy0Xh62ClJKxcJyE4kju2Sc92BE/6c4KxrLHrsmLCsFRyI3lwi1uL8q2EyheMjdvDcM5cFPUfiCx9zYgAKgpNAk5cReAZPw4sMcAkTyvMFyHy1iOIyb6ZCd26tmoi8zBfyvpJoOyfZgM6o/UI9ekVyZwIzx20GZro6RcjKS8O750hDZ9KrYtrFyzttgz5JOzKACh7ri4/txyBKYFcT7bpZ9CxfDOxNIXNfyVZo5qOwmstJxNsVOy5WB+gCXvuxD0Mwaglk3BkzU7kZeVizFfzq2S88XwrVxlOgCb8RliAJvzGs66OJkATFVdO26BJdWDimzGtuTfKqjQ+Mk0Y0Jm3+25Ztok5qcF/PKy5ynNT5bpexGMFaKLZVamP0CQyNReTt99AwwamWDf0AtJS/oatw1SkJu2AkYkPGjXdx/siMEdV5gxlYKDDuUDIwUzobWoGl/2ip2cJU3PlrGMLi8ldo0C1LAMO+FBdyPKzzzYmBfkBnAZM+aZDIqNm5qWbX3tTe3zbZy7io76GqcVIctyZzHtMZQ1YHTTR0ytGakECFp1eWOHwytDk9ffGYE3Y94jNepbFwaCJXqE+9IblQ48AkqFxS9iZ2GEDWZqi2Jgrf8mirM5T3/1Gb7VNMepz0h5RoQWfv4WHRy9zI1g62qLZwM4QM2FLcsTxat8UZvnZ0Jk/H0XpEShguibUSor1kZ/sCMe334JkwUJkluiRY4gKk1DgUEWhSQiJsj4gcVbv3h24jBpZjQGTiz/+w4nHShsrG2DlAzW1OBLjvUaivEzMkrn06BvJn60laz7P+3NthSbMAcfAoAjzT8xHUu6ztS4fb84prOlY6OnoYlfA3zhEWiassdKc+MDIKktjYGII+0bPBLSXdF2Cjk7dqEynFETK0+oDNGGZbro6ImTa5MIizQRh10MxeKnmrbkFaCLPHSl/HwGayB8rbe4pQBMVV1eboAmDEoM3lP7ALN8YMGHgRJXGBzSRnp/pmpgb66OpgwUYOBFaxQgI0ESzd0R9hCYZZIk6fLMvrMjS8NdRRyjD5DicXD9BQtyXnPtI05alVr98N/ZWlLMczhHJtM5k585IO0zlLV/AymY4CdR+odR05IEzsgY2MZZgZ8BfOETaHtLGskwqZzjo6duQrgmJjv7XWtuYYnHHyZSFwWBKX1mn4f3zytCEbcb0aTP2bjWbMa48J/sKzNLJge6yF4yGF+Ga6ApldZgTdBDRZkzMZZowaBLZ7RFaO7Sjt9zWnIVpR+eOWN5rBfKo4iqIQMeDw5c4TZJOk4aqfE2ZT5Pgf9QXzEa4fGP2n0PmjINpVBiKPphJWTKPuY+L8swhse8Mm/17kEvApLDSG3fpGOoAKYpCk6jbj8G0Rhp2bIHOk4fJjFXo5btc6VLlNvzjmi2Lz637m4tdm9F94NO3o8xz1KUO2ghNdOkhyUrn1lxfjRtxN549b+4WQ8eRHqCuzwDw5/0+g7mhBd47VWp7Lm2pkU8515zyzcLBBhb2NmV/RTkq2DziR9gYOJFgtnxOY/UBmhSkpeCG/wV8e+97fNDxfTS3ag2H1j4a/1oI0ITfkAvQhN941tXRBGii4srVB2jC3Gl+f6uzSpHiE5qoNJF6cLAATTS7yPURmrAX7z2+P88Feve4XbT5vw6PRlsREzGfMkDE8Gl9myyI1aMzxNxz0rLlgyZJ8Wsp+2UbV9rCSlyeR6MXtPBPecCJMVZuTDiVZZuwmBWKn3IfG5u0JDBRmtnHRGwHe3XDUB+KK1w1Pv3y0IRtxhj8WX39+wqbsfKTYk40fQy7wfe3BwjueA/5NrRRI5tTlhbEPmtyvzUHTYI73YeduQca2TQlrRMagW6oV1q8gjE+43Fu40FOhLLL6yPg0UE1cVO2cTD8j6vHPQytUtJlZmMJJ3cHiHZ+D9GOb7lL0dUhcPUjiWY2aoQivVqgPM05u6BiCYOqC6QoNIl/HI4rvx6Ac4tG6Dl9rMzTM2DCwEnl1nfuq7Ane+XKLeKGP27vOQ1z2iwPWzFN5vh1rYM2QhN9g0KcDDuGv/z/qrAckr/J+qmlHjmIleoHse+2Ad3f09pNw5Xoa1Ty6F/Wn2WbMFDGwImuni6nZWLlbEvf5YoZd17WXpwLltTtS9b6azs0Yc+b7IIUjF83AmJ6ppvomuCv6Xtga+uuFie22uItQBNZd6NinwvQRLF4aWtvAZqouLLaBE1YKKpzqHmnuxfe6eGlUqQEaKJS+BQ6WIAmCoVL5c71EZqwoA3f5IuM/EL8MWozCkXB8Gr6D+Iil5CoZywaNztGrg3qsUBVBJrERi5EduY5uDZczWmuPI9mZgrKVii1s61Nh4UJkrJswsbIIgAAIABJREFUBwabmFuOjo4hzf0sOVjkwdisJ3ShuouZotdfHpqwdP8TYUerbMbKj9nfqy+sMyyxb8NedJzWGdbuFUXE7/51A0UFhehEnzGYwiyWHUwdKS6lm7GmDbxxbdMJxD+Jxcsr53ElIao0lplkZqSLW35+uHG6ahalHlkQu7fyRp+uljDa+D1w/ToKpy9AnOdQBMRWIw7732S6du0KBycX0KXw2hSFJiwj4PyGXbBt6Iz+C2WXb1WXaaJLJW9Dl08jcVdL7lo+WDwbbdt3wuQ33ylzAmEZP9VZOPN68c9hMG2DJgb6JQjLCCbdp4rOXAxY6u42QYlPLnQ7mFK5ogn9ITfJpAA0tmmMz/t9jq23tiGxmlIeBlAqw5IK33nP/pjx0iwSzNaTWTKpzdCEs3Y20cf7p5fh4rWTlFlXGqV+3Ybi26HfIZts5NVpV1756yNAE34fKAI04TeedXU0AZqouHLaBk1Yic70v24jOi2P9AN0Mbt3Y4xo5axyGYwATVS80RQ4XIAmCgSLh671FZpM3u6HyNQ8bB+2EpLiJDRpcQZPo5ZzGiING+9QWkNE1pIoAk3Cg18md5QwAjp7KYNDtawFWfPi4/OY8DnIyaayJ5tR5JjzMVZ+OgG9e6dg8MgL9MbXnI9TKDSGFJpk5hUgLica2+9tk3m8daYlrv9+Bb2m9yXhyAYV+l/ZfgqFBWL0mdWHrqd0kz6syTDSNXHiLEyTw2Jxat0uLuuBZT/w0dhmxpR0cP7YsBUZGRlVhjQyN0GPQbfR2GUSdPbuR/7wITh/U8KSX6ptTZs2RfMWLZGvgJaDvNehKDRhYrlMNFeRTBDmgsPccMq3ZgO7oPXwntxfLZzzNtp16IRujTtxZU22ni7ov2CSvJdQp/ppEzQxpCyHQkkO5h6fg9zC3LJ1kFpqmx3uhkLvOIhbPCUX7U70/TMug7jMKWxK6ynQkShZ7kx0MitPDD3UrnejzdCElUTtJG2Y38/+jPysvLL4G5kZ461BM3l3YpP1RROgiawIKfa5AE0Ui5e29hagiYorq23QhIWDuWIwd4x1r7RDZ8+KP3qVDZcATZSNnOLHCdBE8ZipckR9hSZz6DnxgJ4T24ZQPfx/JTnxMZ+QvskJuHh8Qxv/kaqEtcZjFYEmQQ/b0cagSK3lQnxepFgUhfDgsVy5joHJYnz56SGMGpWBCVOqZknwed6axpJCkyxyWhGRFamqLTbqNAoL4+DqPoAykTyebewImOjDFLf/OY0IP3/OoYU5tfDVjA31kBH/FLu3/Vk2pC6VJ+hQ6YGebjba9/0Htg1Gws1tNAIfr8Zt34FlTiHl5+Dg4IC+ffuq7a2xotBElJuPw5/8yGXksMwceZrUPphllvR7axhy4xK5w+y8HGBomYA5i1ajXRsPvDp4KPJTreHczIsTzs2GAWU9aUgRV54L4aGPtkAT9j01N9XFx+c/xqPkR2WRkdqAg56BZdCkeTSV/zmR5XdFiLy482J0ce0BEVXxKNPk0X7SVmjCRMpvPL2Gr898SWVNpd+n8s3a1R4fDvkEHZw6o4SsnjXRBGjCb5QFaMJvPOvqaAI0UXHltBGaDN3oiyzKOz48pwfVndO/Bjw0AZrwEEQ5hxCgiZyB4qlbfYUmKw7640ZEDDb3f59KSkwJTNxE0tPVSE3+DQ7OS8hNRz0aCPJCEwYgwoJGwMDQBU2an+ZptdU/THrqP5x4bWamCbb86MxBk5Hjtj6XTJmaLIeVjUJ87OfISP0XTm6fwsa2aibJsS+2Ii8jG4Pee4Ozw+WzmRrqIjrsCS6dY1k7ujC1tuCGL8y+gcYtTyArzRmeTZogLc0XN069DcemHtAzePbm3cDAAMOGD0eJjgGXFaOOpig0SX4Sw7nhsCavgw6DUgxOMfHY3m+PRElwELI++ASmdsnQN8nH3IQG6GAsxnRr0tvJc4Z1xwHAokXIzC3UaHmBOuJbeUxtgSZGRsX4N3AP9gfur3CJUnFm9pfloQkT6zYxbVclxJuH/whbQ2cqO5NP2FXRNdJGaMLcxDJJl2r+iXnITctEZnxqlbBIRXQ3Dd8MOyMq6xOrJ77lTyxAE0Xvztr7C9CE33jW1dEEaKLiymkbNEkigcUxP12FtakBjs/rpWJ0nh0uQBPeQilzIAGayAwRrx3qKzT55lQQrof645tenxOYcCUwcQppyX8g8el3aGD3Ohxdl/MaZ+lg8kKTnKzLJEw7F2YW3TmR2rrSiouzOdiTlpKFLVs8MGJkMtrS/qYRlRixOGuy8Q1NkuJ/IGHe7QTVFhNUe6fCpTDhSebUYtbACsM/nq6WyzQz0kGA/0OEhoaWjW+oc5Lu1WtIiGoBO5cwegsvwp0Lr8HSqSEngCltvfv0gZW1LaiCVW1NEWhSHphIJ+Taqgm6T3u51vkxi2JmVSzN5jHXl0C091/obJvLHTfXtCM6FKdjuigMuiRIbPLHFeSbWaFAR8nSDbVFS/WBtQGaMAfoB0l38M3Vr6sNSA45WlXONDE08qRML88q/RUVdlV0BbQNmhgQfDUh2aUFJxdw1uqs9JCVGFZudlTiZkhlOg2tGmLdkHXIJQHpomL1Zm0J0ETRu7P2/gI04TeedXU0AZqouHLaBk38IlKxZO8DdHC3wabX2qsYnWeHC9CEt1DKHEiAJjJDxGuH+gpNfvINg2/gZXzcZQ2lereEl/ceKs05hbio92BhNQhunmt5jbN0MHmhiRTg2NhNIjvkj9QyF3UMWpAfhIiQCcjM0C+DJq1bZ5P7z1xyASrd2Gqq8Q1NUpJ+QXL8egIm0wmcLKpwGQHHryDwLGV9dG+LDhMGquUS2fVYmurj/PnzSE5O5s5hbbGT7tcghAf0hIvXQxLdzYL/9XGwcGpVlmnSpk0bNPRsRCVKFd1D+J6kItDk2vZDiAt4UmUKY76aT6VdNWeI+m7dh4SgSPSYNgYurRpzx1vpFiB/PWWGnT5dAZqULFoB4/4LkEPZNdrY6jo0MSYh43RxIuYcn13j8jAR2Pzc+2WZJoUt4klvqgsJTVcPwfp59sOMDrPIzUtfprCroveENkETJjLN3MQ23twA32jfslBkJaQiJzWz7L/Nba0IwNqW/Xdfz76Y03EeCgp0eI9v+fUQoImid2ft/QVowm886+podRaapKffIJeGJDg6jqo29jV9Xlyci4TEI0hP94ORkQPsbAfAxqZLjevHxklJPVfhc1PTRnB1eY37O22DJrtuRWPjxSeY0N4NSwY25e2+FqAJb6GUOZAATWSGiNcO9RWa7L5NpQH+B7Gww88wt+gJ90Y/0Y/ze4h88galfreBp/dOXuMsHUxeaMJKXFipi6PrCsp8maKWuahj0OzM84iNXFAFmjSwfwOOLh+o45Q1jsk3NElP2Y2EuJVUmvMaleh8zJ2XZUzc2n2SUtuzuP/27tUe7cb2V9t1ss2EjqQQx48dQ1FREZycNsJAP5lAyWh4NveDhXUSosMnQ8ewVPPBzc0Nnbt0QZ4IKJFHuEGFmSsCTS5u/ofeasdUOdvwj2eUOeFUN5VjX/6CvPQszkKYCciyJiksJCvoAOh/Mg9zYy25TJNpo9ogv/8gGLjzI8irQljUdmhdhiZM4NjcWA+LTi9CZEZkrTFi4twmB1qVCsGSpomZRTeCJjWDtRkdZqCvxwDSH+I3u0iboAnjkkUQITUvrUrsC0kDSpwvgiF1MmCpKJWarUkDevaQ21AJv/EtfxoBmvD72BCgCb/xrKuj1TlokpcXgZSU8/TnHKwJdjTyWlgh9rI+j3u6mwMm7DiRKAmhT1ahbZtfOIBSXWP9s7P8Cc6MLvtYX98MFhatuP/WNmjy1YlAHAuIx7JBPhjbjr9UcAGaaO4RIUATzcWanam+QpMTj6ic4v5veKfVX5zbi4vH1/R28imeBA6GAQkNNmlxVi0LIS80iQp7B3k5N6g052faJPRQy1zUMSgrz2ExTE/Nr5Bpok5Hopqug29okpl+FE+jl8PSZgRcPb7lQMmZNX+gkDYY5Zs6NE0qbih0kJmeAt/LZ+DmupI+0kVo4FI4u+0nAPiEXpRMRn5+M5iZmWE46ZjkiSUoLFKPjkn5eSkCTSJvPcKtXScrxI3pwLDY1dQKC0Q4+OEmLoNm3LcVfzvd3X0AL3WRYOHyX9DeSgfvbFyKkIiv6LszSG2ldur4/igyZl2FJizLgbm1bL+3HafCKt4D1V0/K1U0O9wFxT7pKPAJotIcL5mW8N8M+AZelj7I51F/Q5ugCYszA1fKNqE8R9nIPZ/jBGjyfOL+op21zkETBjoYGEnP8ONiWRmayPr8wcMZ8HCfXpZdEh29jWoLc6qMI10oBk1EosQaP9c2aPLOn7cRmEC19JM6oK2bNW/3qwBNeAulzIEEaCIzRLx2qK/Q5Hp4Kk7fWYtXmx5EA/s3KQvifc6phjnWADpo3taf1zhLB5MXmoQ+HoCiwkROa0XTWiCqXjgr0Qm4vxAb1xth1Ohs9B80jWJc82ZY1fPVdDzf0CQn6xLpzMyDuWVvuHv9yJWXsDKTyq3FkG5oOaS7ui6LG9fUUAdBgQeRm/MRCbu6IDFxNhrYHCRQchdp6WOQm9sBAwcNotIzC4jVqGNS/iIVgSbsuPsHLyD08l1uCCMzEwxY/HqtWSapkU9xfsMu2Lg5YOCSivfTo1PXSNPFH1+vO4PWLZqjo7crDBtu4sa2c5gBe+eKkEWti6OhwesqNCGzJISkBeFS1CWZkSopySN4fBM5T/VhYd8YEoNgTrjb1Lx2dyoLQwtMajUJ+SJd3lyTtA2ayAz+c+wgZJrwG3wBmvAbz7o6Wp2DJtJAy4IZ1X3OgAqDJuUzS6RZK82afVXtGkozU5wo04Rlo0gzTKSdtQ2a9F93iVNOP/luL1ga81fHLEATzT0iBGiiuVizM9VXaMLg6nG/TzHc6yy3oWIbK9ZCH/clWJEC7xbnSFTTkffFkAealFAZZnAA1e3rGqFZ6zu8z0ETAyYnJWLpghl4Z/Zs9O47XBOnrHIOvqFJXu5dRD15E6Zm7dGwyZ/PFZro0uv63Mw9iIz4ggBJewIlY2FtdZr+jb+CjMzB8PZeQNbIHiT8ql4dE1WgCTs2KzEVp779jYMlrDSnthZxIwC395yCx0vN0WVK1Xsq+N5E7PhdH828vDFmwlzomt3jNIpYs3daQLo6M5/Lfaiuk9ZVaMLgmjwW4BIqJxPlh1Cp33EYGTfmMgLTyN2sqCgD1g3GVCsGWznWxUX8/Q4UoIm67uSq4wrQhN9YC9CE33jW1dHqFTRhGSoBjxbhpQ47oadXqorPNEuiY37lQEp1jUGVrOzSN6bi/7JcGGAxNfXi/i5PnVL6Gr6rolLzMGyDL5ysjHF+SR9ez25qpK9VseI1ODwPpqery6WNitRkG8jzdOv8cIb69CaOhPCLitWfvv8iBSs2PR87z8xBL9fraNTkSyphLNU+ePhgPL29D0DrNv9SqUMb3qdsbEgbBrq32YagppZD5/eneZiaNSPnmaqZDLxPSg0DJiYmYOY7U7Fw8XvoP0A9wqiypq1DGUPGhnqUos9PqkVeXgge3BtF/356o237o9zp93+5HakxSWVTMTQ1wsj3psDWnV/L4equNSLsMyQksGzSsfRb4CXKMvElaHIK+voj0bnzd5Do6MkKEa+f65MbB2nVUmaLYs+S3xb8wDl3vL76XZhYPnP8qTy5G3vP4+Hpm+g0pg/aDe9WZe53bzMtmSK0aPUnlX805D5PStqPsNAV3P/v6fUhnF3e4vWan+dg7AUDK5MoLlEs3s9zzoqeOyZ6HWJjtsDNfQ7cPRZx/z/7Ozu7EfD2+UHR4VTqL/wOVCl8Ch3MgDd7ngi/AxUKW42d2b0rNCEC9QqaMBHYO3cnV4AmDIokJB5Gq5br5LobmAYKa95NPuT+b0aOWK7j6kKnC8FJWPzvA/RobIfNk/hzzmHXbm1uqFWxepHXk/1DaWyoi5x8fjY6L/K1vghzM6F/TEuImtS3Hyd5VOu+8/QktHfwR2PvjaQxVbqxDwudh4z08/R3G+jvBvG+RJZkh55bUEQbnZqhSVrqUUSELYNNgyEEdOR7tvM+URUHLKGNnERSQoKNtJEmEPo8mi798DY30UdWbiEvpxeL4+F/vz8MDZ3Qut0FbkxRXgF2v7+B1EhJdJXcXNqP6oUGVD6iiRb0+DUCfA/g6fkjrl1LJZhzB9bWBwkAToCH10reyhLkvRa2iWcxz1fwZczJdbuQGBqDgfNegWuL0hc61bVzP+5F7KNw9Js5Fh5tvSt0kUiKcfdWqVZbh06PuPtO2pIS/0ZMFNN+ARp6fQE7+1fkvaQXuh/L2GCAShN6Nc8rENLncaMmP9DzcBgZKJR+B1lr0/4K6U89c3ZR9xytzAyRlSdWq2uMuq+hroxf+jtQj34H8vPsrivXra55sj2M0IQI1Ctowpb75q2XK5TnJJKTDsskkUIQWbcE68+EZKXlPNpUnvPb9UhsvRKOyZ08ML9vE1mhUOhzoTxHoXCp1Fkoz1EpfAofXF/Lc1igjl0ejUZW4XD2/I1KGzpysUuIXUkiprvJ5vdD2NhNVjiesg6QpzwnOWEzUhK3cOUErKxAaMpFgO/ynBLSDwsO6EpgwAw+rW9wk0qLise59Tth5WyHwcs0m8UQ5P8SOViI0K6DH+JiUxAY+Dc56u2CpVU/uHpuVC5oKhylqKaJ9FT3D11E6KU7aDW8J5oPrNkN8PjKX0l8NxNDl0+FhUODCjMVi6IQFjSC0/9hOkCVW2rSdiTFl2YmuJCIrxWJ+crTXuTsgrpaniNP3KV9ngQOJYHuWDTyOcSV6LAWG7kI2Zlnyfb7PbL/nqrIcCr1FcpzVAqfQgcL5TkKhUtmZ6E8R2aI6kWHegdNwiPWkzaJI2cZzDJPQkNXUZriAPpTSt5ZuQ4TmZUKzLL/lloSS/tbWLbWSsvhz448wpmgRHw0rDlGtHLm9QsgQBNew1nrYAI00Vys2ZnqMzTx9aNnp0kirNz2wsW21KI1JXErkhM20I/xd+hH+WLeF0MeaBIX9T6yqI7fxWMVbe6eOZ/xPhktH5BvaMLCFfiAlWyVoFmbB5TNoIcnV+7j3v5z8OzcCp1eG6KxiIoKniA8mHQdDN3J6ekEZ9+aEH8J0VGzYUKaK56kuaLppiw0ibr9GDd3noBb26bo9taoaqddJBLjwIqN0NXTw/jvF1Xpk5t9jayWZ8LMvAs8Gm+rdgwpjGQfunlugIVV7dbQbONmTIK7BeQ+JCp88UpgtB2aSCGljo4hfd9KBYNZk9qaGxl7E0w5oLHbXIAmGgs1BGjCb6wFaMJvPOvqaHUOmrBymrinu1BclEu1qLmcOGt5NxxZn0tthhkAYWMwYOLq+lqZxgkTfk1MOIwOpHvCGivHYeCEnYf1Z1om3t4flvXXpkyTN367ibDkHGx7oyOaO1nyek8L0ITXcNY6mABNNBdrdqb6DE3u3e0CY71c6DqchI+zGxf4zLRDeBrzUZkNMd+rIQ80iQh5FQX5j+HpvRMmpvzrqvB9TS/qeOqAJiEBPeiFRSaatrpC/45ac7a5zD63w/gBaNyDOS9ppmWmHyP74w9o4z+QAMC6UvvQogj4PxzJWbI2bnZEMxMpdxZloUlWQgpOffc7zGytMPyj6dXOOy2aMnrW7YS1iz0GLX2zSp/01H8oS+wLEggdB2f3L2q89qSnq5FKYqLMIcuj0VayJK6qjcIOZvG0MNXH5lubMa/TPGTnFXH6IS9S03Zokpd7j4SX34CxSUt4Nd1TIfTM1pxZxDdssh12DbqR5lyx2pdGgCZqD3HZCQRowm+sBWjCbzzr6mh1DprwFWgGT/T1zcrgR23jMsDC+jNwIhWQlfbXFmjCNBV7rjnP1ZpeWNwXRiRuyWcToAmf0ax9LAGaaC7W7Ez1FZowDYSgh21JikIH2VaX0MWzNN0/N/s6vbGeQW+sO9Mb6+28L4Y80CTYvzPpUeTRxvwqPbOteJ9DfRlQHdBEWi7QuPlJyvJwo83+b8hKSMWARVPQwMNJY6FlpSas5MTeaR6Vcc3hzispyUCQf0/o6VujacsrGpuL9ETKQhN2/IHlG1AkLsToL+bCyNykytwjbz7Crd0n4dGhGbq8XrW0Jil+LcVjm1wuOQmxX1IJ3h7OupaBExOzqrDLyLAIux7vwuHgQxjaeCjeavM2ROIXS0xR26GJFIRZkVOOi3upJo20JSdsoqzAnxATNxX7/72JLb/+CR099eo2CNBEc48UAZrwG2sBmvAbz7o6Wr2FJnwtmLZAE5ZhwjJN3G1MsWd6V77CUzaOAE14D2mNAwrQRHOxZmeqr9CkqCgFoY/6IltsjgyzgxjconTDKyoIp7KH0ZydZeNmpQ4pfDZZ0KSwMAFPHg8kKG4L75aX+Dx1vRtLHdAkImQCZQEF0Zvvf6Gn0wgHP9xE1tC6mMBKRsgGWFMtOnwWAb6rlcpMJFQ+1JqbQvO2zDVPc/Nh51QFmlzYtBsp4XHoPWs8HH08q4Tx4ZHLCL5wC62G9UDzQVX/jWfWwlkZp+BKeiWWcuiVPI3+EJnph7nvmTuBE2MTn7JzGhsBfk+vYp3f2rK/m99pPrq4UJYRjxa2qt4r2g5NEuK+QnrKLji6LEMD+4p6QWJRNNkPr8dlP0Mc2/sIf+/aA4meaa0C26rGW4AmqkZQ/uMFaCJ/rOTpKUATeaKk/X0EaKLiGmsLNDkTmIjPjj5CH297fD2m9Ecjn02AJnxGs/axBGiiuVizM9VXaCLVhHia44RU4x149SV3LvDPxD5NSOzzFu+LIQua5Ob4ITpsOtkNv0Sp57/zfv76NKA6oElU2FTk5dxCQ8pCyol3wqUt/8K2oTP6L+RfNLi2tWLAj4E/JnrKxE+lLeRRT9rYZ1CmiS9lnNhodLlVgSb3D15A6OW7aD2iF5oN6Fxl3ld+PYD4x+Ho9vZouLWp6JzDOkeEvoaCvADScvmbMkfaynXdsZGLSR/jDMXPjcs4MTTyoMyuYmQWpmD+iXlVxlg/dAMcTdxJ40T9pSDyXIC2Q5OoJ28jL/f2f2VU3SuExICyicWi65j1wxKI7tiiz6JGmNnrcxQVPsvMYyVWfJZUCdBEnruSnz4CNOEnjtJRBGjCbzzr6mgCNFFx5bQFmjDXHOae83Y3T8zs2UjFqFQ9XIAmvIe0xgEFaKK5WNdnaMI2vmwDHJLeBIn6P1R4bgQHdCN4kq2W8hhZ0ISVDbDyAesG40mb4XPN3gxadjZ1QJPYyAWcEKWb53rE3baA/zFfNOnVHu3H1i4qymdoiwoTEfp4QLVlOGFBI2kzGYlGzQ5TSS7//xbWdh2qQBOmC8P0YdzakRjsm1XFYI9/Rc45qZkY8sHbsHSsajMrhUXeLS9S9oid3OGOCZ+NnOwr5MzijcZNd8DczAYLTy1EbFZslTHcLN2wbsg6KnfWRWHx8xeG1XZoEhLQnfSDsuDd4gL0DezL1kOXMroM9FLw1cVpuHMpHIb+XsgbdhMLei/CQJ8PqIxKh0v6MjGWcOtUKNaT+36oraMATXgJo1yDCNBErjDJ3UmAJnKHSqs7CtBExeXVFmiy/KA/Locm44tRLTGwmaOKURGgCe8BVGBAAZooECweutbXTJOsjNOIi1qCO4lt8RSf4v3Bz9Lzw4NfpjKdMM6ZgW2m+GyyoEni028p7fxPjdtp8nmNL8pY6oAmTCSYiQUzjYXHh3UR+zAUnScPQ8OOLTR22TlZlxETMbdap5jIJ68jP/c+ZSn9QdlKHTQ2J3YiVaBJZnwKTn//O8ztrDHsw3cqzJtpnTDNE64ManVVR6tiApwhBDqZRolP65sKXbNEIqLMrpkEmoLR2Oc77Hh8C74x12sco5dHL7zbeQHyC3Q4DbXn2bQZmjCRVyb2ygAYA2Hlm7GRBPv912D7nW9gEO5cBk0kpEOzbYIvHM1aoZjW9XL0BTSzbw5n04a8ZAcJ0ERzd7sATfiNtQBN+I1nXR1NgCYqrpy2QJOJv/ohJj0Pf07tjMZ25ipGRYAmvAdQgQEFaKJAsHjoWl+hiTSj41JsD8QUvYuvXm5VFk1mXcosTN0b/QRzi548RPnZEDVBE7bBZz8Ug4NmIifLVy5LVF4npoWDqQOaJMZ9g7SUv+DouhzXt+QjLz2rxuwHdYU0JekXJMevJ52HN0nv4f0Kp4mJeJfunwvP5f5RBZqwi9j/wXoUFxbh5S/nwtDsmRhsekwCzq79G1bOdhi8rKK2BTuuID8QESGvcIBTGQva4uIMiPJP43yMH/4MOPKfYxWlKrBkElaJwxIVymnLT2s3Df08B9Jc1Ss8Kuv+0WZokpN1icDgPM7dyKPRL2WhMDAoQXRWOJYcn0AZJLFVoImP8wisH7EDT7MS8O5nc2HlYI1tH+yAmLJNVM0OEqCJrDuSv88FaMJfLNlIAjThN551dTQBmqi4ctoATQoKi9F/3SXQngO+7/VXixafUJ6j4o2mwOECNFEgWDx0ra/QhDkvMAeGo+FDECmags2vPXsrHx/zMTLSDnLWpczClM9WEzRhqeTQKUFM2EdITj76XMor+LzOF2EsdUATqWuHtfUMXFlfBAMTI4z5ar5GLzcuaimJnp6Ei8dXZI39coVzx8d8QvfuAbXcu7IuUlVocmEjicFGkBjs7AlwbNqw7HRRtx/j5s4TcG/ng65vjqwyjezMs4iNXARzy35w99ooa5pVPjfQp+9dThAWHBrKuVbpkTisiSlpoyWWQHK6CDqDyTXHsaIj38p+K+Ft0xL5GrC6remCtBmapCb9iqT4dRXAoCFB5RKdfHxw5n1ki1LA9J9KQhug5J4z9McEAYbF8HHsiXe6foI119Yi7jcqsXLSQc+JfbCwyyIUUHZQiQrZQQI0UfirpfQBAjRROnTVHihAE37j+X/2rgM+iuKNvtzlLr33hISAj3iPAAAgAElEQVQkhEBCB5GOSBUUBOxdBAtFsaLYC9hpUsQ/omLFhojSlCa9SCeNhPTey6Ve+3+zMeWSC7d3e5eQZMdf1ORmZmff7O7tvPm+99prbyJpInDmOgJpEpNditnf/ItuXo745uHmAnICIeKai6SJOVDk14dImvDDyVy1OitpkpPxHkUMfIfNcTORUH4zvps1pB7SvOzVZGf5mY6dq7nw1keaMLeOE5lHsSfxLzw/4AYkJryLkJ676ZDmtU431zm0l34sQZoU5m1CTuZHkFtNw5mvPLjFPVvkt1Zhi4nYqBkUXRFHDj6/kOtLT51D52YtI+vdLym96xl4eOumuVh6jEJJk7O/7UPCobPoe8to9Bg7uH64TDcmdu9J9Jo0HJGThjU7jYK8r5Cb+THcPe/nIoCMKXISFIV1NeZvn4eCigxUVlwg6+Yq0tDwhm1pzxZJEzdbN6yevBoSjT1qVG2jb9KRSZOM1BdRWrSdyD+m7zSDm1I7CuyxkjawHmpVEf78/Vt8+/UerFv/NEWl2BDZFYIVJ9bgZOZ5qH7RQuNdCckIG8we+CTGdp1AIsmmRweJpIkxd5awuiJpIgy/pq1F0sS8eLbX3kTSRODMdQTSZPulLCzdGYMJET5465ZeAhHR31wkTSwCq95ORdKk9bBmR+qspElG6iJ6Kd+BDRcfxOWS4fhzfkMaTr0Yq8cd8OvyhlknpClpIpGoUKYqxPyd82iXuxzjA/xwZ49psHWYbtbjdsbOLEGaFBduQVba69BWDEfUzz3Qc/wQ9Jli3hSuluaKuYE420uQmLwM2Rlfomffc1RV11a4IHcj7dCvIMJkFqeL05pFKGmSfPISTm3ejcABFFHyQENEyZGNW5EZdQXDHpqKLv3Cm51SvTUtESaMOOFb2PVhb2eFpQeX4Ez2Ga6ZRlNGmjBEnGiVkBa4wfZwBKpGxkAWGNBMYHag70C8MvpVVFRqLWp129L5dGTSJDFuBulKxSO4+2YiQhpSJ5ti8feuP/DtVxuw7vPv4EpmUVsufoxNZ9dy1ez/HgS1ZwmqBySQo1J/vDt+DcIFRAeJpAnfO0t4PZE0EY5h4x5E0sS8eLbX3kTSRODMdQTSZM2BBHx/KpXs5kLx8NBggYjoby6SJhaBVW+nImnSelizI3VW0iQ18VHSLTmGFafnIrowEoefv7EeeEXpAcqnX0Dh/qMp3H+dWSekMWkik0rI4QFYuGsh0krTOAtZZpu6aOQSjAx9HDVK3QWxWQfSCTqzBGnCLGqZVW01XTPxfwzB8FnTENDHvGLBLU2NLaUffHn2EwzysIOfrAZOHk81q1pH6rDdebZL35pFKGlSnJmHvz/+Gk5ebrhp8SP1Q9/57kYo8osxadFDcPZt7oyTljS3VgeIUnOcKEWHb5HbqLEt7jdsjtqs00SlzKNInihI851he6Q3qkZcosV3KQnvDiUxWrphG5WZPWfi9si7SEjWPA4tfMfO6nVU0kSrVSP2Qq1tdM8+pwlzCsVroRw7/A+2/voD3l+2ElnVaXh532LODQlalQ5pYi3zhK/bSKy+aTWkWgeTooNE0sSYq1NYXZE0EYZf09YiaWJePNtrbyJpInDmOgJp8uwv53E8qQDvT++D0d0bbOkEQqPTXCRNzInm1fsSSZPWw5odqbOSJkmXb6eFUSw+PvMSYvL9sevJUXC2lXHgV1VGk7DknVzqA0uBMGepI03UlFxva6PB2lNryOXhIHeImppU1FQlwkbeFZ/fvhuu1j6oJs0msZiGgCVIE6ajkHplDipyuyBx5wTc/PpjsHd1Mm2ARrSylqlwJP0frHt2JWQ9ivH5a+sgk/WDsklqCLNDZrbIjDxgJEJrFqGkCRvrlkUrKYVCjVuXzIfc3pYThmUCsUysjDnnWDEv2SYlMXYa2QAnGuV2JZdr6b6/iHcOvd2sPyYwWl2V0Iw0sbENg0zepVn9F0e8iH7e19H927okZ0clTdhzmT2f5WSZ3Y2ssw0VpnWiRgXm7niCtE6KiQwn0oRK40gTidSR3KSuwwDfAXh19GsmRQeJpImhmTDf5yJpYj4sWU8iaWJePNtrbyJpInDmOgJpMn39EeSWVeOnOcPQxa1BcV8gNDrNRdLEnGhevS+RNGk9rNmROitpkhA9HkplNlac/xCXcmyxefZQBLnbc+CrVAWIj7qBBCHdEN7rkFknpI40kUjV2Ju8GxvPbqzvny0WVDQmG9seJGg4AismrkBZpQoqtQD1QrOOvn11ZgnShEUCJcXfjcoCT2QdvpcjTSxdpNZqFNfk4cmdC6D9vhrK0EwMnToSi29YxVnfahp531aUn0FKwoOUjjAAwWHfWHpoOv2bgzTZ98kPKEjOxA1z74B39yAUpedgz/JvKcLEgyJNHtZ7PrEXBlI6TQ1nN8xshw0VtiBTqCkljnRMajQ1zarXRXw1jTRhJKq1zLdZfblEjtVT1sCZ7HGrla2nb9JRSZOSoj+QmboYzq6TENB12VWnk93jjpSy9vr+13Ex9yJXt6L8X2jUCh3SRG4TTCRMMPf5jJ4zcAcXHUQCv0YUkTQxAiyBVUXSRCCATZqLpIl58WyvvYmkicCZa++kSWmVEjetPgRbmRT7nr5BIBotNxdJE4tB26xjkTRpPazZkToraRJ7cRAJPlZjTfQGnE2vxPp7B6FvgEs9+LEXBnC6BobCw42dLUaalFRWIr00BS/seV6neUX5WXrZL+Hy76VSV4wLGYdHBz1GdqhSiLSJsUiTUywtqDxdbJBTVGV84xZa1FSn4ErszagpdUZ5wktceo4li4yESm3kGizY/giSC47CZksYlN2yoOlXgYcHv4OpYdOJ/GtY/NVUJ9H4ptICMYR26f+w5NCa9W0O0uTslr1IOHwOfaeSGOyNg5FyOgYnv9vBaZkwTZOmRaXMQXz0OE5vpHuvAwbPt1YXRobn/3oelwsv662vpdQOtvCW5Mob0nO8KmrTc6z0L7TD3cPx8cSPUVqhbDWSs6OSJrlZy0nM+AsS4l4AT58nrjqnLFrv55gf8WvMr/X1mJBvRcU52O3uxWmaqK7Lhy3pojSeu0XDF6G/z2CjooNE0sTg7WW2CiJpYjYouY5E0sS8eLbX3kTSRODMtXfS5Fx6Meb9cAaRfs74/P7rBKLRcnORNLEYtM06FkmT1sOaHakzkiZMcDXu4hDalbbDxoSNOJyQjw9m9MWosAa9hISYSVDWZNDCcwctQIPMNik+brYorVRQKPk8FFYW6vRbXnaEI2ocnIbTC36ty8MTg57AqMAxOgtjsw2mg3dkCdJERaK98VGjoaqyhaxsLScEa6lCnA9FHWmw6sRK7I1bR2krxXD4YyhHmtREpnDpY2+P/xS9Pfqj4j/rW+YocjlqFEVJuVKUVG2aQmsVc5AmSScu4d8fdyNoYE8MI3vhC38eQsyeE4icOAy9bhre7FQqyk9TZM1DJBbaj0RDvzN4qnaE57eXvsUfcVdP+2DESU1qEuQHu6J6ZBxsunZvpmfS9GCTuk3CrH6PoKqV9E06KmmSlkgaNWWkURO8Ck4u41qcUzs56chIa+g5WqS3zuL5T6JbD2/MXvAizZ2uaw5L8/Jz9EVRmdLgNVNXQSRNeEMluKJImgiGUKcDkTQxL57ttTeRNBE4c+2dNPntXAY++jsON/f2wyuTIwSi0XJzkTSxGLTNOhZJk9bDmh2pM5ImTLMgIeYm0ifwx08pq/DnxSwsntQTU/v614PPUhxYqkPXbl/B3tE8hKyEVsFuThK8eWAJTmee1ploRpYw0oTthjo46bqxfDThYwQ6dkNVjahvYszdYQnShM0TF4WkkcDD4Q/OcthSRU4RJn8l7iDx1/VgWiqsNCZNmLilp/NQzvrWRuJCwsEsNYS0Os734epG9GPpCq2ns2EO0qQ4Ixd/L/sGTt7umP7Gwzj/x1Fc2HWcc9NhrjpNS0nRNkrleBnObjcjIOiDq04Fs/Y+nnEEK0+s4DVlmqwKWO2xRvWoK7AN5vd+sWDwAgwNGElpdsalfvAaUJNKHZU0qUud5ENYs8ihlsr8x6YjJFiFp57/DHJ5QLNqJCtFbkn8Y/hE0sSUq9S0NiJpYhpuLbUSSRPz4tleexNJE4Ez195Jk2V7LuPXs+l4ckwY7hlsvt3gprCKpInAC82I5iJpYgRYZqjaGUmTyoqLSI6/h0K2e2FH5lJ8dzIVc0d3wwNDGhbAGSnPo7R4F7cQYwsycxSZXIW/k//EpnPfUUSJ7su6mtJyKik9RyJ1JsHCgTqH83XwxarJq2ghJmsm/GmOcXXUPixBmjCsok73h8RahZAwSg11IJ9TCxSZtQbpimS8uHcRXSuqenHLpqSJrV1v9PbujXdufAeKCg1nfXs5aiQXlRLe6yBFnLhbYHT6uzQHacJ6/vWFlegxqhe8J3SDY4E1/vlyF4bPmQEXv+ZC7/k565CXvY7SOB6jdI7mbkJ1I5WShlBJTT4W7JrPGw8taaWpD5eiZlAq7L0H8W63nLSI/B2CLU5ydkTSxEpbiugLwzltGqZRI6TEXLiHc0Hq2edbikTqK6Qrrq1ImgiGkHcHImnCGypeFUXShBdMHb6SSJoInOL2TprM33wGZ9OKsfz2/hgaYrmXQ5E0EXihGdFcJE2MAMsMVTsjacLsSZlNqSNFdBzMfxlr/0nAvUS6LiDyta7kZH6EwrxN8PZ/Dh5eswQjLZdRBEDBRXx4fClnd9mYNNFoFOTWkUwL3XwiTVyINBnQ7HhDuwzF80NfQAXJczQW/hQ8sA7cgSVIk6K0HKSnT4W1fQW6R+4jYVBvsyMoJx0TraQK83bMRUl1Cdd/heIU7YqX66bnkE4D0/JgZWr4VNzX+wFKDZGQpsktJHKZjFByHrEhB5LWKuYiTaL/PAD7rvZ4M+59XC/rj1t8pyBw8EBKsZA0O5XM1FdQUvQ72Su/DVf3mXpPlenC2Nta4atzXzVLibs6NlqyMv6HqpDYqDN/zTR3O3c81O8hKCq1RkUyGDtPHY00YcSWBPm4cGY86TpRulXYt8ZColM/NfFxLnovMHQ996wXWkTSRCiC/NuLpAl/rPjUFEkTPih1/DoiaSJwjts7aTJlzSEUVyqx9YkR8Hai2FsLFZE0sRCweroVSRPDWLNFQFOrUcOt9NfojKRJXUi/i9tUnC15Ckt3xWAKpfi92ijFjxEmjDhx97wfPgEvmQov1469AJZriji3DkhIK6ERacJEC8tJdBIUTVBXmK0pszdtWu7pfQ9u6X4raa1YPvRf0AlfI40tQZpcOXoeZar5sHEpJovb32meupn1bDk3EDsJNp3fhPjCeK5v7hpRsF13DVK+dIELbZr7jvRr5uRyV6+7EOYagcsxD1DU0jl0Dfu6WdSSWQfbpDNzkCYs3UJTQvfKj3ORgWwoCkrw0uiXcNPoO/SKdjI9E6ZrEtRtIwm1tqwvI7Fu7pLDBwsmSMoEoz28ZxnUNGnan0alq6PB53jG1OlIpAn7TrMlG+ijyVsRYBVHFtKV8OvyhjFwNKubkfICRQvuJAeeD8mJZ4qgvlhjkTQRDCHvDkTShDdUvCqKpAkvmDp8JZE0ETjF7Zk0yVdUY9qnR+BsJ8OuBaMEInH15iJpYlF4dToXSZOrY21L4ncyay3K2S5mkxQPU2apM5Im9YSI14OIr3wEi7ZcwPBQD3x8W796CFlqDkvRcXadSC/dy02BlmvDFoFOdtZYtGcR4gpIUJKcvhqTJnU2w00PwHRN9Dl1vHnDW4j06Fsv/GnywDpBQ0uQJkyk1Mrjfdh75dFO+Hfcjri5i0yuhFrboF9TXnaUCINUEiTuiifnrMGkW27GXfffq/ewamqWceUFlJXuJyHNT0hIc6y5h9dif+YgTWwohW3jofX4+p8vILe3RQ2FVjm5uuD7x3/Va+lbp38RFrGbNIqa61YIPfn6qB0LEGRCx9ZRSBMmeGxrq+UEj/fFf4mPxzwLH4cwWNsKiw7JTn8HRQU/wjfgVbh53i0UbpE0EYwg/w5E0oQ/VnxqiqQJH5Q6fh2RNBE4x+2VNDmTVoSVe+ORkKeAl6MNfp87QiASImliUQCN6FwkTVoGSyaV4MjBv/Dt5q+xZu0GCv0WHl3VGUmT3KyVZGn5Obz8FiJbdSce++40epED14ZGDlxMBJaJwTL7XyFh4nJaAG+O3oxtcb9zE9uUNGG75Bp1WbNJ5+xNJbbN/u4kd+KEP+VWzv8Jfxpxc3WyqpYgTf766Gu49foOjgEZZgv7v9q0lBRtJ6HTFzmnp1CyEP5wyUoMGT4K4ye1rLOTlfYaigt/u2rKiiUuBaGkCRNqPZF5FB8eeA95VzJgTXayKko3cvJyxYCe12P5xOU6lr51orwUvkWitxcscUqcMw+7R7t2+5IEoQdb5BimdtpRSBMmePx30k58ee5LTny7i4Mr1s/cT9GUblCqmbixaSUvaxXyczdwWjdM80ZoESNNhCLIv71ImvDHik9NkTThg1LHr9NpSZPjiQXILaVIi/4Nbg/6pntvTC72xuRAUaNCnwAXDKXdVPbfutIeSZP4XAWYlomiuiGcfUCgK9berSueaM7LX4w0MSeaV+9LJE3040MOibCj3bhFq55D0r4EvLzuTQzwGyw44qAzkiZZaW/QovJXCv9+EwrJzbjz82No+gxhdsPMdlgm80NY5N8m3QB1i8AVxxsiVRqTJix6oKYqsVnfjCxhpElLpY93H7w95m3STKgV/hSLfgTMTZqoqpX4bfEnCLzhAFyCkygC6SOKRJpsMfg1mkokxk4lu+ls2i1/hXbL7+F1rNysZUQKfglvv2corWQ2rzbmqCSENJFIVSitKeCEWjVqBcqKL0Aqq02psYIPHJwjMCF0Amb3m4PqGil5BIF0W5JIv2UqZwnOnFYsUdKTn0FZyd8018toridZ4hAm99kRSJPGgscMCGY1DIqymtxrMRYMfobEdEnfx8RHXEHel8jNXEaaVA+TNtXzJuNc11AkTQRDyLsDkTThDRWviiJpwgumDl+p05EmifnlHAnCyJChoe54enz4VSd5w6FEhHo6IsTLAZfSS8B+f3dmn3ripD2SJhuPJGHj0aRm573poevR3dvRIhe9SJpYBFa9nYqkiX6s5bTruiv+B3z+9UrILpGewZ252HD7TthKPQRFHHRG0iQ9+SlaCO2j9IVVFPpxA6avP4LnJ/XA5AjfevDrd7GtaBe7r/G72BLSLilV1i4CGxd2fVdWF6O6MgHMMYdbFBJJwnQran+xhq1dz3qBz5buvGk9puGeyPu4BaRY9CNgbtIkLyENB9b9hNAJ52Dvfxa+XV6Hm8edFoM/O+NdFOV/TxbUwxAUuoH3cZgOR27Wck6Hw9vvOd7thFY0lTRhEXR2FFS1cNdCpJWmkejtvxRFp9AZDndPyHwx77p5GN5lNGfpqyg7jLTEJ4zGx5jzbEjx4E9aGdO/kLrtnTThBI+lVZzWUzE9ExlJWKE4wT0PGWn8SP9HMCZ4PDRK07RhGDHOCHJX99so6uotIVBzbUXSRDCEvDsQSRPeUPGqKJImvGDq8JU6HWmSW1oFRpywSBNWDJEmTa+Apzaf5aJN7r2+1p63PZImq/bF48fTac0u7ven98Ho7s0tCc1xF4ikiTlQ5NeHSJo0x4ntxqWWXsST2yjyId4H8qiuKL/lOPr4D8TyaX/XW43yQ1i3VmckTVISHqAw8LMklLmJhDIH4ZtTCfB2qcGUiJ5EZDQ4dMRH3QCVqsBol5Smi8DGiKtVqaisqI0uYbaaMnkIyvOAKkURLRYoFF0rh1uAP+QOzVNzms7vc8OewyCfoUSaURiSWJohYE7SJPlUFC5tP4zKUgWCb4yBY9Bxi0ZylJcdQ2rio9w5hYT/RERaJO8ZLi7cQovF12mxOIMWi+/wbie0oimkSV0E3eqTn+BQ6iGOLGGkSdMikbhTekytbeyyScsRYB+CrMzvkJ2xBK4edwgWDW3p3POy1yI/51NK75hLaR787YqFYsmnfXsmTdi96WBnhbf/eRvncs7Rc7eYIodSyEGsiJ6LDvWpUEvHLiVx40gimhs0fvhgw+qwCCEWKeTkMoEI8hV8m7VYTyRNBEPIuwORNOENFa+KImnCC6YOX6nTkSZ1M/r9yVRKz6kyijQpp3SWpzafw6OjQjjihJXc4v92N9vRpXImtQhPfH9GZ8R+Lrb4dtYQONlaxlXC29W2XWLVjqa1fqhyaynZQ0pQrFC2x+GbfczMVUBrVYXZWyYip+QiZAkB9aQJpBrcPfBt3NfnMXrplJl0bCcSUlZRikdlo3Q3kzpqR40uR99CFr9JCI/8gzRLumLlT5txYvNmLHrnNQzuTSQEuduwkhB7BxEc0Qjr+SPsyN6VT2GLQLlMg9WnVnOLwLrCFgXVlVdonkq5P8ltah1yynKLUEo/jYuEdt79IkIMHk5CWg7rblkLN5lP/ZgNNupEFdjCzNVRjgJKZRVS4v45jTNb9td34dXnAnwGnqZF9KPw9X9aSNcttq279rz95sLHb4FRxygt3oeUxCfh7HIjaXGsMaqtkMp2NtawJszLyNGOb7GWqbEnaTc2nv2Ca6KqqURl5fFmzTU15BrkVZuC6+/oj1WTVyIn43ukprxHc/AMzcUcvoc0ql5B3g/ITFtCKR53wT/wdaPaWroyI7yrajSoVhpPKFh6bIb6t5apsDVuC36M+onTdKogtydtIwcxa5knPXP7wMPOA59MXkVfdfZG65soyo4jKX422Q0PQUj32utLSPGi98x8eu82NV1IyLE7W1sWhWRP7/PFCtNcrzobXobOl61hxCIiIJImBtJzGl8iLDXnYkYJ3pvRBw70csO9oKhNTBZt42vvq6PJWLI9mhtFBAk4PjW2OyZE+lhsVMwBo71iZTFQLNQxW3RK6F+iVkMtwCSFiKWHluJQwmZUVaU1I02cnPrixdHvYkSXEZBKjCdOJCywgh4DnUka4+jR60gnohgjRpyChgQ2R71+J9z/rYLfnV3x1ZwNlCrDQYJLlx5HQcFe9OpFO82eE3hd8Up1NXYnskXgxvr6FRVXaCGYzP0uldIuqkN3IlZqievsK+moLKts1ndAjyDI7QwL/Ya6hWLFxBXci3z7fJrzgtXkSuZ4dn+9aA3K8mtTqVhx7xkL/yHH4O9/H7p3Fx723/TkUlLWIDl5JaUo9MR1g/40+txLSk7j3Lm74Ow8EAMG/GR0e1MbMBcUEiChaBF+Pag0SiSXJOGFv1+ob6Ah+5+8rBOwtmu4J7RasiGuCIJ3UIMN9/AuwzErcgTiop5CePd34OXdsjAuv9Hor5WXtxPR0U/Cy3MSInutFdKV2dsyUpA5qLW3Rbya5p1Flyw5tITDRKGIJovhrGb4uLqx7zRbDPIbhMUjF0NqZdz3m0IRhdOnb4WjYy8MGlQrxC2kmONZIuT4namt+B5o3tlm165YRARE0oQnabLtXCb2xObg1SkR8HZuYBzbY3pO48ueicE6/kcAWfJ2ENNzLImubt9iek4DHnK5Gn/Eb8UPl37gwpcraTeucaSJlUxOC/DriGSSYe2UdXCT+xq969j50nM0iDnPwvytMGjYBby6dym2/f0PekTbIXZgJR4YNxXPDp8HZbU1suotK/XrGbDdsLqoFDZrMoowUWorsC9pHzeJXHRJ1ZV6dxy5PBBOTuFcm+oKyt8vKEVFia52Q93s+4QHkRAmv8i5YLdg9HSPIFta4xYVrXdXt82RzJWes2PJBpQX1kYIseIaegVdRh2Ei9vN8A/6wKwnV10Zh8TLt3F9Boaup11y421XGwRSg0kg1XjSxdQTMiY9h907kFZj/o55KKrSjbTKS0yH3DkVUnntLrNGJYMUveHg3iBiz/5+R7cIjPDxh43NSC4qwRKlQnEKKVdmcWl8LJ3vWirtMT2HpV0oVIWYt/0xVNZkcemPKiXlJ+qhfBs7iN0eeTtm9Lgdyhp+z0Q2T8qadBLzvomzomaW1EKLmJ4jFEH+7cX0HP5Y8akppufwQanj1xFJEx6kCUvlYRooTQkTdnm0d9KktS5xkTRpLaRrLVkd7aQUUt+5wzLtbUgwVFOGqLyoevBZzvfxXQdwbGcqHl86ihZtQ0gHw4773EHugP7e/VBkZFpTZyNN2Es60yqxtnZDjM1CLNq1Ds4FJPYaY4/zfctR5azF+mkvYUK3sUSabERe9moS1JxD+hW6aRgS2uV1tiMxyiqVThSanbxWmLWk6E+UldaSJ+yl3cVtGmxtu0NZWIjE8wkoTM3Rf1PRhpBfRCiCB/cy6qZjkXBC7DmNOlg7qWwu0uTc1v2IP9iQEurUJQ1dx+2Bo/NoBIasMysaTNiUCZwygVkmNGtKYboQl6NGQWrtivBeh03pwqQ2xpAmrg7WuJB7AYWVhc2OpSK3PwVFy0jlCor6knBaP4y0YOfTuChK/0F/3z5wsR8LNSwjAs9Iz8S4WymdrnUJKD4T0NakSUlxEU4eP4zefQfCzz/A8JC1xZRCrcbCHQ8hNrd5ClbjDvQ5iL008iX09RpE5DC/XXOWCnn50nBIpE7o0fuY4fEZqCGSJoIh5N2BSJrwhopXRZE04QVTh68kkiZNSBNGjrCfOoHYlXsuc9bEr9wcUZ+S0/iqEEkTfveISJrww8kctUTSpAFF9uLQtHzzxf3Yvr0Yq9bcR1oHuhakLMVG+Z8eB9+56GykSXVVAi2CpkMi74Inz1qTsLYC7kXW9aSJwlHNOY59d/saOFRdQErSyxzh4R/0ru6CjdRb16xbjscfmUcL3MD6z8rLjiIn8yOKMInn/lZHuGRciEf84bNgDiyssCiSsJEDuJ8aijqJ2/8vUs+QwKinKya/3Ho2sXyvk/ZYz1ykiZZurC0vrqKIITWsbeTwjqyGe9+vaCE/gKIPvjEbNEUFPyE7/W1yifFEtx5/0mLPVCJAS9FUtZEXEZ/H7QgAACAASURBVP0u0r/5LTKFnogxpIm+Z1vj42dlvEPRXumwtx+CiooTcCKCys3zvvoqGk0FJ/IpofQNrwDhIp8tnbtaVUwE1EhKq3NGeO+jQiEya3tLkybujlePXEtMvIKFTy3Aq6+9gSFD9FukM1ewyoIYXM76hFKoxmFzzDZsT6iN+pAScW1t7Uk/HpSek0wRJ9nc39l1z0gq9lnjYiu1xeopa+AodaeISn45YLX3gZbuA+aA1vz71JgJEUkTY9ASVlckTYTh17S1SJqYF8/22lunI02Y1TCLHGGiruyHpdo0FnZln7FUnM2PDeU+v/t/zdl81mbjQ9dxcy6SJvwufZE04YeTOWqJpEnLKGo11fj2i7E4eNANb7xzHbp0fVMw5J2NNFFWnUZC3EPIqHHE8iteuJxb1ow0ifB1Rn8fP8wLsUFx0T5YWUlpwXYvfPxf5PBmaTgHzv6N/y1Zi1seuxX3THqIXvglRJZ8jMK8r7k6TDjW2/8F5EbbIuHQWRSl10aW2DnZI2zUAISO6E+aJQ2pkpWUpvPnW59Bbm+LW5dcWy4dgi+yNurAXKRJCjnnnPxhFzxDAzBy9gxorFKJeJtBQr7dEdrjN7OcnUqZjytxU7lULkbQMaJOSGELfbbgD+91kBan7kK64t3WGNLEUKcsQoBFCnTt9hWlxzzMOU2FU7QAuxdZqaqMQtLluzh77pDwXwx1J+jzmAuUzkdCRz37nqXjXzspcJYmTewo2tE2IQ5WL72kF794mp9nYYvFlJI4vFEUkEZT/l/aTT7UCx9BcQ8p1DY2OFNUgE/P/kqkoAdHiOjDkrknWVnZ0o/+NJyeHj3xwfgPUFqh4qV7Vncdhfc+QsSXbnqXsReFSJoYi5jp9UXSxHTs9LUUSRPz4tlee+t0pIm5J0okTfghKpIm/HAyRy2RNGkZRZUyF/HRY7kKzq4TEdB1uWDIOxNpwhbRysq9iIt9CpcrnfBLnj9OpRTppOeoKANgQKArRrsWYKRzvg6+Lu63IiT0PVRoCjBnIy2edzlDNSIPK2evhkyxB1lZ33L1mT1pScJwjiwpy6vVa3DwcOGiSoZPHYbicqVeYek/3lyPqtJyTHl1TjP9BsET3Qk7MBdpcvCzX5ATl4JBd0xA6LC+JCKchYToCUSe+SIsco9ZkM1MfZlSuraRPep4skddKbjPK7G3kIVrMkJ7biPNj1DB/fHpwFykiUatQNyloUSU2KFHH9IUSXiI3FVOE5m0lMikW7mhlBb/hYyUZwmvcYTXKj7DM7lOfPSNnO5G98i9tOC3nOC8sQO0NGnCxuMkVUO2YzvwdS0ZXFdYxF48pYEttuuH56tiMVhbRdh4EU4FnG00V6ZNQ/XMcchUnEN4+IuwogiROtLL2HNtXF9iJSHSpJp4LMP6JkzThGmbdIvYCaYpJaSIpIkQ9IxrK5ImxuFlqLZImhhCqHN83mFJk/TYFJQXK9Bj6NXz2g/90PyFTWYrx9AZo7krIOlcPBLPxkNZVQ3vED906dkV3sF+9VeHSJrwu1FE0oQfTuaoJZImLaPIUj7YDjcrDo5DENStwaHFVOw7E2ni4miNi1dWoTz7U9TYDUel851gYtKnjsUidus+hN11E4YNDOXEpZ3y34ZErau3YGcXisg+G/DCzlmIiYuG3T99UTUkBr7d7cnBZjny8/ajMCES8ftLOfKDFVd/L44sCRlamy7BrP8Ky6r1kiaHPvsV2XHJGPHIrfDv3eAUYurcdvZ25iBNGOm1670vKGVAQhFACyg9R0bRIHWLegda1J8QDHNZyR5KNSHNHFoMsrQcuU2Q4D6TEx4g4eizlD70NaUR1Vr1WrqYizSpe87Z2IZSJM821KUtOTgNR1Do/7jTKMj9ArlZy+Hu9RBFgDW471jiHJkwLxPoDQn/mSJbIixxCJP6bA3ShLmYuFhrIVmzGhTiyI2TkSIVin+RLHGoJ00GNXpWsggS6wE3QvruGpSr3SkihC5tM2eI8XUMSrp8J0UlRZPl8I+wtTdOJ6rppIikiUmXqUmNRNLEJNhabCSSJubFs7321uFIk6LsAo7oSCKiI4AIjjryQ98E1VTVIDdZ16atmNozkmTaM3dxTc7sOg43Xw+4+rpT3Wyc2Xkc42ZNqSdORNKE36Uvkib8cDJHLZE0aRlF9qLKQtVZYS/v7CVeaOlMpIktibRmZ36KrIxP4Ov/BPwCFnLw/XP4CNYtfxfhM5/BO/eP5/4WdWE87dRnNILXCsFhi/FTzC5yNNoBSbFjPWmi9i3C8IDJeND7ZRz5Zi9qKqvhGUKODZSGE9i/h84UXY00ufDHQdI2OYVeNw1H5MRhQqe207c3B2kStesoov86huDre2Hw3TfVY1rrwMRSNs4L3D3X4ErsVLrWUiid63l4eNXe30JLetKTJES8n6IwPqFojNroNEsXc5EmitKDSEuaBwenEUSSfEaL9ApO0FOrVXFuQEzvgmm/MDLFN+BlLnXOkiU18VGUlx3jxsLGdK2U1iBN2LnKiDB0ktP/LKTnZVoapd7ko6riUjPSREK6LzY2IZC6BUG7hggTOyfU8NQesRSmqVfmoFxxnOZuA82dsGeqSJpYapaa9yuSJubFWiRNzItne+2tw5EmLLqEESfpMSncnFyNNNE3aXu/3AGfEF/0HqN/Z2nXp7+hS0TX+s9F0oTfpS+SJvxwMkctkTRpGcX6HWn2Iiv3JxvFvwRD3plIEwZWTsb7KMz/ltMncfd6gMMv8Uo8Xl76ATLDbsWBxbeQhbMV6ZN8QPokDSKf/gEPIqZcjuUnVlOkQUkz0qSmzAl3BS7E2CAiXWgH1i8iRO/cXI00ST0dgxPf7UBA3+4Y/rAwTQvBF0YH6MAcpMmOpZ+jvKAEo5+4HT7hXetRuXxpBGlulJDOhjCthNzMZSjI+5KLBmFRIeYqWWmvobjwN/gFvg1X95nm6vaq/ZiLNCkq+JFIkXfg6nE7/Lq8yR0zM+0VlBT+zqW+efnOR2ri40RkHOHci5iLkSVLZuqLlDq1ndKD3qP0oKmWPJRRfbcWacIGxQhnu5wMWC1YwJFX5eTw1DTShOnLWFPKmvatt1AdHkFpjMKEV40Co4XKLIWLpXIFdF1GKa2TBHUpkiaC4DOqsUiaGAWXwcoiaWIQok5RocORJnWzdunAGSiKFEaRJiylh0WS3DR3BuSUotO0sMgURpoMnDyUS9PhXkQKKjvFhSL0JEXSRCiC/NuLpEnLWBUX/oqstDe4ChIppQb0Fp4a0NlIk4YF0Pu0ALqlHuwZn5HrTWkVfnlsGPxdam2c87LXUVTKBnh73Qgbr9vx9N4PUa2ogEp7phlpUl0SACdy0fng5o8R7tYLldVqvRN5NdKkJCsff320SXTQ4f+4uGpNoaRJVkwSDm/YAidvd9z00iydY9VpJYRF7CICs4tJI64oP0N6HQ9ybYPJhceO3HjMVXKziIzJ/ZKssp8hB6fWcWMyF2mSm7WKxr6ByJEFRJI8wUHCIj1YxAfTpWD6FFdib+aic0J7/E6CvN3MBZvefuoIVJYGxNKBrpXSmqQJO2fKboT8CKXofPIJuYM1aJo8R5omQyUSmoeesHp4NlTjJqCUnG6uhZKV/iaKC34h8u0NIuHuEDQkkTQRBJ9RjUXSxCi4DFYWSRODEHWKCiJp0miaWZRJ6IDuCOnfXe/ks1Sd3KQsjJ11cz2pUlap6hQXitCTdLKzhoiVUBT5tbcmsU45We1WtLDo5NdLx6yVlfk50lI+opNjCeJaDB4a1aLLAF8EbAlrZlVcY6RVMd/+r7V6cdGPoKTkCHpEbISL68j64T305UmcSS3CFw8NxuDgBreRdatXYPKUSYhFPIqqilBMxEalIhNKdTZObipCvxmucPLyJrecrnDxcYedtR1mRtDOvlZGO7LNz54tLCtJR4Vhrq9sWvARuZ6ocf+KZ8hdx+Zag69djYceJbAnfRpFlWnfc/98sQ1XTkZj0LTR6DdluM65X7owncRJY9C7728UJRJpEi7Rl+6BouwM/PznILCreXU5sjI30LPiY+p7NvW9yKTxGdtIbi2hKC1ythGYknEl/nkU5P+B0LD34elVq+HEyoVzN5E+RRLdu5/jcuwTXMTDdUPOc7bDliyZGZ8hPXU5YfkoYfm8JQ9lVN92FP2hJMEQlbqFh4lRvfGrbKuqhtWmTcDOnbhQdh4v2vTAy9oyjJS7wWr4KOCZZ1Al1f/s43cE89Zi35fse5PNG5s/IYW9Byronbn10BYy2vbdVnwPNO/8sWtXLCICImny3zVQJ/jK9Er0lbjjZM939jJG3TMBDq6O9VVKK5TiVcQDAWd7Gam1i1jxgEpwFWvKn5ZbW4mkiR4k01OX0QvgBs5VQqOpRP9BR8jBw0MQ5izsWkMr+M5CmkRdnEmL3WgSdP0VDg4NwoCLf7uI7RezsOTW3pjWz5/TJTn752Fs+v1rjBk3BoN6DeTIjMK0WuvgnMJcfL3rR9w2dgq6B/VAr3GD6dnqVD8XWk2tNWrT4shIkxp1i3aZf3zwNfJJq2rys/eSwKwwtwdBF0YHaMzSrOxtpdxCx9hSXV6F75+vdWW5fckTFEWka1caG/0gaYacRM/ITXByHmJs96StsxFpqR/B1jYYffrvpPbmVcrMy/0FyYmvEukwEyHd3jV6fKY04EgTYk2q6PoWUmKj7kdZ2b/oQdg6N8I2M30tMtJXw819AooK/6aoEx/0G/iPkEPxatsWWPIZmD1ZAitVWo44aa3C7il6hAGLF+P8yR/wkk0EXqNH3fCArtCuXo0aiYyXFXBrjTcr439IT2OE12PoEvSsoMM62cmIgFXqJcMFdSw2boaAtZQ2z6yl9B5o/LNbhLM5AmwNIxYRAZE0oWugLu2G6Z80dsapuzxYqg/TSGlKmLDPxfQcfjeRmJ7DDydz1BLTc1pGMSu9NtTY2tqDxPgKSBTxDxJF1K+dwXcuOlt6TkL0eLKMzSY9mL8praLBSWz9oSv4+ngKHh0ZilnDghG1mwRAdx/DsfzzHJTDPPtx/7W2kZMbTn8kxl/GluO/Y3yvMRg7YxoCeLrdXC09h/X/709/Ien4RQyYOZZz3RGL6QgISc9hdtFnf9sHv8hQjJzTEO1QN5r05KdQVrKPs7tltrfGFGYFzMRfWbSYKe35HIuNjY3R0flG0v0g55NWKOZKz0mImUg2sZnNbGJratJwJWYynUltpJ0d6cAEm1EHpiWIFKUHSJh2AWF5A2G5thWQ5HeI1k7PqRsVS52wVxQh4/7+uKCyQ1/7CAQsW44qvy6o1Ooni/mdkflr1enjuHncCd8urws6gJieIwg+oxqL6TlGwWWwspieYxCiTlGh05EmTLeEESCNBWIZKZKTlM254jQtx387yFkXj7pnvF6dE5E04XefiKQJP5zMUUskTVpGMT35GVqo0Q6rTVcunz847FtaOPQXBHtHJE1YSoa+HSobuRZZqa8gJ2cbWcX+qxPWv/V8Bj78Kw7T+vrjpUk9sWPJBpQXluqQJhKpFDe/9ihsnR0oWqUc5eUKilZxpPQMB95zYIg0SThMi/Ut+ziL4uvunGiwXxYpJHRn3+BB2mkFU0iT3JxsfPX5OvSUBaE6uwRDHrgZQQN6NkMgk66jkqLf4R+4FC7utxqFUHryQrqP93LtWHtLlDq9FPZ8YM+J1ijmIk0anInOUvqhDGwBxeaSlbyc9VBWp3L/LyXy2MP7ESKR3bjfLZXSWVlxAcnx91IKXm8Ed9/cGlDyOkZbkSZscDbaAqhPfAHpe6vg8MImKIeNQNk1omPSGLzS4p3ISHmBRGBvIjHYj3nh2lIlkTQRBJ9RjUXSxCi4DFYWSRODEHWKCh2ONGFpNhf3n4GSRFtZBAlLpWks3MoIkrhjUbhtca3rA6vzx4ofOVKkaZQJ++zX9xrcH+quCNZnnSWxSJrwu09E0oQfTuaoJZImLaOYcuURVChO0st7H1RWXDSLc0RHI01sSQZEItFQKo01qhtpK0ilapSp8iCrOY+8rB/gH/yVDtDHkwrw7C/ncT3pmay8o79e0kRGGiPTly4QdJkbIk3yEtNxYM2PcA/yxbin77vqseREAtnbyFBeqaEw/dYL0RcEQCs2NoU0ibp4Dh8ufR3DPfvDz80X096Zp3fE9S5MAS/B3fN+3mfFHGCYE4yU7FlDKVKMRY1ZotRUJ3HRLMyel9n0tkYxB2miVGYhIXoCubB4o3vkPm7Y9jakcaUoRUrKJe65B21D+o8V6Zm4uo1CeHg4SivVFkmdUNakgwn/msuxzFxz0ZakSYXiFGTKi3COU8NmxCyUqK2vSa0P5rDEnJYcnIaT7fD/BEEvkiaC4DOqsUiaGAWXwcoiaWIQok5RocORJq09ayJpwg9xkTThh5M5aomkScsoJl6eierKy5zFpqL0oFksMDsSaSKRqIgYKcSqEyvx0cSPUFah4kQSZaS1YGujxYLtj8JdkoEXhi2CRD6GxFgbJP2SCspx3xcnEORuj82zh+Lc1v2IP3hGJ9Kk++iB6D/9RkGXuSHSRFlVja0vryF3JClu++jpFo/FXirLKEXr2wvfYMH1T6KqyqpFcVlBA27HjY0lTZSkY/PX5l/x0+7NHGkyeMxoDLydLKT1lLzsNcinqAdmf8tscPkUtboMibG3cKl15nDzuNox1aoiXI4aRdEYrgjvdZjP8ATXMQdpUh8hY9+Xojq+rx+TAxkCnjr1E2Kjm5/LLbcuomdiF9JlEnwKejvQaCoQd/F6LjKNRahdK6UtSZOSoj+Qn/0xIiPWQi3t06pitMbgz0i25Ph7zBIlJJImxiAvrK5ImgjDr2lrkTQxL57ttTeRNBE4cyJpwg9AkTThh5M5aomkScsoxkePg0qZQ2H901FSuBU+Ru5y6+u5o5AmMhIQtiMTjYW7FiKtNA2Tuk3CrH6PoKZGChsbDT45uQoHk3ehsvw07uk7B3cPWEK6CQ2K8pVKNcat/Ac2RLDsf2YMB9WWF1fhcNZpWFFqwN2T7uEIExZtIqQYIk1Y3zvf3QhFfjEmvvAQXPw8mx2OieQxYbfn/noO8YXxeLjfwxgfMomuDVHsrTFYxpAmjDA5sO4nJCTG4XjBBY408Xbywoz3ntQ73YV5m5CT+RFZ0D4IH39+7jRZ6W+RJtHPtMAfRVFinwq5jHi01SLmfB+uXkQ/is4ws9CsvgGYgzQpLd5B6RSLKJ1iEqVTLKs/DJtLG0kydu74CgUFBfV/79+/L7p1HwettTBtJ0OAxl0czIlv9+hzgsgT/ul4hvoV8nlbkib5ZAmdR9bQgV1fg6PrXUJOw6JtWRors6eW2wRRxNUOQccSSRNB8BnVWCRNjILLYGWRNDEIUaeoIJImAqdZJE34ASiSJvxwMkctkTRpGcW4i9fRi3sV5fE/igJ6afX0mUc73frTB/jORUcgTcjQATZyNdb9uxYHUw/Wn/qCwQswMmgkdiXswlfnv6KUnUIK779Au+/ueG/yr+jt0V9HB2HKmkMorlTiz3kjUZWUiiNf/I5TZdFwDfDGy2++xxfSq9bjQ5oc+2ob0i/EY8h9UxA0KKJZf7Y2anx76Vv8efmP+s/evvEd9HDrTXbGwpxLzHKS10gnxpAmyaeicOqHXcivLqonTdzlLhxRxiKMmpbiwi3ISnsdru4z4Bf4Totn/MX/1iAm6gLeWPIA0hJrI1JCe/wGG9vuFkfpctRIuuaLKdLkIHfNW7qYgzQpyN2I3KwV8PB6GN7+uva+VpoMVJWfxa6de6FWq9G1a1cMGEiaTvIhRGQ0uAJa4jwTYiYRyZrRTJzWEsfi22dbkibZ6e+Aiaz6BrwCN897+A651es1RFy50X1wSNDxRdJEEHxGNRZJE6PgMlhZJE0MQtQpKoikicBpFkkTfgCKpAk/nMxRSyRN9KOo1VQj9uIgEkaU02LiWTBNBXfP+yjaZLEg2DsCaSKXa7A3eTc2nt2og8XYkDG4kX7ePPAWZ4PJonSqKmNIL8EXHs6DsGbyGthKXOq1T2Z9fQpxOWX4/P7rULbvMFJPxyDWOhMOni54dpEw54W6gfEhTaL/OoaoXUfR48bB6Dt1tM45MTHbY5mH8cmJWjvcuuJi44LVU9bAWuPQaeyjDV34xpAmLBWLpWTxJU2YIDMTZnZymUAOOCu4oTDL3aZl/dqViLp0AS8t9qFFdyqRLHfQz3SumqVtvq9QKhBz6gntsY1ImlBDcAn+3BykSXbGEhTlb+aea+z51qwoLyA3m7TfLl3C5MkzUaPxJREjL8FjN9QBS/FgqR7B3b+jVI9aJ622Lm1JmqQlzeNSRLuQM5MTOTRdq0VL+jexF2i+rKSI6FvrhGZqEUkTesbJtPQOYoXqmuYosmhPc9lfi6SJqVep/nYiaWJePNtrbyJpInDmRNKEH4AiacIPJ3PUEkkT/SiyBT9Lz7GWecHb71lkpi6Gi9stpGvyviDY2ztpwl7iMhQpeGGP7q50L+9IjA8di5f2vohA50CK0KEXveo0VFclkKBjIC0iu6GXVy8sHbuUtE/UHKmyeOtF/BOfhyVTIlD01Y/Q0G725Jdnw9HTVRDGjRvzIU0yLyVwUS6+PYIx6vHb6pszMdsSZT4W7Jyvdzz9fPrhjRveIGFYLXc+nb0YQ5owpyTmmNSYNPFx8caIWbfCKyywGZTlZcdIYPJRODgORVC3z+FAmV5yZRWQmFRft6oqBmu3/oWolEKsfHwYib86kSDlCO5zKy9P1Li4QaFtSBEz93wlJzxA6Whn0ZVsee3JntfSxRykSVrSfFqM/3NVK2Y70jex0pL4sYYt0ix9VrX914/rGiIJ2pI0SYwjfa2qywgJ/xm2ds2j4VpnVvgdJe7iEHr+l6NH7+OkFWV6RFJnJ00YkVGtLUOFqgLucl8d1zYW7elkT651VWqz6NuIpAm/a5tvLZE04YtUx64nkiYC51ckTfgBKJIm/HAyRy2RNNGPIntBZS+qNrZhRJo8w73EM0HYwJB1gmBvz6QJt7Mvrcb8nfNQVFlUiwMtojzkbnjk+ln46PiHOJdzDu527ghxDaWd4hTaeU+i/PYQzraZlVu634J7et9HUQAyrNoXjx9Pp+GprjJIj5/kFstj5t0pCN+mjfmQJuWFJbSA/xy2Tg6Y+tYTXBdMzNaGImqe2vkUMhWZLY5peo/puKv3PbSgkZp13O2xM2NIE3Z+LEVn51c/cOk5o/2uw7h7b0Pw4F56T72y4hIJTN5NC8ZetHD8kavjghpIf6L///13up7SOYJuvU0YoqQUBVRxmluw2TtcB0RGAu++ixJye7EkuZWe9CTKSvcTAfEJRcSMtfgUmoM0Sbx8G4ldxxGmPxG2hJOeIiF9Ezuy2i6vspDyq55jZqW9huLC3ygV6y2KFGogMi0O6lUO0JakyeVLwylFqpRLeZH+Z/ncllhc7dgJMRPofsxCWMRfnAOSqaUzkybsWepoJ8Gr+1+FokaBlTet5FzbmNA6K3LSDYsviEG4Zw9y9RTupCSSJqZepfrbiaSJefFsr72JpInAmRNJE34AiqQJP5zMUUskTfSjyCweU67MokXXII40SU64nwsTZ+HiQkp7JU3Ywsnejtaeh5biTNaZBgjiNdAeV6HrnGBsS9tW//dA5yC4yiWoVFwi4qkHvTz71X/29JCncb3fCHx9LB2f7I/HXHUmbHNzMPC2ceg2gjQTzFj4kCbscL+/uhY1FVW45Q2yyySbeBtbDVYdX4mj6UfrR8Os6bVqDYnTykmstiE15Plhz2OQ71C9IdRmPJVrvitjSRN2Qpte/RD7Eg7jqbkvYNANo1o8R30Ck+x4Lja05frmm6g68T2lg+XrkCasMweficC6z1AhtUG1lEImLFiMWejTqOuLWqMgi99/ucgY9rypK4Zil8xBmlyri3Gms8L0Vrz8FsKTNKWuhdJWpAmL2mDRG9eam1BLc9JAxP1CRFxPk6euM5MmtkSK/Bj9A36L/Y3Db0zwGDw+cC4ntM4iINNKL+GFv+Zj7nULcUPIdMGi5CJpYvJlqrehSJqYF8/22ptImgicOZE04QegSJrww8kctUTSRD+KZSV7SEPhadoxHkekyUJyBJhGuzvB5AjwpyDY2ytpIifh1z/it+KHSz/onH/vkp64uO0CosfEQGmj1PksXN4FMqsyWDm4wdpa15Vm7ZR1yMi3x/wvjuCxnEtcu2nvzIONAzEzZix8SZN/yMklNyENIx+dia79umJ34nZsOr+pfiSl2QVQFJTU/+4a4AV7Vyfudynl77PzcaFUrmqlxoyjb19dmUKabHj2bRzO/BcvLn4bkf1aJsxUJCocHzWa22VvLDDJop8cqhWoeoREWAtTm5Em9h/8iZo+Q1ChbkxTWAbX3KxltND/kiNZPbxnX/Ug7vYUmUQW3Go1jZ3EkpngNCtWVtawo9QeKUXJMIKuSI+WQV3HQkkTDR077tJQWozbkUvNKcuAYmKvhXlfk1vSh+SW9AC5Jb1oYi/mbdZWpEl11RWKerzVLN8/5kVEf29ss4FtOnTt9gXsHa83+ZCdlTSxIW73fM5pvH9UVwz90QGPYmzoeIqoS8KjW6dStGceh+3ySesR7nuXTvqOsaCbSpqwzRSNmJraDG6RNDH2CuyY9UXSROC8iqQJPwBF0oQfTuaoJZIm+lEsLvyV3DreoNDwmdxuZ3zUDZwjBnPGEFLaI2kiJzHUmPyLeOfQ2zqn3t87CHYpzjj6yxlcGHkUGntbbtFXV3oeCofcWwLJSFqwWunahga7BuOdMR9jyerdCLt8CQG9wzD8kVuFQKu3LV/S5NzWA4g/eBpj5t4KdaAVp81SVyqKy1CcUfuCWlckJMLn1a0LpLLa8w1zC8OySctIr0VllhxzswPRCh0aS5qoVWr8/MJyEhYFZr63EHJ5y5EgWq2SBCYH0PUlQ8++Z3XOxt5KDWns3gZb4gAAIABJREFUYVQ/f5sOaSJ9aAFkM19CqYS8sVuhFOR+QU40y4kwmUXEyXNXPaKj3AryHX+iat1zXIRM4yK1doXdM59COXIUyq4ydqGkSXVVPC3GZ5BFeChCezZEibUCVAYPUVL0J+lIvQRntykICPrQYP3WqNBWpEl52RHS86EIOCfS8wn9vDVOVdAx0pMXoqxk71V1cvgcoDOSJraUBldYlY15O2udvxoXlvb6yeSP8cH+J3EsZXv9R74Ovlg/Yxc9G4OgVJlG2ptCmrDnvZ2NBApKexSLLgIiaSJeEQwBkTQReB2IpAk/AEXShB9O5qglkib6UWy8APLyXUgLtv70UiKlBZswR4D2Rpqwl6lydRHm7aDQYHXDtrevgz0eGzgLL332OuxOu+HCiKNQ2tbAWkoirla0CqZd9J6Hw1HjWgm3id60GyWlP+kmHIwMvAFjJeNw/ts9GHTnBAQNNL/AIV/SJPlkFDLORKH3tOvxWvTbKK0urb8wGGHCiJOmxTPYH3KHhgX5+JDxeHTQY+QYJIGh1Apz3LvXWh/GkiZ1YrD2bk64+bXHDJ5OnQU4i4pg0RGNi5NUA81PH2H1D79xmibrBwRB9to6lKrlrbYTytcWmXuZIh7RRQZUvH83sH+P7rmPnwT7Z79GiZrumaugIpQ0YW4szJWFieUGhX5mEP/WrFBedpSIgseuKaKgrUiTOgLfhVyg/AOXtOY0mHSsrLRXSY9mK2cNzizCTS2djTSxllrBwVaCp3c/jZSSlGawPdz/AZxIP4So3JOkY5IOlarhO2p06B1YPOZTVFZR5EeT71k++JtCmthSCmteRQ48bHxRo9SN5GPPNxOGwWeo7aKOSJq0i2my+CBF0kQgxCJpwg9AkTThh5M5aomkiX4U63Lqvf2epp3jOVxOuTkcAdoTacJe4hztpHhxz4uIK4irB8paYo1H+t2OX6O/x+nDUega26OWNLGppsWsPXEmMnLCKUfksUGocCpD9dBSBLj2hJaIk8ZFVaPENIeJ6GvdF12GDaFjmV9zgi9pUpZTAK2iGO+f+gCZToU64yzLK0JZ7n/Ct40+8QkPqo80qfvz3EFzwcggpdJyLi3muO8t0YexpElBShb2rfoe7kG+GPe0HrvbJoOMj76RojLy0D1yH7laeet8KqG3dDtNMlbPexLRJVp88eNvKCO7cFN3Xk3Bp6xkH6X0PYWAgLlw815gUHSW3V/WytPQPEWaHSn/LZJCQyH5ZANUkv4GI5aEkiZFBT8iO50tbG/jBFevpVJVGYuky7eTtlA4WThvuSaG1lakSV72WuTnfApPnyfg5bvgmsDiaoNgaVUsvcrH/wVKr3rI5PF2JtKEkQw2pGPyxbmN+OvK7maY3dR9ItRaFT468gEcrTXo5haCiooE+k6t3chggvUPDnwBN4dNM0nfxFjSxIaiT0/nnMSak6uxZspaOEjcdFJTWTqvlJ6/ldWdMwpFJE1Mvu07VEORNBE4nSJpwg9AkTThh5M5aomkiX4Us9LfRHHBL/DrQik6HnegwRFgN4maBpgMfVuTJnmk25FBFrsyOxuEjx7E/belYiNX4XsiRv6I0w3dnxk5HanFsVh/ahU8M/11SJPGffU6TloSRJok9YpGd49IuNkzK+KGGgoiI0qJjHhp7Ie4rs8YONuYn2jgS5rIbdRY/dN7+DVuC/wiQygSoGHnTEuDzo5N1tk5s3N2gFugj17oPp64DF0cQgXlmJt8gbVhQ2NJk4yLCTj65e/w79UNI2ZPNzjyRNIVqq5OpEX075yFddNSWvQN/tqWiPiYbLz9wRpUalvX0aiC7IZz0hejZ8+PoJVHkHOU4evZSn0FkrTDkD5J6Tx0zWnWfAKlR0/KZhtgEA+hpElu1irSYNnALcTZgvxaKiplLlm+j+W0kLr3OnBNDK2tSBNjBIavBaDyc9YjL3sNXVOP07X1pMlD6kykiUymwoGUvdhwdoMuXvR9OcCvP27sdgN+j9tKZLyCvkMr4O/kD287F4pqTKSNCgfSQWKpi9aYFDYJbk3siflMgDGkSdMUogjPCLw//n2Ulqs4olhqrcbpS8cQ4BWAAJ9uqDExZYjPuK/VOiJpcq3OTOuOSyRNBOItkib8ABRJE344maOWSJroR5GJwDIx2C7By0kMdiK368l2P0PCfyZHANPTSNqSNDm3dT/pdjQ43zDCZMJzD8LB3bkZCLbEpRzPOIKVJ1bofDY8cCiCXYOwaM8LFB5cqEOaqGyZECylptCOGCuNSRMJRaf09x8Na9p9qhOOy7uSDuZIo3btiq2PfAN3W2ezRwbwIU2Y8N7FvLN45uu5UFbWwDM0APJGZFJdpIlUVrsIVyvVcPR0gbOPh96Lh+WYfzKZFr8UbdKakQ7meB4I6cNY0uTK0fM488sehA7ri0F3TDB46OT4+8jG+jznYMWcrJqWtKQFlGNvA3/Px1EjDzfYn7krMHttdc1RbLlyBBEBd+N6/+G062uYOFGW/Az7U9GkKEy2vn3o2vOcxWtoQkkTphnCtEP8A5fCxd38ekK8TqKFSuwZwlIi2fMkot8FIV2ZrW1bkSapiXNQXnYcgZRC5UipVNd6Kcr/HtkZ78LN8x74Brxi8nA7C2liLSNSvjwNz//dXAdJu4++S6u1mLRgMolGF9PzJJfDU2rtggnBI+EuVVC0YxjsGr2TKKqqYSM1TlCdL2lSF326cNdCnRSiyWGT8WDfh0m8WgYr6xrc99CdcPZ3wRcfbiKrZBK87mRisSJpYvJt36EaiqSJwOkUSRN+AIqkCT+czFFLJE30o1jnABBEDgAO5ACQemU2yhUnENTtc/p9qMnQtxVpUqcf0XTgkZOGodek4Tp/ZpaGJSROuWDnfJ2/h7l3w+2RM/HMX08jS5EFtaoEHhneXKTJpVGnobajBSLtljMyhYVlNCZN2C6Ys10AenlFQqnWcva+eYkZtCaSIFHuiHv7jcXym95ARTXMqkFhiDRhL4uldK5Ms6UgPZvTLnH194S9Wy2RxFKIcuPTuP/3CGa2yVYoSM6kF1UpfMK7tngdDOsyDM8Ofc7kHHOTL7A2bGgsaRK1+yiidx9D5ES6Bm/SvQb1nQYTw2SimIGh62nxOLJZlcTYqRSJkkQOV7+T00jzSBRLQyOzrsCh+I+w7MR6Tifkk5tW025wF4MRR1do3CE+pG2iVuNy5krSTTrNXWeGilDSJCXhIVSUnxbscmJonKZ+fvnSCIKkhHNLYq5JbV3aijS5EnsLRS0ltxhh1da4ND1+nYivi9vN8A/6wOThdQbSREbuX1KZEgt2zEd+ha4gNANOu482Iug7UT2+mDZtojgsbWy7c9GuElUmlo19Brb0j53TVJNx5vqk70FHOxkKSulgLRQWfGlrq8XGs5/XphAxwSUWOUoSZuxx9fyw5zEscAjePbgU/64/Aa2HGjPn3Iu7e9+LqipWqfMUkTTpPHN9tTMVSROB14FImvADUCRN+OFkjloiaaIfxcS4mWTtd5kiS36lyJIepFXwDEWe/I2Arsvg7DrJZOjbijRhaTkHyFa3aQke3AuD77mp/s8ycoWxtdFi4e6FSC9Nr/+7IxEbcwbNwv9Of4aj6Ue5aBJGmnhlBiAoNlzHclirqeasVOtJk94xkEocSetEDi97bwTY+6MgLQ/VikpoHe2RpLJGFzd7LBr5MKaFzzApJ7ulCTFEmrCF0MmMkyirKYMivxglWflw8HAh4sSL67IwLRuVxQoiUZzg1qU2HSc3PpWLkGFaHHYuji1eC8xRx97aGVKtrnOQyRfPNd7QWNLk9M9/I/HYBQy8fTy6DW8eOdL0dDNSnkdp8S66Bz+ie3ByMzRiLvSlF3kNRzpYWbWcdmYJGOtC1h/8sTYKzdF5DAKdA7Fy0kpUVVsRUajf1YKRAowcsLMLJvegLigpOYyuYV/B3uE6g8MUSpokxEyEsiaTSKadRDIFGjxea1dgZBKL3mkpHau1x9NWpEmDAPIJLhXjWi91AsOOzqMQGPKpycPt6KQJs+tlYqofHfkQpzJ1Lb/Z9ysjyqQHnWFVY43K0bXRVnIbek7QDysqVR5CHbT4YOKnUKG3oGgOPqSJXKbG/pQ9DSlE8Rpoj6tgdTspWttZ4cF+96FcWYrNZ5dBssMHGtdyKK/PxGtjN2EQRZnW1Bgmgk2+WK6xhiJpco1NSBsNp9OQJkVFJ+gGz4WPj372tqXP1SR+mJ3zB4qKjpOokzc8PcbBzW1I/XSJpAm/K1ckTfjhZI5aImmiH8X46HG0eM9BWOQeyGS+yEqv1TjxJY0TN9I4MbW0FWmirKzG1lfWNBt2Y9KkVoxOjTWnVuNw6mGduvf0vQsXcs7ju4vfcn9nQq8aTRVcin3hkxKI5P7J0JBAXV1hxEnEkd4ody5Hat/UeitiNo5Ah0A4EpFQmlsCib0dEjQyeDnaoIePE14b/Tr6eA6giBPzCMgZIk3Yy2JdKcnMw4U/D8HF1wN9p91AhEkOonYeIbLHCoPvngQbInhYYVocbLHv0dUPLFLnaoXlc8tpN7FaaZoVpKnXWVu0M5Y0OfLFVmReuoLhs25FQJ8wg0POSn+L7sGf6R58ne7BO3Xq11Sn4ErszbQD64+wiL8M9mXOCpzrhR25Xux6GtHp3xOhqOQiTZg98uig0Zh/3QKKNmFpa82PWucSwzQJWNofS23w8n2K9CAMuwkJJU1izhPJRFvFzMKZjfVaKw2RMF/C3nFwmw+vLUgTtaoIl6NGUeaWM8J7H21zDPgMoLL8HJIT7iedjf4IDqv9vjCldHTSREaaYdvjt+H7S983g4cRJuzH9ngEkSYyjjRhIuv2FPVa/x2rrabIu2OYEj4NTwz/Hy8NpZbmwRBpwnRKcirSdVOIGpEmk3pP5Ezzlh99C5GePaDZKqe0WxKBH3SZImMC8MWM/XCWeXaK70GGsUiamHLHd7w2HZ40qahIQn7+PvrZC1ciO0JDFurMoqHPMzI3c4QJa1ddTUJmCe+iX98NHIHCikia8LspRNKEH07mqCWSJvpRbGpv2tRNx1Ts24o0YeON/usYonbpvnjLSLxk9BO310ZN0Oa8UluFgkpd9xgHmS0yFRl4ed9i7rTZ2o+5mLBiTWHzLPVGX5Fuo4WiuxaakbWrRbVKzaXlsCKhf8oyi7lUnAyKYrGxt0HfABeKzLDHmpvX0saVi1lesAyRJo3HXV1eiW1kU2ttI8OM957C3hXfcZEmvaeMRMT4BvK7hur9TvVYmfzKbDh6kM1yC4W9jLLFbWmF0qAbiqnX1LXSzljSZO9Kwjc1G2OfuodSn/wNnkZu1nISLv0C3n7PkKPVbJ36Dfa5w8g+t4mYosGeTa/Q1PWiQnGSE2pkixu2yGFl9oDZuKHrOGiUzd2h8kmINY8EWd092SJzADJSnuNtASyENFEqs5AQPYFciLzIjWi/6QBYsGV68rMU3feX4Og+cw2xLUiTqsoY0tO6AzZ25CIUfm24CBnCs7oqEYlx0+i9NxShPXVFxA21bfx5RyZNZDIt4oui8eY/b+iFpFxxnILmqnRIExILaZaWWEEpwxpNJYmpf43rA8ZDozLNge5qpAkj/SUshWg7pRBV1qYQqZTZUMWWwuZcMMJnu2Bsv7vw9M6FKKd1j4edB4IP9oLKpZhIkzgiU2zRL+h+LJ+4vFN8DzJ8RNLEmDu949bt8KQJIzoYMVJUfJybxaakiaHPz194FEGBc+qjS1JTN9KLsqK+H5E04XdziKQJP5zMUUskTZqjyCIoGGliRaKlPfvWCqcW5G4EI048vGfRoq25YBvfuWhL0uTQhi3IjklC8PW90X3UAMTt/xepZ2Jg5+yIUU/cRhEWnmC75o0Ly7lWoZw0P+ajtLr0vxem3NrQYRKjs7Ht0eKpa8+QiB2F7VpF1AqoVpbUpsBwhXiUGkpx4bAlUqbKxhaDu7pzv/fy6oWlNy5FWaVaUMgx68sY0oTV3/7OBlQUlcI6yBmq1FISe3XHpBebC3Oe/H4nUv6NvqoeByMRnOyl+C32N0zuNoWIdClHOHXUYixpUof1lFfnkBixi0FY6ggGD+9H6R7U3dAozPsGOZkfkPjk3SQ++arBvsxVgYWs70v5G59Tnj8rzEFHQyk3jACRShvOaenYpQhzjWxmwVknOO0f9B6nlcRslSUSO/Tooxuur2+8QkgTNs6UhAdIULcvCes23+k2Fz5C+snOWEKRN5s5MVEmKtrWpS1Ik7LS/UhPepLSvUZTqkstUXutFxVpRMVHjxHsfNRRSRNGUFRryzBv+1xUqCr0TmdF+b/0HFEYJE0YqcYiYpk19/pbt8CLojqqaoyP0myJNGEpRHakY/LB4ffxb9a/3FiZIC2LJrJO8SHSpBue/mAO3j29BDH5MfXn0v/kSEg8lKjof47eE1zpOdMfE0InYHb/OR3+e5CBIJIm1/pTqnXG1+FJkzoYWcRIdXVOM9Lkap8zQoWRJo0jS+qiVnr2XMo1FUkTfheqSJrww8kctUTSpDmK7CWEpedYy7xpF3YfV4Gl5mSlvwlX99vgF/iWydC3FWlSnJGLv5d9A4m1FLe+M4+iKWp3pJjlK0s3cfR0xejHb+f0POoKWwQ7EOnx1j9v4Tyl5tSVivIz9EJXyqUTWMv02+7qA6iqrJwiC3KafZQjs0e51BojunnWy1/e3P1m3NfnAUEhx+xAxpAmDKND/9sCNs66MvTBWxDYvzkxlHM5FQfXk+sJCcbe/Nqjeq8HG7kaP8f8iC2xWzB30FyMDBpDGhKta4Nr8oVqQkNjSZNfX1hJ1xGJBX6wkMQQDbvMFOX/QK4cS/USI3ULbB//F+Hu9YAJoze+ib6Q9aqKS6Q1kA9b+97corGuuNu5YzUJw1pp7HQsOFm0B4v66NbzD9IqCKEd+umkpZRAaQ3fcMTL1YoQ0qS0eAdFtSzi9JmYTtO1WPJz1pF17TrODpnZIrd1aQvSpP6ap3Q0lpbWHoqW0kZiLwzS2XQwZdwdkTSpI9Jf3vcyovPIMauFwp4h7FnSOD1HRppHNra6aYzKmgx6XsTT97AvevhOwopJK1BRpTU6qrEl0oRZIW9P0E0hqksdkqX4Qn4uFN7322Bn5i6ab/puo2gYlprL9MysPWkDZmgm/c2ZE65lZe519D0Y2LG/B9l5iqSJKXd8x2sjkib/zak+UoVFqFyKehqDBn5PO0y1Yl1M+yQ17XOOSGGlM+S1m+Oy55j4TqABYA6shPYhofhycroka9SOvAduHErl5XE4e+YWEmMMx8CB27nG+fm7ERuzAB6eExERsda4DhvVZpEcTNugtS34Dn+3G5f2n0bvsYMw8l5dIds/V/yA9KgkeHTxxi3P3kORJ7XPLyuJBsWVRZSuU1B/BkrKsS8uPgYJCW16kGaTMaWssBS5zDGnUXGi1JYoJnRHNr5jwr1gL28gFfwc/WBN4rEyieminiy0WEUinHwcD7d88E29U07dECfNvx0hA/Tb1/70xgYUZuRh0vzbqI4usUImizhN4n7v7n4XWoUWVq5WWDFtBUJIHLbOctkY7NpDXZaqwiKTang8u1kq1JcLV1Bali1mffIsr9PLy92GuLjn4OU9DT166C70L12aheKiw4jstQHu7mN49SekEjvXGnUluV4sqA9ZZ/2Vl8fShksmHBwiKD2BuS01lEF+g7B45GJKTJNxEUfV1dk4dXIUkSsuGDqsdhf3SsIbyMr6HsHBz6NL4ONXHSJbgLFxqMiNytiSnv4/JCd9hIAusxES8pKxzVulflbWd4THm/D1uwdhYW+3yjGvdhCZtRXdu6377GZzxOaqa/CzCAyc2+YY8B3A0SN9OM2r4cNJi8NI+9u6Y7D3QKYJpU8LiO84rrV6lKCKHy58j9/ifjM4NIUiGpKDlP5aI4fVTRXc86RpKqxKXYbSklOEsQNcXYZQGuANmH/9AkhhXJoOPUroPVBC74EN2ltq0maKyY/CGyyFqNEjpqIintxw0tBTMR5peytw35v0ruRsR88xV4qSs+FE4r9753v4BHpi0aJ5lDJUAkeHyPrzdbFxoTodd/OAnWhjrTSDEy1W6LAIiKTJf1OrjzRhIrCnz9yrQ5qwSJPsnG3o3Wsl1zL/KnZeHfaqMeHEPJ1tRKxMwM2UJnJiTOxsJCghzQWx1CKgKDuJK3EPk7bAdQjr8fV/fztBf5tFOcXXo1uPr0yGypH0LRhhUmlCCK2pB2VOL78sXkMvL2pMeekhuAXUaizVFWaru2/tz5wFsGeIP8bOvwMyikRhCzK2MGtccjLXo6Tob9rtnw4vH/47+goiTI589SfUdKyAvmFcSpAH6ah4BPng7T+jEZtThlcmR6CXf63Vb/3YTFgQNm7v5ihHGdMTMcCaFKXnYscHm5pBbBsahNueuUsv9DF7T+HM1gMI7Nsdox+dXl+HETUFVTmYu+MJaJOJsPlHCel0OaUZ+JEN7ScUXWFt0kL3avNfQwK7zNWHpbm4EfnVFkVKF4yLowyFZbVpV1crzKXoz3e/pPQnD0x99RFD1bnPS0sOICl+HpxdbkBId11XjpiLEygqKQM9e++k3diWraB5HchAJUY0W1NazodHPqgPWa9rUlV5hcaRSmPoRj9BzXq6LeI23NbzDroGZCgp3kuCmU/CyXk46VXUpvcUF25HSuILes+xaWd2RDCy+1NRRWlwRpaM1HeQn/sDAoJehqf3/Ua2bp3qJUW7kXzlGbi4TUBwt1Wtc9CrHMXZXobqGg2q6TnaWiWVroUiuiaCQt4n8eNprXVYwceJPk/RBMpcRPbdT1EG/KMRGx/Yw8kGhYrqDkOayKy1OJl1HMuOfcwLX6YNY3XAHhKlI6yntuzSVlpykEgNNT1HSHyaNhnmUArMDV3HwkrLf7NBToSJnY01vQfWPrsZ+V1BZMf8HXNRQ+SXSsOu+VrRdEaGKUqP1afnOMzMgISE3O0delOkaC0Zkv9DDqy9ZBg4zQlPDHyQiHQtnFzG1p43ETCajsSE6ZlNtoYRi4iASJr8dw20lL5z8tStOuk5OeSkU1p2Ed3DXuZaiuk5/G4iMT2HH07mqCWm5zRHsaxkD1kMP01f8uPQJbj2Zb2qMpYE+W4nQb4etMD51WTo2yI95/KBf3F+2z/wiwjByEdn6h07s/89+NkvYCkq3t2DOHFYK8aaNCoaTTnZo47k3EGMtQE9sPZH5F1JR9DACAy5f4pOv29tj8bu6Gy8SqTJlN7/Z+8qwKSq2vC73Z0sbLL00t0p3WEHiiiNoqLIbyCKYlACJioliIB0S0h3LSwbbHd3x/99d5jdmd2ZnTuzs8sC8/0PD/7MuafumTv3vOf93lf+dF7jiX5wodj0nKiEDFxYKtm4yka6gzOmLlQMDhVk52LPx5LNu1SXQ3BSMSUnlSNvISI9AvkhxTA5T8DJSEMY2Omje6PumNf9HeTl0am1ll4cg/+7hjuHz4GdiTgq20jXdA7FXq9Oeg4DPKd++BvOvu7oO0PeCUdZe5wWFhHyMr2cdyBbXgmYySFNB+CX+hZtJdactRmKKOvS9goLo2BwxAJllJlj2E2i0VM53u/1Pto6dUJM5PdITviZQIupcHqg0VJEAoshdwcJJ8fN/C5WO4yapOdEhc2ijc9J4fnGz7n6GKzrEBEyucr9flh9fRjpObzeed17Nq4fDkJi516aZubT7B8CD5uIvUyu3OOUniO1JJ9xUDxbKD/vDvSvWMGw1B76fZWDJnm5N0lkPU0uJXDJgCVobNNC9OGMbHqOkEJkYYAF/y5AUGoA4rJjYU/iriYk6MoHPiXFqcjLvUWgiStpmvigcGQojG28BMHX8gggkMWcrNbdEjHK2w+jfPrS93g8lXkywARdeo5GX/nH7iIdaPLglioDTULDVhKFzgUN3Z4lsaQcBAcvgaPjQPojQVh1oIm474QONBE3T9oopQNNqs5ihX7JeNIvkdDCiwrJbSLgKcF+mG2INY2HAZoc+up3ZCWmkrXraLJ2Vf4CywKoDJxkJabBrVVj9JxSwZ7g8bIdanzMEmLb9IS7z0+ip+AGsTGC/7sKK2d7DJr3IgyN5e1NfzodivUXwjG1pzde7eEtul4xBcWCJtkFxVi96A80zs+Qq/Z+q3b4YIryTeXFTQcEMd02w7ujzbBetG8vwu83f8OR+4cRmZqLgvvF8L1nimvts+HuaQFnOj19pe0reMp7KAn41dzmNYcYPEe/21AOmEg73/m5oQJ4UpehDmgSeTUAFzcfgEf75uj60ghR3eTc/dDAccImjDdj0pD+O2uCsDZIbYaRUSmCaSPx6X+KXS8Y9NDfS645DsUw6KsYNDExMMH3w1cjL3EjYmN+JuBiBQEXg8q7ff/eaGKrhAoCrSzUqixqApqEBU0gIDgQ3k23kTZRBXW+NudO3boLaA5CaS6MTbzovu5T93Ktl38YoElIwGD67YlF4xYHYWzsrvUx1VaFLDLMYsMMbjLIqUk8LqCJrCV5REaE6KnIzSYx2NJscuLqSGkvVkqvKywIo+dFBLFDPQTHIg5HM0esGraKcslM5TSUlFUiC5qYmpZiK9kg7wnehazCTHreBcGMXO1aObeifQ2lIGazplkGTGNaweCKDfQm0u8YaZ8pCwZ13u36Oto4dCBWXDukJidTiqULOZQqfj6KnqB6XFAHmtTjm1OHXXvsQRNOp4mJ3UJIag7Rp3MEq2BZNxxVn0tthhkw4ToYMGnY8NlyjRMdaCJutepAE3HzpI1SOtCk6iwqcsphlkXg7a6inS2U3Zu6Bk1Y5JXFXhmwGPpBVReYyv3MTEgh4GQH8tKz4E4b2m4yG9qw4GdInO4OCUd+TQKS8myRyvWEX76D8Et3UFxQiLRoifhr/1nPwNGnUZWp2X0zBkuPBGJUazcsGNpcG8u6vA6xoAlf8OafV+F25xa86GQt08AYN229MX5CTwxvpZyp7aGFAAAgAElEQVT9EnM7mOZ3DzGOy2Bgbwqbro7YVLgdKTmFCIjPhGOyEZoFmQmgSZ5ZqeAQZELU50/7LUIL+zZV3FTUHXxSSBROrt1W5bKHwTZRBzSRsp+a9u2ItmP6iRq21Ca3MnApZYZZWvcjh5HVourSpBBvLPJLM8lJajryivOqVMG5/MxIMz7kgVJ7EhPuUUKpCVXXO1/Y3KE5Puo6ig5WFqGh9zoCYyvWWFz0p4LwtLPbu3Bwmqy0qzUBTYL8e9AGKBNNW50mdws7Taaj1q9hlw5mthkYWKOpn7xVumzjvO7qQiPqYYAmAbcINCsrJRe368T8qznIWus37UEDUWEzicl0Svg+8vdSk3hcQBNjEgQ3NyKGhXJcQeH08PyVoVRwTpKmvSgqWFycImF+GNiReHS7iiKUBpOWl03i0zIMECU3QgqasPNOKqWW3kq6SSk5hbiRcL08PcrR3BFeNq5kA36JxkJpmNGNcOXwJYyaPkZI51UWJZTmU5h7A709e+Pa9RysXv4bFn25HF7ejTVZFo/ENTrQ5JG4TbXeycceNNHWDDJ4YmhoUQ6WSOvVgSbiZlgHmoibJ22U0oEmVWcxMW4ZWQz/Rramb5PF8JTyAvdutRNEztiGmO2INYm6Bk3OkM1wHNkMtx3dF037dRLV5bSoBIFxUpibD++ufuj0zBA6NbxKVPlXSMvBiRyFTlRbD6eL3NglX8a7a2uqZ7DC6y6EpWDe9pvo7GWPlZNkXvpE9bb6QuqAJmtP3cemSxFocm0lshp2Q7xLVwxu4YJPRypnbAQcOQ//Q/IbuittAnHNOAZhyQScVwJNPOzN4WFnDisTK6wetoYkQS1FCacqGyWn5OxaWBUoYFvpzs/KC/5qYTqrrUId0OTW3lOC5XWbkX3QbEBnUV1jC85A/24EXFLqSuuK1BUpyGnv9Apc3N4TVZe6haSuF0xZl7XWlK2HXW+KCqNhdqwDSu2yUNAxmFgczQVni8pRWpqHPi52eNFvItHq5RldGWl7ERu5gDZL/WnT+b3SrmoKmlTMozhrY3XnSpvl791qS8/ckmpBA7b1zs0vrXXgpK5Bk3IXN3JhatLqpDantdbr4vXL69jNYwlp0mimxfK4gCaaTDY/R+7fGyE4+Pm2OFptFZyawxbP/E4ixqpcUWVS0CSN9KhY487MxADrrv+GuKw4ueJ9GrijibUNCcHbk+Zbj2r7xboo0sjOPEOAsj+uXYvGjz9cxZKvv0ZjX/nf1QISg9dSxqomU67Va3SgiVan85GtTAea1PDW6UATcROoA03EzZM2SulAk6qzGBf1CQky7kCDRmQx7DCxvEDwnb5kJ5oivMDK2omqcx/qEjRJj03C0W83kD6CPkaTzbCRqfh8YtYfOU2Mk5JiSi/p1R6unU/SnOwkEOl1ApPeqnbIBz7/BZw2Ihu2JD771DuKtUHCU3Lw/G8XwYDC1ind1JlOlWVVgSYs2spRQm9r7+24BU7Tyd69CINHjscV47bkkFKKV7p5kR2yg8K2/n5/FViEVTZiHVOw2eWKsImzjjeAxx3jcqYJl7MxM4KLlSkG+XbGp30/RU4e5YmLsfdRMtpTxDRJJMaJbLAeTbdXRqERidTWVagDmlyi1JwIStHp8vxQeHYSn0YUcJPTVUrRog1pl+hJ7l1c1MfC2nRt9BGJZSoW7a3pHEgp67sCdymtKjvrDLECiuVAE87zt7CsuqaLSSQzP+8u3ur+Cfr6TqPvWQWLgNMxOC1DFcNCU9CkIs3Jh9Kc9tR0amr1+uC7AyiNLZFSIv8lNk5VQVET4zLE50bD1dKNrFdr15GjrkETTmsID36BUrT8KFVra63Os7YrT4j5ktIwNsOl4Qewd9RMaPhJBk34WRIVOo2eHV3h0XidytsTGjiG1v99lSl9yiqSgiapZFZhYlKCjbc3Yn/wg5S4VKKsEFml0DAKhSRO++WglWjT8GWVeil25obQux+CspgYQQctm4S8r0Wm4bsjYVg8tilaNOoAY6lot68viiyskG1EqY2PQehAk8fgJmphCDrQpIaTqANNxE2gDjQRN0/aKKUDTarOIovAMuW/kddy0hp4qryAVGtAXRFU2RbqCjRhQde7Ry6A00ca92yHDhPUF3uMvxeG0z/vhIFxIVo8t0XYrPo031OeN61o/SljPlQHmrDd8MAVp8AAxsm3+2ljWZfXUR1oQkYvMM7NRllkFKLSchGUmAU7M2P8+PfPGN6tBzq36kSuPpnkUKKPbt72yMjKQHxqKlp6epG7gCEKra3wx5d/VelvhkUWjrY8j6KCIhhlWMH0fJkAmpRSWjq7+EgBEiMCs6Z2moSZnV8VRPbEhIFhCQwILCgsquB639r3HwKPXxZSsNzJ+jiXACtOj+Lg1BdjsvXNSc0gjRM/cteRdycS06bYMuqAJv/9uB0JQRHo8+YEuDTzEtsEpWv0pLSSDErXOEuggo1wHTOgmAnl0fhXhQCF6MqVFDQlUtml+PNYdl7e5li2ODPQchg0oZBlmugbWJKmQ1WGF29wikg0lnVYfhyzB85mjcDUeGnwKTPrFHg3+YuYKIpBJU1Bk+zM/xAVNoNOinvCQw1toprOoybXs/g2pzx5N/2bWDst5Kpgcc00dqk6OA3vdn8XHV27kbuNJq2Iu6auQZPM9MOIiXhH0Lth3ZtHKZLi15DI8Q9wcp0BR5cZGnX9SQZNGHBi4IlBYAaDVYUUONYUpJKCJrn0BToZeQw/XKlwJyvbQl+qpqRl0pTYfcT6cncYgNWjNkKvxKxavRT+PbAhUXR8/DGKr5+g1F5imlAK0TemLbAk7xa8Sa+FAWW93gNRNms2MsoMSRxd1Ugfjc91oMmjcZ9qu5c60KSGM6wDTcRNoA40ETdP2iilA02qzmLE/VeRm32ZHAt+IxG2LuUFwkNeRF7OjRqJ29U2aMKgxeUthxDjH1Le724vjRQ205pE9K1gBF38Cg260AtTQWu06MLgSfVxbPlmpEXFyxVq0qcD2o3tr/TC4WvOIJ3sDvfO6AUHC81SnxRVroppYmtQDP1163B13TYweNPcxRqOZFMsDbZCTibbS0cLEwS6mONXsl7cSnonpj26ILmdL/aejkBJYqlc0+dszyGnWRbZpxgiPZIsvS/qIal/KRzcTIjWrIeErHwkZhUgM19i8/1W13nwtuwAEwMjDGqu3J6T6c4GRkVIz0+HjaEzmM7MsW/RT8jLyJbTjPE/eBYBRy9UmZIer41BQz9fVbdQo8/VAU2OfL0eGfHJGPzuy7BxcxLdXkjAEAIbYoiyfqhcL4Sp6cVFycRGOCqnDSK60moKCq4XBfGCjomq4M19MQnByoImLGLKfypHHolkMvjDQq9e9m2xfMhyFBToo4iYTRxxUR8Re+YfSjeaD3unlxU2rSlokpayDfHRnxGLbgKx6RapGtZD/Twy9A0Co84J4A6DPNJgcU1LMwPMPTxXcKky0DPA6uFrYEvpDAVF8t9HbQ2grkGT1KT1SIj9RmBq8Gb4UYrUpI3U96W0dqnvbpr1/UkGTeJjviDh9S00d+/THCpmaMquB6l4vbXtMNIc+0btpcKgiSnh9tHpsZh9aFb59QwGYyulvjVOR37zu0J6rqlZK3Rq0Akf9F6AXJJ2Kq0G6TCmei1yM1H8xlgUJN+oApqY+PSB0Y87kVVCz77i2vneqj0ZWrhAB5poYRIfgyp0oEkNb6IONBE3gTrQRNw8aaNUXYImfDb+KBwkhAaOJ6prEJ1u7qAXhAqwQRvidrUNmrD17N3D5+WWBrMLhv9vqsbLJfDGKJTqhSHqVD94tp6MZv2Va6OwA8/RbzdSykp+eXtOjd3RkzbrRmbK04Ne23gZ9+Kz8MuLndCqgfbYEKpAE9585ZeWIuiFqbCIDEd7d1u5eSqkF7lrUenEEClFiKsldtDJ2RavxrCe/CI2J/wLB0dfhO0NAxIll+m5kYFOd324e/jA27kFrl68hT/XbsC8Je+TsKc8IJKRW4S4zDzEZeSjpVMzzN16G3bmRoLt8gj609DWrLwv+nRqxyki35z9Gim5KVg+dDmycosReTMYZ3/bLQAPDEDIhtTmWfbf+B6M/aLipVjjRaHgQnVAkz0frUVBTh5GfzYdJpbiKdmVmQclJVnEPuku2F02b31Fm8MhYUWyjzbTx9yDcxGZGamybt5gsK6J0UG3ck0TBl319auOLzvrP0Hgk4EAFvjs7dEbszvPIWFgPSGvPyN1F2Kj/lcty0BT0CQpbiWSE38hFsAsYgFMUzmuh1kgNvID0sbYJ6eNwU7oJialpLnwE/YHrBMcRgihRCvXQVg2dA2y8opJyF/7vzR1DZow6MDggwsJAttXIwj8MO+PsrYzUnfT+l1IeiZj6N59oVEXn2TQJDJ0KoGF50nTaK0gBKsqpCl3RsZupDl2hJ5d6oEQFqYG4FS3N/fOJIthiY4Jf6/yiB1ivqcdirzjUNgqgg6ROtHzTGJ/PLHlRIxrNpFAbMNqu2euR+zIgNMoeG9iVdDkx8ModmuLPL3q61A1/vr2uQ40qW935OH0Rwea1HDedaCJuAnUgSbi5kkbpeoSNLE0M0Q2vdDW96jIoz8mWAxLIzbyQ3qB3wM39y9gYz9Go2GoC5qwO8odAkGMabPr5EsibMTYqC7O0QZalmUiLcugiSapGcy4YeaNXpkdbm+QCFZyqg+n/CgKqfAsa2m0Gd1PKCKm3Q9338bJoCR8PtoPA5o5azS3ii5SBZrwNT+euY+u5kVotfgDuFIeduVgVgin7ly2NsZxcshZ+err2By+FcfDT6KFZ3uhuIt/a7gaOyGywR3keRbA2NMdY5pPhH2BE04cPY7R4ybByloxGMQMlzMhyVh/PhyBxGyRRh9fJwxv7Qr+25AYJnuD9uK3GxtpQ1iKcS2GYGqHN3Hql4OIuhGI1iN7o/mAClYU13H0u43gNK3KoelaUHVTxIImpdT/He8tJ6BDDxO/naeqWrnPK7PAmPIdFvysAG4yyKmtkG7Mf73+C46FVi/EWLnNsl1FKLHLQH57f4FlUplpwpsRthNlMEWWyTal/RT08xhI+ibGKKTUnfsBwwRnG3a4URSagiblQEQNnmPammdV9STEfk3AwQY54MDYqAQnIo5h1dmZNFfpFVXQxmuM3wd4g8Cn/Dx9rQP0dQ2aRIe/TWmiR4k58B25ldWtqLOq+6Lq86yM44gOn6NSzLi6ep5k0CQk4CkCI+LIavsAPT88VE238Lk0ddGvwxlYmjoQqF5K6S6qwUNmP5qRs9vqyytwKvxseVu5OWR5TOLbFvu6lYMmlZ9nC3otQGvHDnLpooo6a21QisLNH+LK1h3l6Tk+M6fBcMAM5Bhq75BE1ETVQSEdaFIHk/wINKEDTWp4k3SgibgJ1IEm4uZJG6XqCjRhRzo9fQJMSk3kcvd5DCXkJGFsYEJinBVq69oYm6Z13LvdkQ6BCwQlen39itP+hJivSNxuU7WUeVVtqgOaKHKhaTmkO1oNUa5az6k5Uj0LaV+YXTCCQJPqmB7K+h1Hp93pdOrt6DwVaUG9cHP3SaFo5+eGkkaGvNYCa6jcOXQWZjaWguirOgyClSeC8deVKMzq54vnO4t7SVQ11/x5daAJU4dPBibh3R03MbOXJ2ZZpUPvyy+rVFsZNFn25hvILaDNGr9sGhkIL6abdlyBu6kbvFvao+Vrg1ECfeHfTQxMYUZOAyLeXYV2r5JQ3gH/OBy8U5HeNLW3BzxcUvD24YXILZSAjoaks7Jq4Dxk/BIo/P8RH78Bc1sSTZEJdjDiNSQb9YFpkkt21vs/+1lYJyM/eVPMbSwvwxsx3pA18lpFLIwByEzbj5jI92FtMxgNvZapVVd1hY2Mi3E87CjW3VAtwli5nrK9RShzKEKu3yV65plQ3n53uSK8GSrIDyQgzKWKTscX/b+Ar11LwYo6JGCo4Mbj3XS74MJTOTQFTSJCJpMGzBXSgPmN+iYPtGltArVUUUrir0iMW0EC1K+RAPU8ApFKkEDCr28fmiKkSlYOE1NfzOn+BXq590VRkXZPr+saNAknMJBP+r2abKY0rrZamtG6qYbXF68zc4uOlM66XqNGn1TQhJ21Am93pp8XQ3KNqrrGlU0m6xSZkCtbkfUY3EqOwegm40R9B0xMynAkdD82+28o1ygpKUmj79dNoSlZ0MTA0JbWYsWBiamhKb4fRrbSBvbVpsUxMGNjVIYL77+BJcHxWNLWHM3fX40sfUeN1kZ9v0gHmtT3O1Q3/dOBJjWcZx1oIm4CdaCJuHnSRqm6AE04Xza7OBWL/vsUqwd+S5tJw3IxzIKsbCz6ahFRQ03wwdsfwMRaQv3kKKCNp7o069zcHKxevhRjxj+DZi3Eu3JI2ywtzacXlk7CZqd566tyU8zCdixwx5R2prZrEuqAJoqYAqo2vexaw+41sqEKaFE2jpKSTOH0ipOqGjffJ5yYs04G62VwdGd3lrakEEeREBgh2BRz9JwyFm6tGqs1PX9djcLK48GY1KER3h4oqVMboQw0YSMhM2MjzN9+C3tvxWFan8aY3c0NBttI2HWXvENKcGK2oENyhZgm/xLT5EMjBzIT0ENjR0tywpFszOYn5sHH2hdN2nij1+vjkC8DAKq7hrm+NNJ3OeAfj9iMPLT3MSTAZBbyiimBXCb6ZjfG0OSWcG/ti26vVmU+sb7N0e82lDsZMbOD7aMrg13amGeuQyzTJDUyHv+u2Aw7dxcMels9Z43YyIXE9tpdzvaSficdCNRzbjBXK0MxpI15bE4k5h+rmX1xbs41OqnNhAkBHrKMNU79Y4cc3uAbGTeS67OdqR1pc6wWRBbDQ9m2dTfpWSwgXYsXqoxNU9BEqgujzim2ViZWg0rYFYlFLm3tx8LTewn0iXE1a/9MxGfdE4QlKwfPJ8/rt4O/QyMLnyoAvQZdKL+krkGTCq0exc5BNRlLbV/La5zTXE1Mm5BD0z8aNfekgiasjcRpiLyOfZopd+uqPKm5mbtgSL9p844vQzYxQz/u+wn8HNoRwF8hMF35Gn7WRWWFYeHJBQTE6yEvP4WAlnjSZkooLyoLmhgaORKA6ydXTQvHFvhq0FfIzCmu1gWONbkCrpzD4q+WYMmSybB3JgDGcoBGa6O+X6QDTer7Haqb/ulAkxrOsw40ETeBOtBE3Dxpo1RtgyasC2BKuf6vb5yMuzF38OmojzDKgVJMjv6LXBLCLOvTHVNWLKIcXAP8MP19GJ27TKclZGsydCjynVyRW6aejWRyciLemfU6Xp82F737qe8YU0QvCyF3B9IpsDPlBh+Xm+K05D8RH7MEdo7PwbXhQo2mv6agCTc6adk71bZ9bfsx3D93E5aOtoJdsKqUHmWVScX8LK37Um71mvJit/efxr1/Lwn/382vMbFyypAcFgPepLcY1BV+w3upPTengpOwYNdt9PZ1xNJxbCurnVAEmugT4ymTrKN33NkPO72BWH40DPtIgNaarIBtTEgw4bPPgBsVJ3yRqbmIJHcdKWjyVmQWTGjMnT3tYfLAsniugTlaOraFs6cr+s6tusHVZDQMQliR2OX0/e9h5+0Lgi2ybMyM641GBbboPWUY3Nv6KRXS43StC+v30ga+VCEjRZO+KbpGLGgSe+c+zq7bhQYtfQSASZ2obGUqTTVp4P65sLGuaQgW1AYFmH1wFlLyUmpUHW8+CmgDpG9gTSfuFWl17PRTSlosZhbtyx2AZBvq0KADPuy1EPFx+xEVPl9IzeAUjcqhKWgitW1u3ua6oKdSnyM78yQ5/cyCnf1I2kB+ia/PLMWVuCvE3KpwK5Ltv5lFO5pTW7hauGLlsJW0+TPSmsBkXYImbNF67xan/umjRVuy137Egtd+yN1BApuqCdlFaxJPKmiSmU5C7hHvquWaxJpXRvpJ+PTYC7ieGCw8byyMLLCaWCAm+jaUPlNVZJWZlqV6eZi2fwrSs0MEsKSE0nGkwSxbZr2UgyZ+MYL9NX+/Kscw32F4uc1kErOu/n0tLTkeR/b/iU7tAmDh4CHKGUiTtfOwr9GBJg/7DtSP9nWgSQ3vgw40ETeBOtBE3Dxpo1Rtgyb6ZXlYvusL7A8+UN7dDc/9hKYnriGLTun3Ot3C1m30UmhQgpee7oLBUb4wKTJG6fDhoMN7mFpbwIz+6FE6gqrgTfuVA8fJMvYHDGw/ABOmviZKT0O23upOyFiQkDdp1nbD0dDja1XdUfi5OqCJ1JZVtiJ2PmEHlOrizK//IO5uKLq9TK457TRzzeH6paKbDT2X0cZtsFyTl7ccpjQg+ZNeVSyY6vrMIrAsBtvE2QrrX+ms0dwquqgyaMI2vwW0IXn+72m4nXAf0zu8hc4NuqGrp0RHhTfNFkW50Js5k9Q4M4R/Y5vgGyQGe8bcQGCaMGjiQW46TZwrWFG5/QZhY0AOTCzMMHqxZhablftvSmKXW+/8iV2Bu3A7NgMZeRK3HQ4GSxg0KaST98znDMhy9T06JdRTmsN+7vc9gv10x6cHw6dba63Nr2xFYkGT0PO3cPXvo/Du2pqYL/LrSlXHkuJXk5Xpj8T0mkmMr+kID36OUhhuUwrARtooSPRlahI2FoacdUUAlfLTWXXqz8k6S/ekEOZEaWd9Erbtzso8JVRhZdWXcxaVVpdCrjD37w4nEyZHNGl1sko5TUCToqI42sw+JbhgNGl5Qp2hPJSyfG/5Hns3+RIX0/SxM2BneT8KCkLJ1lsq0KtHJ/ON5Zg7HRt0xIzOM5GTVyY6Pa66QdYlaCLVtGFhT98WRx7K3Nek0dLSXGJssgiymZDmqkk8qaAJP9/4OefgPIXYc2+LmjpOJ9wbuBO/XpgB/RxTmBtQ2p2zPvyc/LB4wGJkk76J1OqeK+RntbFhGj76dwauRVesLxbUZlYc/+H/5vRAw+1OKPHNgn4n03IRWEWdmtNlDrq49SCgsvq0OEO9WNy+MZgYeM3go0UdKlETVUeFdKBJHU10PW9GB5rU8AbpQBNxE6gDTcTNkzZK1SZoYmhUjCM39uCr/Z/LdbWBbQNsnroJQfe2Yf6NhTA9TZs4Ak3ye9zFlx2/RDOHsdi7eidyyUZVGqyPIQVQTK0shP8W/r/w35bCf1/eeghRwffxb8JFtLWlH2QHT9LWeFkt4CQ3+xIJn74mqMR7Nv5Drt/ZWacRFTqdHC96kQXmjxpNv1jQhJkbJ77fKtcGj3vA3OdVjkfqTFITwc+c7IuIvD9FeHnybXmsylgV6a1wIdYysW2ovpBrOjnJDF9zGtamRjg0u7dGc6voIlnQhDfDRbSBnbFniSDiyqFP/1s/7mf082lWbuFrrl8Kk9AQ6C38sLxKBk42ESjH7jkrckrhaWki0JmF8CUL32XLsG7WdyguKMSYz2fC2Jz8G2sQ7GRwhdbxd+e+FWphwISBE2mMTG2Fnpk+CHOPw92m4Xim1TMY1WSscLKuKKRABQv0dp88ugY9U36pWNDk7pHzpH1zDi2e6ga/YRU2smI6VW7DSja8bMcb5N+DTkczCVT4j8AFezFVqCzz4K6qLCemQHLizwLIY2k9CI08v0Zu7k36Xr0qCNd6+VZv3828IqkgJKc4cKqDbGgCmgQQu+rWtc/RtZs3aWX8KWYID7UM20tzOlELv7X0TJZ/LuRlX0UxMcYkQaws26eq9FWPvvQCmFiNLarYAdYlaCIV4GbGgKfvBrFdrFflmCnDjJnmba4REKm+jfyTCppUsOcWE3tONRPPmLRC7qX447PTi0ir6CqMrjrDMMkZehMkbnUjm47Ecy1fICaJkfCsZGcjCwtb7Li3CzsDdwtlhLQb0wb0NXKosobKthQCzQyg10E16/f7oavhZNZQRVpcqcCiKiNguqnfOWKu6IRg69UXV9cZrc2ADjSp4VTqQBNxE6gDTchSkaiTHAUKaJXiZlFcqdoCTViwL70wCa9tfgkZcfI0907enfDqgNfx1amXkVGQLAea2Js5Y/WAE7h/Jggx9yKQn5WD/Mwc+oFVrQLPI84ryS8HTdzNXaGunge7FbBrgZXNQBKbXCk3iXm5t+jU83miqLamDUf1Gx5lsy8GNGEr1uMr/0R2cjp8yaXGq6sfji3bJKTbDPtwSrU3NisxFYe++h1mJAo6ksRBNQ2pU5Cjy5t0qj+7SjWKREa5ELNgmA2jSQxccQrsJHN0Th9YmGhHxFEWNDEm5saa89ux9Mxaue752Prg/LQNgvimVH/EyrAMRnvphXLTpvKyu+kl79fSEmw1MIaF9F8NDVG2Zg3yLGywd9kWwa1m4FsvwN6jwnVJk7kwMSlGPq1l2cjOL0ZSdgE4XSh53X6UEYgz4J1xsH/AkjHQo5faEnOFG0S2gt6/+Bch533cV3M06ZLKa8SCJtd2UPrY2ZtoP36AkD6mTkg1LtwazoaF7UQE3+krpLg09atwfVCnvtouW1ycTH3sJzTTuPleZGeeAVvJ2jpMRINGn6psXrqBcm30P9g5PCtXXhPQ5I9f/odzZ27gk8+aKUz5UdmhOi5QLopZyVK6ID+UNDNGC+lFzOApLkoUGBnMzKitqEvQJCNtL7EaFxDDj1iNBLY9ihF0pw+5G6USoHmKAM2qm3FVY3pSQRN12HP8nphfmkkpnNOE34uCvEDoXzaHQaID9CdWWJ3P6fQqWhIxMizkAzRs+BxKTJrgZmIgHYq40XemAd0fc+EQoLC4ahrPfztOwM2nIXzbq9YaszCxQI9GPZCWVcGKVHSfI0JeEQAesZbKqtZKfftcxzSpb3fk4fRHB5rUcN51oIm4CXzSQRPefFg/sD7NIoteTYQkxc00gzMGsCTdhJRMOk3QUrDglymdlH9y8hMS0IxHXEC4ULOrrStt6EoxY/gsfHl5KdIzzpOVbaEcaMKU0N5NZuDD3uQUQuk50hNCBk4YQMnjv4X/zpb8TX/433JS0unfcquAJqzn0ZjxdHwAACAASURBVG5sf9EjS0/ZjrjoT+mEZwIauC+Su66wIBz3740ULABZRFGTEAOaSNNrnJt6oO+0SUIzuxauFjRDFLmkyPYj4spdXPrzIGrCKGAbz6A7El0SZWKRDA6wUK1s1MSlh+t5/reLCE/JwcbJXdDYqSL1RZN5ll4jBU309CTinkM3TJVLc5GWe7/vRMzpNgP5+WRVSvgck0hsCDjRW7kCOCvZkN+jD86XleJFfQOU8zneew+FbTsgmzZv50k3JPpmELq+OBweHVrUpNsCfVpZrP/rNEzOXyRbWzu88Ik8iCZLwa58PQNvadEJ6PPmBLg086pR/xRdLBY0kaYKyQoJi+1MVsYRxNP3s3nL75FfZE4shEk1AjHFtluTcixkymBPavoYbN0cgOeeD0PL1h8ScCL5blcXaSnbaLyf0eZ5GG2ev5Erqgo0sTCQB5pZ5PqXXz7DmTP3sGbVFEozHCFXX06JNjk2qkYm/nNO8+B0j2atL1J6gASuTIpfRQyen+k5PZ50FEIFJx12aWG3ltqKugRNkhN/QVLcynLXoNoaU23Wy7+V/JvJYKGxibfaTT2poEmQf3dihGQJVuOSlD7Fwc9bfp+Yf2w+7iXfE3R+8nKuw+iaK4EmdsgdckNgipaUZKCMtEq+H7qMUncuEDCiBzc3cluzrACsjVh7ztgQWTIpoGrfsAcXsGucIg0V2foS45YjJXEdpVi+QYcytQPia9p/bVynA020MYuPfh060KSG91AHmoibwCcdNDE1LcUW/83IKczB1PZvIL+ANnLipk7tUrUBmugZFNMPcEWufvy9cJQUFsHZ3RVknINjccdxKPQwsrOu0UlUJgqOuRM/lOxZ+0ULDi38Z3iT4RjSeDjl1IpjHDCgsJ9cYzKzM+SYJv1mPA0nX6pfZPAPOf+gSy0uZS8rKU4jMKG3IITW1O+MyBrliykCTbjvQf9dRUZMEvKzc5ESHiswRQbOeU74m+PML6RTEkA6JS+NgHv7qvaj0lau7/gXIWdvoM3IPmg2QDNtEGkKhKV1PzoJWq10nLIpOgyYsA2xpiwTbmTe9pu4EJaCb8a3Qc/G2rEiZNCEXwQp+QszD8zAnYQ4hCZXpH1xu6aGBujkaYc3O7yJPh79y20aGfyzMqCTt7nkyhITU3Uenn4aJaNGI4OAPo7b+8+QQO5FtBraAy0Hy9vMarRYlFx0eO12ZIZE4BIJ6X2zUPXGW1qN/4EzCDh2EU37dkTbMf202SWhLrGgyfFVW4Q13n/2s3D0bqhWP3KyzqO0+AaiCi3h59oLd2+OF4RS3Ty+UqueuizMtrFsHxsSYoftf9vh1ddi0K33RkrRaamyGwX594lRMUahoKYq0MSOUsn0zhHgFxQk2VDl3sD6ewk4GVeAdX3sYUqijqyXQrx8YOJEZJRWuJqp7FgdFpBaLzducRDGxpJnuTRtyZNsk9NS/kZm+kFhDdjYjay1ntUlaBIfvZjG9RcJjn9IwuPP19qYarNiZmUyO1NTy+QnETQpLkpC8N3+AljCoEl1wZpX/J64O0iSYsMAFf8xudFYApoMvlJ+ObsBNnHqjtWj/iQBfpMqB3HMWLEkIfSUzILaXBLldWdlnkB02GwCbrpQGvRvddJmXTaiA03qcrbrb1s60KSG90YHmoibwCcZNDGh/NTLCRew7LzELWF6x+no5d63fCMnbgbFl6oN0ES2dd4c8Sap86ResO3UEA1tGtCpoR54M8Ciq6y6uPSLvXQioo957w0XxMFMTHyEKgpKClBaZCZ6MEkhUTj6y184HPGfoGkydNx4IT1HnUiMW0YnIL8JAmwsxCYfpZA4T+iRo8FtdaotL1sZNGHA5Oxvu5F0P0quvr7TJ8G5iUf5v/Fmlze9nM7AaQ3K4tjyzUiLike/mQQWNRYPFsnWx1aRfG8aeS2nNKWqOgGV22bWiYW9DRg4qUl8fSQQu27G4N1BzTC+vXqbaWXtMmhSQuym1Lx0FBQXEIBSjEsRqeXFrUwNBUFXO3NJzr2lsSUBdUblwpGmxgYwiw6H3tuVBPnatQM++ggZRNCSsjvCLvrjyl+H4dmpJbo8P6wmU1HlWl4ndw6fQ/glfxTlS1hhP7q0xsKx7TCgmTgNmaT70Ti55i9YuzpgyPzJWu0fVyYWNDnw+a9kg5whpJpxypk6UVoaieCEf/DR6RWY1WUBWlvlEPBqKojC1ucII9Dk9s1Q7NjuSqBJLIEmmwg0UQ5+yo4l+O4AIf3Ep9luQexUGqpAE3Yus2ZLbFq7BXePCKKOG429cNLQBetyL9JjzBCWpM9UtmgRCpq2QG6parHthzHH5Ztv303kONSOhHQlGy6pnW3FM3suPbOn1loX6xI0iQqbSalcp+gZ/D09g8UzJWtt8BpUHBU6jQ5GzsDd5wdaZ+rrVD2JoIlUy4adtbxI3FpZsObVpbjzWH5hWXmR3Jwr5MqVXQU0kbU8H+A1AFM7vkngioGcOHJdgybSAyjWumHNm8ctdKDJ43ZHNRuPDjTRbN7Kr9KBJuIm8EkFTXiDlloQjxkHppONa2m5Y8y3g79DIwsfFeJa4ua2cqnaBk2ubD0MI9pLhxrEYNefu7Bw6afwbaCPwIAXha409PwW3684SekQWRg79pRwksgnipqG1HKYQZPn5kwXbE3VibioT4hKv0PQG2DdgcoRSNRZtgvVVMCsMmjCdrDnCDSpHJxSJGsVLN3w2jZyxlPzXlI4pJLiEuycT+kkFOOXzoWBkTiWjmxlOdkXSKjydUEboK5dG9ZfCMdPp0PxYldPzOhTsTlU5/5VLsugSUZOYfnJ2jdHAwU2y8jWbujf1BnOViYwp++dbFROcbEkFpTxfycB0i4RwsZG0DHJMTKXywGX3iMHLzcMIJaQNoMBk7uHz8tVedfMHvmdO+HLseLdcHZ/tBaFpJkz9INXYeWsHeFUaafEgiY731+JkqJiQVuFNVbEBjsbFZcl49W/OyOrqJCsfC3xVd958LTtAj2jtmKrqfNyLGYaGjgWgYH6BJq4CEyTBm7GwvfLwEDCJKsuYiLeE5gUDRp9IpfSowo04Tr5+W6emoCCyb1RTBpTcqAJfW42YxXKhkxAJp1E19dgy2G2Hm7ktYoAhAFkxzqP5uNIObCdlryFrOC/IM2Xp8nC9ONaG0ZdgiZS4Nq76d8ErtUs1a/WJkTlup1P9+kAOc0trZIKJqZPTyJokk6sqbjoRYJ9OtuoKwp+T0zJj8PMg/Iubflkb15MtsFyTJMHwKhsPW90eAP9PAZSCk3F715dgybcH34mFuSHaMxEErOGHlYZHWjysGa+frWrA01qeD90oIm4CXwSQRM+FbQw08ec/bNxJ+QmctOzaHNeCnNKz2jm2wrfjyBNC7JyK1Ig1CVuVhWXqk3QhPVGrm05AK+eTfDJ6S9ReCoPDZ51wrejX0No6Lcwtxom5LT++sNKoqMaol/f/5Cfd4defD+iF+BnNBqWLGgybMIEwaFDnYgOn4usjH+VsizYyYE3QbJUcXXqrwyaKHOhqQyaMIi2gwCRMnKBGPvFLIWsjqRQYhKs/gt2jVwwaJ4ElFI3pMKTfHLPtq51GVLQpLGjBb4e3xYNbGrmQMN9lxWCvUwMk7nbbsCYbId3TusB+wfsEjFjtCV3J/3f1gFHjqBs8WIU+DarcjKfl5mNfZ/+BBNLsh3+TDu2w9K+HaDUs5zUTLmuFpC2ylqXNtg3oxfsLcS5U1zcfACRVwMEnR9ZUE7MHKgqIwY0YcYM6/MYmRpj7JKqAsPK2uC6Lcz08OlJEjINWSu4cfAfZzNL/DLxDLHX7LX+bFQ1XrGfpyZtFMRfg4MtykETF5cCcv95H/ZOigFQ2brTkrcSKPC5kHoim4YkBjTheljbpOzcJhR//rY8aNKjN8z/txWZpaZKrarFjrE2y0k1YRjItrTpVy6s26Tlv0LaEgMqDKxYWvemdMIfaq0rdQmaSF2hVOla1NpgtVBxfPTnlGK0lVKMFlKKkfog8sMGTY4fPYh9u3fgm5U/Ebip2jlGC1NGz4lvwOmxzg3eItbU61WqNKLfLnNTPcw5NAdRmfLs1DLSLOJDD1nQRJruXLmib576Fh6WjZFXKLFWfxigSVz0p2ANORe39+g5+Io2pq/e1KEDTerNrXioHdGBJjWcfh1oIm4CnzTQhK1QTSg/dd2NX7Hj7BZkp1RYi/KMMXAyrOtozOv2jsQ+UaSTjJjZrk3QJJRcGpwb2mDp7UUICb0O4wueyOt/C33adMKMzu8TE6KzHEU0M20/YiLfJ00TTxKP2y+m+1XKFBYWIvTybdzYfhwebZuhh5r2qhH3JyM3+4qQZ8v5tpUjLOhpAnbuwrvJX6QJ0ErtPsqCJqXEDDn3+27SKgmrUo8iLZYTBIgkEzDS6/VxChk0gSeu4NbeU2jcoy06TBykdt/Y6YAdDzh8WxwitkkjtevQ9ILgxGxM23K1/CWO61n9bHt0cFcuhCemLVnQZM6267gSkYYpPb0xpYd6woRCqoM5sSJOnEBx+47INFAM6Pyz4Hut2Q7Ljo9FdzkNSjZKCGhc5dQac/s3wTOdxKViSYWCXVt4o/fU8WKmUHQZMaCJ1N3JyskOQxe8JrpuE5MS/HNvB7bd3Uqb5P/oOkolYd1SEuZ9qsV8zOs+X+vPRtGdU1EwKX4tiZaurQKaSJkTqtrhVDlmHlRmf4kFTbh+a+SiYN272HDgkiQ9xyYGJj/vR76he70Fm6TzkkiCqCkkjMqCkXr6xkiM/ZYYJ2Th7CVh1eWTY0hY0ARK1/GlFKZdqqZT48/rCjQpLc1B4O2uJHprSuK3FboUGnf8IV2YFEdivWS5zfeND0fUjYcNmuwnwGTblvX4deN2Sh8WB0qrO8bK5StYVSuENS4b/J5oakwOcFdW479IfgZWDdYuKj2XDb04E5SNKxD01xSFs4UzVg5dSfpQJsL3/2GAJumpuxAX9T8hBZhTgR+n0IEmj9Pd1HwsOtBE87kTrtSBJuIm8EkDTYyNS3A87Ch+JdAkMTiSaNTFchOlT6cLrs298ErbV/CU91CiYIqntKua8doETeJv3sauyL9xLPtnGMbZwORSMwJNbqDUOg9ze/+KAd4jqmi1hAVNopfggCpUdFXjkP08Mz4Zh79eDwsHGwxfWPW0prq6QgPHEWU0GD5Ndwj6KpUj8v5UOs05Dw+fn2Fh1UOdbgllpaBJVHA06V8cQUZsEqUZGBCrSHLiw7ogrYb0UMgCuL3/NAmNXkLzQV3RerjE3UY2pO4tLMjq1Vl9QCcl6XfakHwnUOB5Q1eX8cGu2/gvOEmuSUuyHT5C9sM1CSlocvRuAhbu8RcYGf+82QN8Yqdu8IulOUnKZpD7ABF+FIYU3NCG7bBsAwFHL8D/oLytrmnrFvgy2RQtG1jj1xc7iRpOAQkN7/n4B2Jp6AnpMWZmxgptJkVVVqmQGNCEdYdOrt0GJ59G6DdLHJvMhPYr/kk38MUZCV09O4sEEsn+mYMFDi0suwvPxsE+w0QLR2syPk2vYWYaM9RkmSbqpOdwu2ytXFycQmDyPkEom0Md0ITvjaVRNn6ePAEn0w3w57KlKGzUAnlldXOCrunc8XVSpo6944tkU3pZAEkYMJFuKtkdJMi/p+Csww47tRV1BpqUxSCd3IHSMu4I9/tRDenvib3TZGITvKv2MOoKNGFAnB0KbfQqbHJZQ2jbjt+w7Z/L+OOHt2Bt04F+pyXOTUX0fpZrJF5rTZ2BSx2HfJr9I2j2yIapCendxV3APwH/VFtl0vF45EZkw/NV32rL+Tn74eV2ryA7h0T461gIljsmdSM0NHJCk5Yn1Jmmel9WB5rU+1tUJx18bEGTC6EpSCTV6NHt3ERNpLLyOQXF+PNSJG7HZMDFyhQDWzijm0+FP70ONBE1vXiSQBNDwxLE5UThvWOSlwp2muG0HNmQgib8b5/2W4QW9m2QVyDZNNQ0ags0yYmPw7mAE1h9fzGMLJIINHGQAU1yhVPBb4dthI91czl2QUbaXsRGLhAsCtmqUNPY+cEqwbFnzOIZMLYQ/4IjFV30Jeq3EVG/K0dMxDuUp31YsP9kG1B1g0GTgNM3cXaTRLeF9S86PT0YZjaWApPAtqGzUkHVuLuhYDtip8a04ZxZdcO5f/EvyE3LxJD3J8PapeK5I7aP0hzjRl4raUMyUOxlWik34edziMvIr1LXufeUi96KaVgKmrz0+yUEJmThrQFN8HRHcawMRfWzo051KXIVtsMjyHZYnNCnmHFIbah5LTPzzM2vMZr26YjR6y4JFsq/vdQZzV1V62NwWye+34rksBj0Jethnw7epC+iL/cdFNMfRWXEgCZR1+/hwsb9cG/XDN1eVu10wi/zWUUpmH5gGkoeACUMWpaVSlweDAxtyXKYRHkfPBtb0rMxV0vPRk3nQdF1rDdw8uiH2PJnMabPskGr1qQpQ+Ck2JDqeDRw/0yw2eVQBzTh8sX5l7B9/T84dTYQm37/E1lK2FJi+1RX5TKIgbhh3df0vXPBsGF3FToJBfp3E0Qwm/qdpdN1m1rpWl2AJvx8MdBPQlbWFWSlXYO964JaGUtdVMraYKwRxuuV1626URegCbM3zOn1oKzYgIADPeht2ICSuxfJ9ccfewhc3JJmig2eGZTSaUrgLKX6PvssCpo0R+3Yc0uF5kHiqNcJ2JY/HDMzLSPRcfkDNUVzevniRSTExWPk2DGipryQhM8fBmjCnWOnIHYMkgWDRXW6nhfSgSb1/AbVUfceO9AkNDkH/wYk0J9EAjfs8dagptVOZXXlGTD5Yn8AnK1NCHxpSCBMvvD/Vz7XHj6Uo8+hA03ErdQnBTTRLymGvlER3jr2NhKzEwXWQR7pgFQOY3Nyh/CWAHpWJlb4fuj3MNazJiEveXBF3OzKl6oN0ITrDA64gqk7X4d1wxKU6UdXAU3Y7rKBdQuBIlpWYiq3EWWqNZ8mNnBnQbQJmgyrfGPYZ9pEuDT1FF3HvdsdhQ0Z06KZHl054qM/ozztbRrrrgTsPwX/fyWUa5/ubdBxkmp3GmkfCnPzsft/awSB4Alfv0V/c36CJHLTsrB/8c/gtTLmc/W1SHKyziEy9A0hJYdTc+o6Zm69hutR6XLNsqvN+leqpkip0zcGTX4/E4YvDgbA094cW6aop3GjTltcVsoG0qbtcOiFW7i67ShppZgLAq58j6Wx7N8gbL8Wjec6e2B2v+pPFqXXSFkrT80dj9uG9zDQeyCtefnvoLrj5vJiQJPgU1dxY/dJNOndAe3GVe8KwifAVuaGeOfwOwhJC6lY69mXScNE8pw0MmpQzgizMrbC6uGklwIrrTwbNZmD6q65duUiVn77BT77agU8vdQTqE5N3oyEmC9hYz8Gbu5fCM2oC5okU4pLfHggcnPboGu/l2vNxl7b88Y208uWfoScHFO8MjlccDVjdzPZkDIEvZtuF+1KpG4/axs00acdPNvILjk+jzbt97Bw0FLKQmtLa10JrU3dAdRx+ayMo4gOf1sulUqdLmgTNImOjEAC2c137Cz//GeW7/X4K+jh0QOU2QuzwlzkTx2M4vg72GPUEFuMPbEh5wI9U0ph9irdjzHPI8NA/CGMOuMtyA+lNLzRNRbDV6dNadmHBZrw+uB14kaitzYkfvu4hA40eVzuZM3G8diBJgxsMBDCzBEOVaBJdeW5nrlbrmPdK50IOJG81P5CThDMYFk4QqJ+rgNNxC3AJwE0ibkZCCtrQ6y9/ANuJdyiE1MDss4ksUk6aTK1shBYEuwwIU3VsWvoBDM6YeZo4dSC9E3mITuvtNzuVNzMVi2lbdCENzomKMZLPzyD8KxwuDRrJIiTGcZWpOeU2ZLArUUnOkkxRGe3zni/xwd0Oozyl8OM1N2IjVoo2GuyzaYmcX3nvwghTZU2o/qiWX9xqQulpXmUS95ZoPw3b31VYbOy+fXq5GmzxSqn43D6FQfbBrN9sLohTf9gpgkzTqQRfTMIzHLQVKuCtWRYU4bFXx+GfSuzTF5ZfwnZBD5zsFPKsomkzaIFTZO+35xATHoe/jesBYb7NVB3ytUqr23bYU6nOfTV72DArPNzQ+DdxU+uP/6xmZj913U4UNrR9jdU22uzHFJaVAJibtxGmlMW1qVsFr6D83u+L9EEqcEGTQxocmvffwg8fhmtR/RC84Fdlc4tw4G8gdxwewP2B8unKOTmXCNWgUQU15ieEey4JY3WZMO8qM8i5OTzqWz92mzevXMLP61ehg8/+RIuruqtQ05Z5NRFWVBTXdBE6gzm6cMi3EPVWtcPs3B6yk58v3wtsrMNMPnVGEG3hJmKshEVNkPQumnkTRa91rVj0VvboIkhHaAcCT2IP75ZQ+u7ABNmD8PTbd6plylnYtZDTvZFcmKbImiDsUaYuqFN0GTTHz/j3JlTWPvr5vJuGBDLNyEnGu8eewf9vfrjjY7TYFBmjJIbW1A2f4Y8aNKuDYy/2Ig8uNXacyUr4ziBTHNqXdBY0X14WKBJatIfJH77reBUyELPj0voQJPH5U7WbByPHWginQ5OqWFARBVoUl15Bl5WHAvG1jcqkGz+tz03YrFkvMQSUgeaiFuA6oAmnNLADiRs3erc2F3QgnDy1Zx+L66HNSvFLhjHV25G92f6SsQMHwSfJNt7NpCz4cxKSkV6NAlA0imUSzMSUi3Ix6b16zGWnGGcnD1r/AOubdDEykIfZ68fx90If1g52sLKxZ42YtkIvnIaZ7ZGYNjMVmjgzcBExWl5U/umcLVoCJRUnOBITw4buC8mtsk4tSc87OJtAaTw6NACXV8cLur6IrLrC7k7iOjfzpRje1zhNRV52q8Iqu9iItb/PvXlMArI6tXa2Q49XxgGS3f1Nk3SdqRgUOsRvWnTWcHCuLWXNqMnLqPlkO6CJoo6UVycXO5IwTaoLDj5sIItgf+5EYNOnvZY9bQk7aImsed2LL46dA+tSPfjF5G6HzVpT9u2w5fJsjv8kj8atfbF0JmKhVuvRqYJYFMrN2s4Wii3jmUdkyxCJw0NjRBy6yqm758OG29KByMnm0ktJ2Fsswk12qCJAU0ubzmE8Mt30PnZIfCqBADJzruRUTHORJ3CD1eruqHkp92BXihtblzTYOziQ+NxlLtlo5uNxnMtX0BBYf3X61BnrQXd6U3Aelq5c5e6oAlbiTOA7eHzE+kx9VSn6YdWNoPEImNJLHL7367loIki16H46MXEAPyLnFo+JKeW52ulv7UJmnCabmh6ED4+9RFKDmcQ+7IIZYOK8HH/VfBz6kDaXzIvCrUyOu1XKgX6TM2agxlA6oa2QJOSkixs/G0lLl64iVU/rKDft4bgNChDesbM2vc64rJDhQOc6Z3no5OdMcqy6N3lVBj2/HlMwjQxvAuD75chJvsgTC2G1BojIiWRNMXivhMctXiN12U8LNAkL+cGwkNeFPRbWMflcQkdaPK43MmajUMHmjyYP0UgC6fnTFl/Bc938RBSfbLJymsPvfwzA2UVuUBwaCOdoma38NG42pjy2MXMVQGdvu75ZjOS6eRUNiZ9MgWO7lX1KOrL6G8du4yzW49W6U7PZ59Cm0Gdq/z7yfX7BR0MHlOHF/pizpyZWPi/j9GjR81ffDnFgzUxi4trdirL9yL8ehBS6F5kP7BG7fPSUJhbWwrj2bFzNn79JRArV36Bpk2rjrGyI1BCwnYEBS2AhUVTdOigvpNOUkQ8ti/+DXYNHPHsYnHK/Tk593Dt2ihqsxm1qViALz7+bxJ0/BAuLhNoHF+pXFJX953FpV2nhHI+HZph4JSRMDYji08NT8GDL93BsZ93w7ONL4bPebq8/d1fb0JsUCRGzH0GHq0bq+yXbIHo6J8RFvYNHB0Ho0WLNWpdq+3C0Wl5GLDspCDYeuGDmumq5NIzuN93J5CeW4QfXuiAgc1r/5mQk56NDe+ugpmVOSYvf6tG0xN+IwgHV0s2G899/iZsXWxx+fJlREREyNUbnpIj/M6YEFvN2coE7pSGZEqbAtmwtrbG0KHMLqC8ffrotd9fwdWgK/T9cIANAXkcC3ouQNdG3TVem6wPYMiaL9WkDe5bvhVRd0KrXacl5AARnxOL2QcVWxLnxATD8Ig7CjoHwqKFL2lYSNJfZeOd7u+ge8Me0KfN0OMSd+/ORErKEXruLKXnz3hKH6R7SXNeQiKWYuLy5QHIz49Cp05HSQDYS8wlD73M3bvTaczH5EATQ0NrdO8uzwSMivoJ4eHfolGj1+HtXTsbTkNDZmJVMCK1NTl8D7OKMjB93xuIT7sMg5PO1IgeivoSU9O+J9aM+BH2po5yTnPaars268nPj6bnVX+YmjZE584n1W5KeA8kZ5ea5JEVF2fi7t0ZZPUdAn9/K7z1djj8/H6FjW0PfHZ8Nk7d/4vm9YFOCD0Yl5BmnJNeLBrYj8TuBd/gz+hCbPpgHPK99BES8Y0wBienUfDx+ZAYbvJgrdoDrHRBcPBCxMdvg6/vIjRoUDvAn7I+8m+CAaX9FvN813GcPdOKhNUL0a3bJUq3rJlbXh13XWlzvHZ1oZsBHWjyYA0oY6bwi+uWi5HCC6wLvbwmZBUIf0uZJsmUqqML1TPgSLowYuYqITgKx1ZtrVJh62E90Wa4eqftqnulvRLRt4Jx6peq1oh9p45FozbyiunSVg9/twnJ4XEoo5OQ/XeOYvzACZg049Uad8qYEBMzEwNk0MayJnHrwDncruTuITueI/t749AhUyz89Fc4OIjTGAm8M4q0Te7Dw3sJ7BzUy3ctI1Biy1vf0QtRGZ757i059o6ycWZnXcL9wMmwtOqMxs3WKyyWkX6MTkbm0EvXQHj5fq90yoryC3Hxz0OIuB4olGkzvCdaD+sBS1NDgR2URxt6TSKHhF53ffyTALxM+rpiU7l13nIhnWviV7NgoobwLfch0H8kbaZC4e27msRtxYtTatJ/nhxvJAAAIABJREFUMdeMWH0GCcT8+5vSTbwf6EGJua5ymbWn7uO3s2Ho0dgBq55RPxVKkzb5mr/eXSnYDk9aOltOf0Td+vZ+vg6ZCaloP6YvWg7qImiGmBnr4/Dhw8jIqLAlZ+HxtFxKyH8QhvTy28HDFqakLSSNIUOG0poxJ8CkBJv9N2Pb5T+REplAa8WUnGyI5UVhbmiOVcMovcHIXiMbWtZksCWh49Tsir5UHvOBr/5AWkwShr//Cuwa0eawUnB6nwH1cfah2QScxCucsry4IBgf8RRAE/MWlK7Eb/yVQp8sideMWAsHExetuQOpe/+0XT4pYT2xLpbC3nEC3L0W01owENZEdr5qcUjahePmFUlqV5uOtwlseTRYOEF3xwv6HrJMEx5D20535aY3LXUfaTLNJ1biMHj6fKftqRfqszYzQn5RiVbXEwNfZiZ6+PjEx7gc8Q85ikTB9Bw5nxFokt/Ln1gRrujoOQFLBiwhlmnN03FrZWKUVMoMD//rXQnUtIJfe/VdjRzo3TmV3qHFQYKKOxEfu4bSP9bg2FGHctCkodc8nE7IwO/XvhQsy2XDxdIdP40nUNHIFXt2bMMf6//A9g2bUWRhg5Skv4TvX2lpPoHDdqTD8T69l4zW2pSG3HuZmGBX0Ljpb5SiU7vaW5U7ra33QE0mg9+5+N3L23cNvX/UTmqdJv2qyTW8h9GFbgZ0oMmDNSA2nWfO1uuCew6zTzh06TnivkRi03M4Jefcb1U1LzhFp93Y+vvwLcorwNHvNoDTdKRhYW+Np955WalzSmZ8Co58uwEZBVn4L+kKOtm3grtdQ4z9Ypa4SVVSSlvpOQc+/0VuPNxcQz9f9HhtDAEXJbh3qy39ix5atL0tur9S9X1Tsv71JgtgdePYsk1Ii05A/9nPkpCuZGNYXYgRrsslEcqI+6+SJktHePoqBlaSw2KFdJysxFRh08zuOA0fgGFSy+EcURsdxb09uGQdspPTab28JLjtsEbFseWbyDHHnpxz1APSsrPOICp0GrkVeZCC/QFVU1Qnn7M18InARCwkDZIRGmqQJNLL9vifztEJVhl+fL4D2jS0rZO+cyPasB2+vY/spY9fEtyVBsx5rrzvprRRLirIwcEDknuVQ+Db9ai0KmPzsDOHBzFOOLp06QJnVzdBL+lCzFmsuLgchXn5SA6NFT5ndy4rYptY2NugpVNLYYOWlVuiduqfmPScvZ/8gPysXIz6dBpMreUZIlIhzOUXl+F89HmF96sgPwQlyakwO9FOAE1K3QsEfSRF4WPng+WDlyMrj7ShRLIx6myRaNBQfu4dhAU/Q99VT/qu7ldLCLawMAr3A4YJqXecgveoBGtbscaVLGiiyBKddW4iQl4mJ6W28GpSoVuhzXHWRnoO6/b8HfAXdgTsEFKnymhDLguagJhSlla9MLzJcLzY+mUCVR4t5lTATU5NL6Pf/Vv8pFHrdmgjPYc1QlgrRAqaLFnaCbFFVlh0mgATBWFo5Ig+jV/Dez3mY/+e/dixbQtW/bSecFkJyFhUGE0gzNdCnRw2dqMolWY+adLVjCHBAOit670EW3HflseIceGq1lzVtPDDSs/hfifFrQSLVDs4v04CzzVjZ9Z0HrR1vS49R1sz+WjX88SBJqxJwn8qa52IAU1Yy4TLsTCshYnkh04Hmoj7AogFTRSBD0ZmJuj56ph6r2uSwSDI138ITihuLX3QlkAeBk6URVJIFE6u3YbMopxy0MSVKLsMDjFIpGloAzTh+7Br4eoqXeANPW/s+UUg+E5f4cWiaavTanX1/r1R9KIYBjcPco6gFxR1gjVNWNtErOhqesp2xEV/Kjj2sHOPoijIDyKF+/FKc3Dvn7uJa9uPCZeyUGunZ4bAkrRdpKEN0OQS6UJEkC6EdFz3z97AtR3/wqtzKxILVU/gMSbiPbJQPkgCsLNIAHaaOtNba2X/vByJ1SdDMLZtQ8wf3Eyjdr47FoQd16Mxso0bPh7eok43zTW1HU4Jj8XxVVuEcfebRYK/PhWCv/xv5sQ2iYuNwkWylkzJKURAfAX4Kp2shjZmAkunSZMmREdvjfzSEmQUJmPWQYmzErdRkCNv8Wzv4SKIUI9oMgIvtH5J7Q2aKtCEWV/b31kmtD9p2TtV7isLYR4NO4T1NxWDkayNlEsnsfqZ5uWgSbFbiuCWYqhkk8HOQK+3f4OcMQweufQGRQs/yL8HpeNkCsCHrbUHmJmTkaOaJcgONJGhUzUW5dToS6iFi5itkBD7Fdb9dFHQNJkx201w2mBdCtkoKoxDSMBT1epR1bQ72gZNjI3KcDvpOr48u0TomiLQhLW/BKtbirld56Kja1eUFhvXdCh1dn2Qf09arxn0u39GsAdXJ7QBmiTELkVq0kYBNLl71xZLV71Mz0AS19W3IgAkrkp3WGiZRYafbvk0RjcdB70yE4Wsu7TkrbQul9IzpYhYJw4CcGJtN0Kd4ZWXZdFzc7ITvnP7BVrjQeTcd0mjempy0cMETbIzTyEqbKYAfnv6/lGTYdSba3WgSb25FQ+1I48daMJWwwxsGCQmoSw3D6VeHpja21tgh3DwZwx+SMVdN6/ZI7ygFtGpVRHl/plTWkM7b0dMfE2yUeGyu2/GwiItFY5EMZ42uX+5kw5/rgNNxK1fsaAJ1xZ1IxAXNlToT3SYOBCNe9RcQFJcTzUvJWXJsLhrnzcnqqxIWr4yaFJTVo02QBPu/Mk125B0P0puHFJRUj4dDg0cSyekPnRCukflWGULpKf8TUDGItoYtSC2yd9qXcvuOSyc6t3VTwAvVEVK4joSYltOJx6v0YnHPIXFi4oSSCx2oMKXcwYuGMDgYGccBjUqhzZAk9DzZEH791G4t2+Obi+NgFRcs8MEWvs9xa/94qIkBN+VMLJ8Wx4V7FvrQ9yMTsf0LdegqeUwp0e++LuEDr5vdi84kzhqXTINamo7fHLNX/RdikbTfh3RdnQ/hbfEgij9/rdvISAwCBfCJO5vstHC1RrNPN0wcOBAcqYqAW/Q5h6ei+jMaHDqGNdfOcyszWHnLjnh1GSDpgo0ycvIxr5FPwkME2aayIaRUSkiM0Ox4PgHSpcgCxbn5/pXAU2kGx1lF77Z4U308ehPWiuP1im9ovFEh81CVuZJAUR2azBONGgifY6yqDaLaz9qsfybz0noNZ7smlfDXL8UJgpIC+eu8rOvFN07XKX0IyNs/2cHgoKD8OH8BSqHW0TpdNkGVS3mZS/UJmjCv7sZRYkkxjyNeBiSBBTp+pZlmhibeNHvpld5N74fthpOpBGSr2F6p8qJ0HIBZjcxy4lZjMxmVCe0AZow6BZ8tx+OH3OF/x0LOD2bgODMHGFOCwvChT/lQaweBqhYFJbjoz4fo7Vje+H5qSgKC8jGmFgnvOnnYDtwgXViYCN6mJyeZU7693/dXodh7g0RG72dHKB+EX29tgo+TNCEQTUG13jem7e5TkN69ESPK98HHWiirZX5aNfz2IEmaXTaH3YjGGHXg9GwuSe6jeuj9A4V0otmImlKyEY6XR9K145++xnhn7m+K2fvIO1eODxaelWpTweaiPsCqAOaMIWdqeys48DuJExlZ0p7fQ9/0v8IOHpBsN1k+01VIWVzVAZN+s14ukasGm2BJty/fZ/9RFoOklNPZj0wC4aZP3w6HHF/Mp0kdKCThA2qhlrl8/v3RtDLTQQaeixV6zQnOSwGJ77fKmgnDJr3ksp2WbmeFeydG7xNwMkUheXLbYn1TGCQ/oswPgdyPGJWC7fH0XHSU/Dp3kbh9doATThV6zCxlMztrDDiozcES1pOBRr09ou06RUvdppClFi2ULa2pfQhTwkDoD5EMWm+9F12QmAGHJ3bBxbG6m12P91/B0fuJmBcu4b4ZlJbIS++LkGTmtgOB526ipu7T8LSwRZDPnhVSJ1RFAxQWJkZ4MSJEwiJjMXt2AqNE3bQ8Wtkh2HDh6OkzID0fEqx5vJqnI6UsLzKSM0yLiC8SrXmZGluS9bm0lg9bA0cTd1Eb9BUgSacKscpc1IGmrQdFs0rJTPP6QemIaswS+kSZMHGHEonU4dpIq3s28Hfwd3CR2MtofrwveA+SN27bB0mkWDkYtGgSWLcCnq2/UqMstnEKHuzvgxHdD8YNElPTcGiL5cLduSWxXnAJ58AmRUsqysTL6HAMh8dd3SGaZYZVmek4TK5za13rh4MLps5E4XNWiKnpPrNmrZAE2YHWZkbYsnpJQKIKRv5ef5IP0ipIKUGcBhtLlhMy4ablRs+7P0hcvJK6/SZJvpGVSoYFvQM6ZLdgXeTrTA1l7dLV1WnNkATbiM8+HmcOuGES5fi8dP6HwSNFWkwqMKHB7xh59Q1KWDCn5PMMqV3koGDipSo1OTNSCTwhNOQ2XlPYJ3YVmV88vOR00X5d6382WdSgr1Bu7Dx+gqM8vbD2KaTYGJW97piDxM04blg9i6zeD19N9J7Yt3pj6lag5p+rgNNNJ25x+u6xw40YacDBjqiAyRuBNWBJopu5b+/H4CLtyv8+knSI1TVpwNNxH0h1AFNpAwHJ7IbZqZDdRtWca3XTanTP+9E/L0wdJ88Wqn4a+WeMNvk0E9/lqfntG/fGb2mKrYhFTsKbYEmLEK68/2VQrMjPiIauF1FqlGFVshANPKSlFEn2EqSLSVNzVoR2+Qv0ZcWFxbhnw9WCQcXE795W0iFqi7ioj6mF/OdaNCIUnQclLN/Am7yj3oR7m56GaUlFYKK1q4OAqOFQRRloQ3QhOveQ9oQBaQNMfCtF/Dvis0wMDLE+KVzRc8NF7x/b6Rw0ubuvYaE58j+uh7FG5uvwp+AgJWT2qGzl73onklZKnzBzjd7oA0JotY1aKKp7XB2SjoOEwBWWkKn5a+MQqO2TasdN7/o6hE9/MD+/XRKXYx7CVlIzi4A65k8P2YI7B2cUUqMx2Ohh/Dbjd/k6koKJcZJnrxgqyOBzcYkDCsNTxtPLB+yHLn5ZaI2aKpAk7i7oTjz6z9wbe6N3m9Inlt8jYWZHj459QluJ6jWO+L1WpyUWJ6eA089otM3l9vsKJo0FwsXrBy6kix7jTUSuRW9AGu5YF7uLWETaGLqg9ZtD4gGTWIi3qU0vEPEUFlKaY6apRHU8tCqrb6oSALGGxkZCX+b65XAJPw+9D78sPy6289FItM9F35bidEQaISVZNsbSGzgL7NKyvV9qjTy7LMoGT4CGQYVdvfKOqIt0KS4rACWJCpbVkmElNtlIdBvlvxOn5kTQCRxa1EUJcVGor6TD/OecducEsapYR4+P5PNtXri/NoATaTM0GNHnRFwzxU/rpOkPYqNyq5+yq7jFOKEGGKdZEmAaVv78QJ4om8gcQ/k2ESAjTmJcY9/+hXh/xsblyEg+TYWn/5MSEHmg6FFg35G50aTlLJbxPZb3XIPEzRh4Coi5BUBNOF4GJbL6s6XqvI60ETVDD0Znz92oIn0tvmfvIbstGy1QJPoexG4dvAChk4fB2NT+RxTZfXFp8rnkD8Zy0b9Ubram0LMXDGzZNf/JBaprYf1IveWM2hK+h7tx0mQen4Y5+fdE/6b895lTxjU75V2r9j10VoUZOdi5MdvwEIGYFDVSlRkOD58b7YgBNu1R28hPaMmwae8lqYGtLFUnRdfXTtxBAD999MOATAYRBt52UijFJvYqE9JaX4i5aMr1gpRNYbggKGCs0Ajr2/JuWaYquLlnx9a+jtYP+apeS/C/kHqgbKLo8LmIDPjXwIRVsDa5imlbdy6QE4mpjkI/PsZFOVKxDZZRHPo+5NVuvRYWxgKL7u5+Zq550g7dfb33WAXpmb9OiHw5BXST3HH8HnibQrzSFQyKeFn2oQ4EUj0P6Vj5TREdvup61hxPAhbr0Thzd4+eLW7t+jm522/iXOhyXi5mxdm9GkMRxsTpJObS10yTTgNZc+nP8LE0hxjF88Q3fdzf+xB1E06bevYEt1eHC7qOhMjPUpbSMTp06eRSvomd+Iy0LVDO0zo2wklhBHG5kRg/rH5VeoqLSGNE/pe5GVkCQYSVqS7w6Bf5ejn2Q/TOk4XpQnCAIi9tTGS0hW7xIWSvtDlrYfh3cUPXR5o7xgbl2B7wDbsuCde6LkkJRt6+2nT2asQBj4Vp8aqJqxbo254p9s75BRFzBbZ415VF9azzwNudSEHjxy07XCSNmENkJmj2j0nNOhZcqG5TSf+m+kkV3wKXz0bulx3LAkQNNq/l3ajm4R/DxoRi8SWGWi0yxlxhyk1j5zm7psbYWZUFhyIfdWyQSXNsA4dULZgATKLaT2IeMbZWRqBbcwLCmvPljU4YAQO7MuClc1wvPaG8lS1+nxfZPsWFT6PwLrD5Pb0nUL2RXXjcLEzRWJ6fo20iNKSt1HKyyKkpfUk56OxGDRY3HNV0/lNSdqA+JilwuUs5ura8H2Bycnph2+9NQ2Ojo745CNy4KHnT05xKmYcnIHCkkL6bvoLjBc7q474ccw2WBjYo7Aa63ZN+6fsOsl7oCG9Byp3PtN2m9L6EuPXICl+rVz1tvZjiVn8RW01Wev18h5GF7oZ0IEmMmuAWSY+7ZvAu11Vi1hloMmj/KJWl8ufXRTEzFXgOX8c+Xk3PPxISPWpzti7/C+4U1rU2Pkv0MlrJm7fno709Aqru/btN8PWtmtdDkVhWxmJadgwfy0sbC3x2gr12AFhYWGY9uabEvccGzdM++m9Go2HKag03aLmu7qGzv19Alf3n0PHET3QY5K8c1FExA8IDf0Onp7T4OPzrkb9jYnZiKCgRbC2bouOHcVvsI78tBuB5/0x4NURaNW3+s3C9evP03q5hOrWSUFuPk4c7gUT23SE7BmL/DSJar4jiWg+99nrKsfG880hzWNXeYGSAtcPXcSZrcfg5OWKpPB4DHp9JHy7tgSvDzGRlXkTBQUJtIHyhbm5j8JL+AXP0sKC8r/r3j5v3604zNlyHQOaO+NXEtMWE8fvJeL19VdgbWqE0+/3hxW9BIp9loipX50yP077RtAOeWPNO4Ktr6rgNcpr1YgA+Be/nAZLSr0SGwyA3A0IwK3b/gjMNEDnbj0wqKUrMauKsfbKWmQXZCutKiU6EZlJGbB3c4ANuS8piiG+Q9DOuS2lRaheB9XN9+W9Z3Fhx0l0HEnPiIn9CcgqwrWE6/jitHovx2VppSjYWQCjAcYw8FbPOvdZv2eJAj+GLEUlYOejGLduvY6UlJNo1XIFXFxGiXqWnDnThTRdUtGz53k64a5IwXoUxy/bZ71C2uStWAGcPYvQHokI75IE88PWyNlpjEMOpuWgCV/Tt6kTMXMesA3t6Lm9ejXKLCuYAKrmQo9/KAk/rumzW1k7JSW5+O+/NvR7rI9+/SSn7o96BAb+D7GxW9Gs2WK4uVW4gIkZlzae3bduvUHfleNo3vxLNGgwSUyzNS6TkxOMkJAvkJp6RqirSZP/Qd+iC16dNgPGVgb48/sNlJ5FIudH5yMwJRBlGWXI+zcV+R3vwbpha7Rp0A1LBi4hFmHdaXto6z1Qk8k7f74vAdmS1GZpGBpao3fva5pUVy+u4bWrC90M6ECTB2uAdVBYy2Tgq4pRa2WgiS49R9yXSGx6zsXNBxB5NUDQzmjY2hf7F/8iuD+MWjRNQK6TE+TRa33KZW3mp9jKUlzPtFMq6jqJ127cB7dWjdFzyli1Ks3MzCA2RDpubv0XuXFp6PnaWLj5NVarDtnC2krPOb7yT6RExAm0e6bfywaLpaXSCYyz27twcJqscV9DAoaQ4n2MoL/BpzdiIohYGDf3nBIEUlkotboIDRxHFNFg+DTbSfR35akR108Mhql9LMIODUNOgkQ4U2qvrKpP2krP4bnmOW/Www8MHnI6R9POzctdVZT1g3UhBAbW/9m7DvCoijV60ntvhFRIIfTeu3QQBCmCPpWOCIiKvSMqiooKiAURFQUFAem99xogIZ1U0nvfTdv3/3fdZLPZmkII5n8fT2Xnzp1y9+7MmfOfU3RLKGJh1ZcW6TU3w66urhgwYADyRRVancJq6reunyfnijD5xwuwJRr7gcUDtbp8wZbrCErMFRgm/+vtJVzjbGt639Nz+L662A6XkQgl69IwQ0VXMV++Fy/QLE31cf36Neg5tcbq43fxbG/S1PJVAgworOXyUjIoTTCWLIft4UouXqqiuLQEpnqq3b34Ok3pOYE7TyDqXCC6TBqKDo/0ICewDEHHpEJJmoLaCad0IaTSH1vqjE31DrFDD4ewwVUR7w1+Hx0cutx3CrxWD7EWhVibhDVKnF1moLXPBxrdcyro+x4e3Bf6+mbkzHFVizs0nSJGpG9iZUDMj6VLkeJ0B3dHpsDokjlKNpnXAE16etnDhMoL8dFHEPn4o6hCexvc+krPUfkdo3dybORTAiu2lf/fTWcS1LQ0LXk1aen8rFYnTNXldU3PkemPcf1+7U8LLjf3MzLTf0F+9nb4+72NV46+goQdZpCYl+Dd995ASFYi9oQfJRYNva9SKiA5WgbRgGCYterMb1KpxXQHspgu0U3Pq7b9a8z0nKjQkbSuS6rW9AdlrV7b8WxOz6ntyD1c1zWDJjSfLAh76LtdQiqPs7dy7YJm0KRuD762oMluSs0poZP/0SSYyIt+tr1lQVIGTVLTFpMAac0Foj+BJo2dpnN77xmEn7yK9qP6gR1mahMsIstisq16dyQdDe0ABGX3qQ/QRN5ymHU1WF9DPpLi30Ju9h5KzflYUJivbbDgWmriSpiZd4Y30cy1ibTIeJz+brsgDswiweoiMuQRosimwa/dcRJ0Uy2oejd4LlFqLyH+5DDkxXsKYrAsyMsCl5qivkATtqAOPXgWPScMQMiZWzCwtkKXx4aQvbnUVSUyMrJGU9iylWnAkgppmqC+vrlgQaoYZmZmGD1mDLmE6aOE0nMaKyZ9fx6pJOK6ZXZveDtYqG3GoRBy1tgfAlcbU+yYX5U731igiS62w4HkuhRFrkvaOmkpGwjePHKa3YGgZCz7+zae6OGBpUNrsiAVr81JSsfRL36DpRMJx745u05TrQk0kY3J0Ocmw6+bH1468hKis6PrdE/Fi+PjYkhXIA/tOvDmQ3lYGlti7ei15MBic18p8PXV0aLCQNIAeJreg/7o3GWvRtCEU1RjIqaotEmvr3bd73rYvZCDn32jrAxk71uJYN99sMx2g+XlYfgrIQohuVlY3qEXjEjPii24hRg0COVt2kJkINVH0TYsiLnG70NOWVTlqKJtXcrKyRyObOwmkPaM1Ia4qYcM4GNhdRZY1yXqCpqwhg9r+Zhb9oSXzyZdbl1vZY0Ms7Dh8kvYF7EfZqc6w7VFS3g/1gK7I+jQzKYdaSwVojwhC4ZnWhBocgemXm2JIShlJrKDWY8WfaiMbs9pbRrfmKCJzBZavt1NXdekGTSpzVP48F3znwNNWLeERWLlBWIZEEmNSVHJMuFpbwZN6vbwawOa8Kbx1PptlIfviFGvSYW12CmFHUwGL5wKicVWYjdsrtYQRq992x5pdNDkNLU7jdo/YC7ZP6o53VU3irm02TlCmx3WTZjw4cJaD3h9gCZJJFB7/ufdpKvhjiGLpE5S8pEQvVAQSKsPwdGokBFEM08mbZOvKe97uMZ+M6jG4Jo2Qqlht7vTyY+YTmOvEaCgOqXibvBSAk2OI+3GMLT0eVZwCmLgRJuoD9CkMCsPZ3/Yjl6TBuC30M2Y3XkWrv9zAf4j+8Kzkx+syZnhxIkTSE9Pr2yS4DxScIm45dX1D/hU05Byr+Vj6COPwMrajnLA77+WiXw73tkTjBPhaXh7TFuM66DeAeOpny8jJrMQr41sg4md3SqraSzQRFvb4dTwONICkp4qj1j2tFbAm6rnzMzYAOejMrD4r0Cd7JpZwJmFnB/7aBGMzTWnEqm6vybQ5OQ6ej9HJ+Lp1S8gtSKdALFUbb4ySssYkn6KsoiKiiQmXi66da+Z0sVPs0yfx8bEGq3tfMiFpNZNaNQLw4N6EAOMnGJ6nENRqa3atuTnHsO92BdJ7HkovYPXNmq76/PmtgQQ6weTeHBwMJhAUlwUiSvt/oJ5vgUCdvfF91npCBQV4dsWHsJtrUyMYOzsiFJPTzyzdw+mt++IMb6agUVZm9m1p9zcQhCOzRZXd0Gpj36lJH6C7IwtdWZk1kdb6quO7MxtJOL+IQmrTyXtLHI70iFqA5rwO0j2HU+Kf5MOa/Y22nia0pLgUuJ5fHRUelDkdHEQ7BztsaeFVMy+jWNbmOmVojQhD2wzzUyTcsciWFpVuSneL4vpxgRNeCyYGZ6b/Y/AgnVyeZ4O1yY2+jpdh0e1RtFm0KQuo/fwXPvQgSacZhN08oaQe84MEtaY6DamD9zJfpiDwY/wi3cw+U2pXSmXYd2MgTOGK2WZaKqvOT1Huy+DNqDJ7X3E1jhxFW2G9kCn8VLnj+vbjyL64m2B/u3d2wWcziEfjvQydmqhvTCjdq3VvdQ/b60VnjlmxHA6UW3jyOe/Ijc5A4OemwIXf+kzq2vUB2hykyxSI8kqtR1t2tuPrqmQHxs5QxAh9PbbQqejyq14tW03A2F8MsG2dGxPp00c/Hgj2Jlk5KvPwsbVUekllVbCBJYEEGiiLm6fXAQj+9OQ5E9FuwG6LQTrAzRhFyVRbjrOZp/DlpCtGOQ5CAs6zCMadAECHukNXgChogQHDxwQXFU4mGXC1s+KYWjkSHTwKivIrl27wt3DC2JWEW3k2Ho1HmtPRQkgCIMhquLvG/coJSVCKVDQWKBJDImesg21V4926PWkauHio6s3I4d0RVR9d2ozBUO/OgUxnYbvWdgfjpaawbyTa7cS2JxUp/cIt1MTaHLwE/oeZuTg8RXPwYzsjesSlsb60Gf9nkip9gNvlNKIlXQgOhLJxXl40r8LvOzNhTYJ4ewMSadOyC+rAlvKSZC5MUSO69Jv2bXx0QvIleQ8/Np8DUNT9eDxKEcNAAAgAElEQVRxFqUJpCZ9Qa4U/yNHj6YvLiobA32aWxsCTvQ+Jk2c69ehT/atZ5dGQp9kTro9kYP1Xh64aW+LjbeCUVxaDn1zc1h37wKSEca0MjEm6Rtgtp72mjgMmpR9/gUKXdxQTFbe9R1xUTNRVHitVk4z9d2W+qpPxvawth1FabVf6lRtbUATK3MDFIuldswRwf1oE54Hn4C9pMulvZi4To1UUdjAgIS2Kf1w8cFFZEYQDG8bV1QcaYX4sjgEt70iXGWob4gOzu0huVdATBNPKWjikEeMMN9Kq2ldHcxq2/bGBE0KxGXYeD4G+4OTSX+rDE90J5bkI9qDmbXtc0Ne1wyaNOToNp26HzrQ5H4PfTNoot2IawOaHPn8NwIM0gVWibMfWQxSRJ0NROCuE2jdt5NgPcyoNf9wsnSbsYk3/Xju064BDVgqjxwrDq/6RXBbGfuOZuFQdU0JPnAOoccuw3dg10rHIF2bXh+giUy/YTClqDj7Sk/15OMuO9+U3KPxP0DzIJ2rukRkyDBKo0kltskaYptInZLUxcVf9pLTTISweeVNrLIoLU1BVMhwIS2H03PUxdnfZ8GRtAGsLJ6Gu+/rmm5f7fP6AE2KyHI1MOw8ll9cUVn3rE4zMbr9eNh5SBeHpuyqQietZ8+cEf5bYJrkS4Xp5MPI2F1YpHF40glsjx49UVhS/6eoOg3Sv4VvJeZg4ZYbalkTvOmd9MMFwWp3xfgOGEbCsfLRWKCJNrbDIUcu4s4h0m1p6YQRrzxTmyFSes2yHbdwMToTHzzaHiPbqk4zk13M70x+d3Z8dCCBbjXTtbRtmCbQZNeba1AmLsXET5YIgrd1CdZxsTGSQG81bcQuXkR8VhHis4twwNEMcZSmtJA2Ijakh9OxpQ0d8ZLw6dq1yNdr2nbD8uOVkfoDnc6uRQvXp2HnrP4dlJL4MTEYtsLF7Q3YO/6vLsP+wF3LQIZlGdGFXngBellZuLw4AqVm5ejwTC5+tncXQJOtBYUoIXZIuaMTxPRezPcrxtzPDmHSqDZ4unU7mGVKgUVJcjLKL6jWPDNaTE4nfQcgG3V7dlUNomyT79fuFP0OKQf3H7gJ0NCgwvwLZDs8nzTIhhFo8o1OzdcVNOFXSkJBDDysPJGZcUWwOzY1a0P6MNoLx+vUQDWFzUwrUEzPJSmCEURXASO9fMx//mUUGOVBMlhEVsQ2ZC1PAt2SEkiSKmBwykEpaMK3GOw1GAt7LCLhdv06OQmp61tDgSaKgqiFJWVIzROjtSxVjhr1x5U44XBEPsYSs/QdYpg21WgGTZrqzNVvu5tBkzqOZzNoot0AagJNCtKzcXDlz0JKxMSPF1dWKtOvcGzVEkOXzBBSLTjlQhYBnW6SQOD9EdZS1dO4q3dwZeshuHf2F8Q76xJZJAZ6nMRAzcmyeNy782pVVV1BE1F+Efa+/x30DQ3AeibKBBjDg/sIC4T60pORnZyaW/QgtskvGvst03/xH9wdnUn3Q1mIisMp73+yIADLQrCq4h5ZwoZf/hwte18kC+Un0ML9XY33ly9QV9CEFzdiST6mrh2P3Pycyqr1yRViw/zN8HfsQCdtUjtjCxN9hIeFICQkRPhvPvEqo9OvyqDvAtuP6utbkiuRNUaPHo1CEn4tLW88HRP5sSojQGTw6pPCQvHo0kGwMK753d10MRYbzkWjm4cd1k3vWmMuGgs0YVHXfct/UJk+J9MS4QYPnD+ZxJO9dXqO1BX+40o8vj0dhQmdWuKNUQEa642ld9JVeid5dGmDPs88qrG8qgLqQBMWu9315lrBknvSpy/U+h7yFwoioGQ7yxvm0MAIZBYS00QONOGyfVo5wODLLyBy82wQdkC9dKQWlTBrLO7uTPr+tqV34Ha1NSTEUHpkHqdHrqMUnSG1uNuDfYkZaZuYRoVD7403cGtmLAqcRfB7JR8md8thS05aRsOGQe/xxyH67XcUeoohNqvAzJvleNJNH+Nd9GCVaAbDznS40tINpZtVaGUNHw6jhQuQW2EIEdkO13ewwDkzYxksYdDkYQnW0IqLego+vu/ByHyyTt3SBTQxpdTELHEKnj+wEIt6LkIHq3LERrwIR+f5cHKtn/eNLo2vZLjRRUZkq3707iH89PH3gLkE+o9IUyD5IIN19/RSTaql58h+k+XvN7fLXAz0GkrZtZqZg7q0U1a2oUATS2KCydymYjIKkUDANv+uc7RrYQ1rArZvJOSgmL5Tr+wIrmy6pYkhjrwwqDZdeSCuaQZNHohpaPRGNIMmdZyCZtBEuwHUBJpE0qnoTTod9egagD5Pj6usVLaBl4Ep5WXZiLgzkDbyBvQDVQ5v399hRptEDtaFyElKgzElnjopYUdo11LdS9XXqa7szrLUk6FLpsOxVZWWg7YtqytoknCTnIB+20cilt4YtKDmokgiKSXgqqsAVjFoVT8hgVS0NV2rjUBySDTO/bRLYMEwG0ZZFBbQydTd2RpF47ivebkH4THoNJ2ejabTsy906lJdQBNeiDH9+O0Tb+NO+h16hnMhyiskvRYjEkK2g6O1E9aNWQe9cjNBsJDp61Z06n7+/DmyfZSq0/MiraKCrjF0JIDIWwBMOEYRYGJkTK4T9b8f0Gl8FAvP/+M6gpNy8fXULujlXd0SN6e4FI8Ty0RE1Puv6PPeCp9zXY0FmvC9ZcyKxz4mrRCz6lohZ3/cIbjW+PTrjG5TNGvz6DKIYSn5mL35KtxszbB9nmahaWbsMXPP0tEWY96ao8utqpVVB5qUFxfgOllkZyZlYszbtb+HYuN4s2SWEIPg6XOQS8+DImji9soLaDlpHAoNGmazUevBqvOFEnqvdqPftVL4tz9L32ep9bmyuBs2ASXiaAKDdwlisA9jWFE6hNHBAwjNI6tXvwJ4brJCi733CGilNBpKzcJzzxFonIWiXZ9CDH3MtOiDJ0viML40EUZtesHymfdRtmEjJMRWqRG+xMT74gvoETBdKCqvAZpEEDB9cN8uzF/0EszMamdlnZ93EvdilpCbWT8hPedhiRJxHEQFf8OA0nId6fdSBuhr0z9tQRNDAz1YmOlj6aGliM+NF6r+sO/jMBddhYXNs5VrPm3uWd9lDA3LkVgYh9ePvQbJ/lI6yaB0siFV4H95eQ5K4uJhej4AooGhMHJzqaExJmvTykdWorVtgE5jqG1/Ggo0MaeDm3vxsTh94TICE7KVNqdXn36ILTbBlisJlZ83gybazlxzuQd5BJpBkzrOTjNoot0AagJNzm7YiZTQGKXpFns/+F7YSI59Zx6MLfOF0xt2CamoKKqkJ0eeuYE7hy8ITjsc7HrCIoz3I06s2YrM2LrrB8jaeov0RCJIT6TNIz3R6VHdkfm6giY3dhzD3fO30GHsALQd3rvGELIbDQMchrRJ92t/qt6GmG0M2c6Q3V+8fH5WW6/s1J83rryBVRb5uUdILPFlQVyWRWaVBacW7CI9GkvXe/AecaRWC9y6gCYmdGK1PfQv7AxTzYTp5toNbw18G0XEWK+gEx0+jTem0/jDhw+jqKiIQJMrwneBHQX09aV6Or169YILqfo/CDomiuP+zYlI/HU9AfMGtMasvt7VPmZKL+ueDPJzwqcTOyqds8YETVTZDt+9cAs3/j4GU2sLwfnLiBUD6znGfXsO2UUl+GtuH3jYad7IycRgJ6x4HiYWZrVqjSrQhFMoSkW5KEzMRuiFO+g+Q7XGS21ubEnmEnl7DyDsg1XVQZOhQ5H79Cx8eT4RU7u5C7nyD1MkxsxDXt5FjaLYUnClRLAbZtvhhzHYYdqGnoPYvdOR3CIYTgfs4HewBCaiQqBtW2LPkQ31nGeQF7ED4n0HqkATyyLor6B3+uZzqAgNqzk0BnTg8u23KLa0hbm1ueCao8g0OX3iCH7+cR2+Wr8J9va1s7WVpVs5OM0UhEsfnshFYuYOLD/7BX6edgP6FQTMa+nIpg1owvNuYlKBjYE/4Wj0EWHY2GLbTj8F34xZDyOTgYLbUWMEv/dgKMai/c8jW0SAAWntCKGY3fWv5bDeKHqAnVVbpTuaOWLNmDUk4GSq9Rhq2++GAk24N+zod+D0RRy7crtGc9q17wBXD2+8ubv6d6+p65o0M020ffIe7nLNoEkd57cZNNFuANWBJuzywAt8DnaNYfcY+Tjz/d9IjYgTnGnsW5cjOnwSIffOgpWsjd2jlN6+HPs/2lAJmMiu7TJxKPwGddOugXUoteO1r1FRVk6b98V0+lz3zRK78LAbD1su8wZM16graHL4s1+Ql5op2Pmyra9iiEURNAeP17vdJTOHophtUpZJbJP1RDtXDxhxqgSDJ3ySzifqiiGze7S1n0w/4suVDmPslWBc/fMw3LoZwq7jBsqXbk/50lIlfG2jtqCJCS20bqVdx6fnV1beium9EgnlR//LFpF9MLntZEwOmEY6MlKxQnZVKcjPxvFjx4imf5r+RvLveOnDl05RO3ToSA4cqhdr2vatIcodC0vFe3vvoJ+PA754vMpG9l52Mab9JNUf+Ol/PdDO1Vrp7RsTNFFmO8yA7qFPNxGIIFarsVPXsXyXnIeOk/PQ6ySg+5icm5CqemXOY8wWY9ZYbUIZaMJ/x4Y8b+97HfqZFVjQZyFsSXenPn2Z+Mm1IaZB4PufY8eV04g3M8SqFl4wWbsGnx+NxD83E4XueJIw7NO9vTQ6MdWm741xTW7mD0i6t5YEXp8mgVfluiZVWk0PV9qHsvE2IiZIXuYmxMZ9DoMT5uh/3RMGFeUo1yPXG1KWKLC2h2TV/1Dy8fuYGWslME3GvTsXGddzkLHpJOlAGcCENrr8T+EP/bvJ669Bn0DlAj0j2FsZ1wBNWLjym1+3IeLEn+j41Ht4ZXxN1yZtng22xmXRVLYaZsvhhyEEwJ6A/rnbuiAxnw6K/F/C24PeIUBfOwFmbUATrv94zBFsvLmxcshKxLHErIrFEJ9peG3QtxCJSVWkPl84WkwO609bWxjiTNwZpBSkqL0iJYrSrDccxojnRsOplXoNqpZWLdHXox8KCuu3Qw0FmnDHmQlUSjm23/z2N7LkmFyurq6YM3kMfc+MsOFsNA7cSUa+qAxz+rcS3tHMNmmq0QyaNNWZq992N4MmdRzPZtBEuwFUB5ok3o7EhV/2wLG1O4Yurmlve/Ofk2AmCbMuPPsYIzbyKWHDLhZFCmKw1obfCVbFiuHWwRf9Zkut4Roqsu+l4tjq32sNcKhql4xdUxvL0rqAJkXZ+di/4kdB1JHFHZVFYcFlSnuZozHtpTZjnpn2E7FNvoaFZR94+vyktgpOz+E0HdaRYT0ZxZDV5eA8B86uLymt6xwxnJKJ4dRtWieUmL0kKNz7tj2kU9NrA5pwCkK2OBULDzxXeS+m9XK+uMxCmJ9t/iOL1/u/js7OPQg4kYIhpoYSxMaE4MK5H6BHDkE8Zo6OjhhG+f55RWUPrItIcq4Ik3+8IIh6Hlw8sLJ/nxwKxb6gZGFxxZbEqqIxQRNltsNXthxE3LUQuJE1dL+ZDbc52kVAwedHwzE8wAUfjm+v8Rm9uYvem2dvoOM4EoMdppsYrCx/n/9pRxvLjFwpg4/DyJhA7rAd+OEYndZn5ePl4a9iQt9pZHGsfEFcWzeb7OISJOeLcPDFeUghK96fviOQ1M4JIhjgZEQaNl+OA6ctcbSlXPpn+nhhMDGUmnJUlFxDeOhMmJoTeOunHLwtKrxOmhLSFAVOT33YIzF1P/JSXofBTRP0O9qaoBLaoP+7v2QthfAAd7jM649ZL/+OGZ0cMOyp7oiavoPA55qb0NLHpyBz2GgsP30PLW1M4UXila7WpnC2MoGbjRlszY1Jh+EW9BNvwiXuGGI6zkVHH3d8O133w5fo8Am0RokmEP5vAuM16xA96PPIoAEzQNZc+QaHQz4TfqcsyEp3cttpmNLuCQI1NLsPaQJNOPUluTABrx77l5nDTI5cCYr1glBunCU49c3tvgzDW41CqYr3TUOOI2vtaBP87PEf1oNTpgmnWAczSMWl9cueaUjQhNvP9V+ISMTe/fuJ6VpBaWxmeOzRcfBvYQdDpgs9ZNEMmjxkE1rL7jSDJrUcONllzaCJdgOoDjS5tu0IYi4FoSOlgwQoSQeJps+uUxl2SWk/3lZQULew7EupCTcgqRCjlc9x7H2v5uKRWSbMNmnIYDtktkX26t4WvZ4aW2+3klkttx/VD+1GadYwkL9xXUAT3vzxJrBlex/0nzNRaX/ycg4jMW4ZrG1Gws17db31mStiyjk76bB2jUfr72FJizJVEXzwPFgQllOIOJVIMdKSvyTL3k0EmLwMB+fZNT4X5ReS4C0JuVGMX/40YqIfgYGBNYnbXtCpT7qCJnxKY0m6JC8eeRGxObHCvSS0KSwka0oZYCJrgKl5ByENisPYwBjrxn4LKwMHYYHF6xJTg3ScP7sZCfdyaay6YczYsazrT8JsOnXhvhdmd5zUPBG2zO4NbwcLhKbkYc5mqX3yn3MIMCMGgapoTNBE0XZYBvjq0Y6CWWGWjqp1KOo6yHHkJjNj4yXYWxhj3/Oqvxd8H37GYq7cwaU/DsKziz/6z5qAon/FbcxZE0Ih2M5TPmyJd64nFgvPGL9PZOkLElND3M6+gxVnP0Jk2F0YS4xg62yLn57YgNbmHigntk21IKaAhBbTOaW6211vJ9vpa/HZ6JB+HkUJd7FsxUoUSKoDMwyy/XY5FsxS4ujpZS8wT3p4Ndw81HUe1V1vTkTFG1c7C3pd/h3O0/uInIIUIjdrN5IS3hZYli09P23I5jwQde+5fhR+hi/BsMQdvb+W6jXJR7grCWET+PrKG7cwbUIv+HfeB8/dlnC4ZQ0RMUBF9K5kjSRR+44ofP0trDgSgZAkKdimKqwzgitBkzJjS0GQmoWptQ1el4QFSQXrAzrdEjTYmnoYG1fgaMxBbLq5CaKYOzAK9ID+KGPoWZhCEdBX1Vd1oIks9WXJgcXILM6UVkHsC8nOUoi7RqHMK6tyPfDh0BVoY1clkN7Ux7Yh2t/QoAm3OSItD2Excbh9/TKemDAGfh7ETJY8fIAJ97UZNGmIp7Tp1dkMmtRxzppBE+0GUB1osu/DH1Gcky9okLAWiWKwXgjrhti5u6D3HFfSqVhKOhW8sc4Bn7rx5jrugj5CDldZCzK6z6k+xrXM5deuVxAAEwZO6jsVKDmUhE437KI+O2P4y7pps9QFNLn212HEXA5G5wmD4T9EOS05O/NPpNz7iJxmppHTzHvaDpXW5TJSfyTrzTUa9UUCd5Kt6rlAQczPq1tbYQ5YMFgWyQnvISdrp5Cawyk6iiGzs3brSIykWY8h9FYHoUjbzkH0/9r/8OsCmvAmlOnHm279jCN3D1c2qawsAyJmmSiEItukjUMbrBqxCvnEJOGNbmHeAaIMW+HkSdKV6Pk4HBxdaINQvzRfrSdOh4LvUKrJifBUvEmpJuM6tsQ7lK5zKiIdT/TwwNKh6oUtGxM0kbcdHrp4upCWU5CRjU7jB6PN0NrR+HUYNkz58SKScoux6ZmeaONipfJSTjtIvJuAfZ/+DksHAgIJAE0ihk8ZuShZEvDR3tUGVv9Spc3NzWhzSXRrOaSNWOgwvkF6GatWgTczYtp06nfrhswBnbHw2FKUVJThrqE5jAxM4VBWCD9TO3w9ajWMtu2GJOpuZbskJLYpaulRK5ebF7YF4lpcNv6c2R0dnc3pwJn0AVTEn9cSBOYJa75wDPV3FsCTgBaqx0iXcb9fZS1obiLCSKcj9wrcW62FlXVN0D895VtkpH4HR5fn4NSiymnufrXxft/nw71nMNXzebJ0tUPfmzOBgwerNeHuiBQkdc7Fd9+2Q093A/SadBtWSWbo9LtXVTlyEmMdk0JjC0E7gkEU/j7kkaZVdHoh4jILhf8OSsxFnqgUiqDJ5K7uWDbcn1xBshEYL3U4YwtVV2KrKIvioiBixM7Q6Nx2v8eytvczMqzAvYJYvH78NaEKcQSxfC97QTKuFPr2FqSxZYy1Y9cR69dRLWNCFWjCAudmphJ8du5TXEuWgucckoIyUt+uEEAT+NAhgVk74e9tTGyEAwQDHfRUatv3pnrd/QBN3tgVhIF+9ujsZACfls4PpIZafc1fM2hSXyPZtOtpBk3qOH/NoIl2A6gKNJFZ7Fo42GDs23OVVlYqKsE/JNbJFrjD32yNpPi36JRtPLkL2CMr/VfpwrFwPE6u+1PQFDEkEcai7Dy0G9kH7Uf3166BtSzFqTmcosMbKMfWujvdqLvtP2+vE3Ra+tOGviVt7LWNuoAmMuee4S//TwCplEVG6vcEaqyjRTtZ/7Wof+s/Zl2w0Gx5eZ7gOsDuA4qRGByFCz/vrvbXTj4eGLKoykmHwbX83OMqRRVPrfsL6dH30Pt/Y+FJoEtEcH+6Zy45V5yjZ6umRoqq8dcFNDE2KsdJon1vCNxQrTptQRO+aJTPKMzsNAviEkOkJq6EviSJnDWXkeOOJ21+dT/R1/a5qs9yLPb644EL8AzdgkdnvoivCKfizfmuBf1gRxR5ddGYoIm87bB3z3YIP3lNcLhip6v7EbIUpiVDfDGjp6fKWxoTdVqfXFh+f2kNJASUhHpYoozYJ7Iw1NdHT287BPj7g4X7ipXo39gQ28Rw218wPrAPJc4tYDRvDpYdWYbQzAgUUJ56hjXRsGmzZFmUQyKNFRjg0Rcvd3keet+TFkFBATB/PkoHDUG+nvr5VNaJrMISPLr+nPARW1Nbk82spjQfMW2GGTjhPzKL7Uc7uuKZ3t5wt2saYqkMmiQnrkHivfVQJSDKv3+52XsIDF5BYPCk+/HYNeo9xqw7i1X9l9CzVoa+fSl15q0PgNDQyjZdnxcNkR3ZX+9sh76RpfBcFIMSyzK03+4B2xipMLZk+XKI/duiqKL6+1FR04RBkcV/BtYATbgOZngVkt4JP2ey+PXZXvBzrsl+ycnageSE9x8KNhC/lyUGIjy/fyFyxbn0G5mD0qgkmFzxhXh4FExcKGWK0kP97f3xxcgvKDW0VAD0lYUq0IRT/vZF7sbW4K2Vl5WVpkCclQDzI50F0ETSukxIz5FFF5cueG/weyjUUk+lUR/iRrh5Q4MmnP029OtTsKff632L+xPozilJjdDR+3TLZtDkPg30A36bZtCkjhPUDJpoN4CqQBOZRoBv/y7oOnmYysoOfPSTYMc64AU75OSuJpbDE6Sp0YPSRF4lAcwhyAl5AmHHrwjCry07+JCQ6nahLgZiGJBpiKgoL8eOV6WuLI9/tpQ2rfUncsVgyZHPf0URMXA4mIHTc/oopUwcxb7VFjQpSM/GwZU/kxCvGbF0nlc5ZLxRz8r4QxAqZMHChggZMMPpOcwkUgwGTBg4UQx2WLKwlwqIxkXNJCbSNXLi2STor8hHQUYODn6ykcARQ9JuWSwAcnfDxlBedgJ8AvaTlojcKaWGDmoLmhhQvnZGcTJeorQcZSFzwan8jCydWaeErZ0VY3HPxejdsj+dZr5AQrBn0aHzHkj0fQR3naYQt+lEd+lPlDpCoIl53ydxq8QZc0ksbna/Vhqb35igSTqLNH+3vZpeQm2twTV2VEmBQyEp+HB/CPr7OOLzx6s2EMrqYiLJwS9/R2ZcKmJdzJBPYqry4eTkhCFDhmLlwXAwSMGLbFP6Hsj+yfbG8/p5wnQlscpGDcDW2F04EHdEOKkvMTBCIbmP6JEgp3lBDswJoLGktJ8ZHWZggnl3GCWkomLefORSqlhtFtK7byXhsyNhGODriFWT1PdTse/cFwZOunvZwFyPFvKUb8/pXpwGxpve9AIxbcD1BZaAGaUeVQb9XS6BRxW1aXBtJlPJNQyaFOZfQGjIbNogdoS3X9UmUlY8LuoZeq/dUPpeq6dmPDDVRKTlY+avV7Fq0EdwME1DQIf9sC+3h97ChYBIhCJHMQJnx8Co0BAx61qhE1kPW/bPRPyADDhEWiFgFx1kPPssyh4ZjjzDmsCZMiHYjedjsH3PXiE9J63HAgzu6COkD0amERCoEKpcvlITP6XfyN9VpoY+MAOsoSEy0ecVZ1bgZurNyjRSw0QbmFxtg+KhN1FhU1KZNsOA/uwuc1AsUg7eKwNNjI1IlybrDpaf+aCyNSyIXlhwCXqFBjA/2l2anuOZRlo/VemqXHhim4mY3uFJehSaxmHB/Zz3hgZNLkZnYhnp/7Ce1G8ze1UC1fezj/fzXs2gyf0c7Qf3Xs2gSR3nphk00W4AFUETBgXYIjjqHP8QV8DG1VFga8inV8jXfG4jiX7eiUb3meUQS34TNCpsHabibugYQfMh5uBs5CalY9BzU+Di7yXocrA+h3fP9ug5Y7R2jdSxlCxtyLalE0a88oyOV6svzmMjn27EpRkMYFBAU9QWNJFpx7CoKourqoqk+NfppHM/5dOvFBg/DRFsocvaJmw1yIKw9nb9qtF+tQFNosMnkhBfFFq32SnQpOWDATYG7Ly6tyMtGqldakzkdCFFhjcqvGHRNrQBTdh1wMCoFJyvnV6UrrRqcXE4idsl02fMCJDAjEBBAwUXHfkLvxlNLILMX5CcvIX6uJv6SPzlBzjsTGlhK5Ge0mbTxvbw5VvYsnYFJjy7BG3adxE2yJxWx+8DdRoYjQWaFGbl4eiXv1Vz6WKwbfIq5SBYQ0xFer4Yj31/Hk6ZtzDCRYzFL72h9jZ39p5CyMnrSLEzQbpNFePDyMgIo0aPwfYbyTgfTdaZKqJXK3u8PcwNt07+iO+ufiuUKjWxgNjMglLXqzYqFoU5cCIKP8cHI1ei84hnaY5VnzhrGhsW47xAi/I3RwVgfKeaDl6arufPC0po43U3BpmvvikUF54tBUCENVDYXQWUeiSZN4+eOy6jTe0NU4ZBE329Ely5JAWK2nS4RGkp1ZkMzMJj5zjftkdIlLd2Y9Mwra//WreRNfnXZFG+cvAGOJsECcxDZ9u+MMlkCJoAACAASURBVL5zG3orViCpezZihqXC6Q6loO2XjkWpeTmuLI4U/r1r4CSYzfkAuRWGSsEwZaAJX3f6xFGyHF6Lj7/aAHdXF7Cjzsg1Z2p0kIG3HfNrMiHj7s4WrOA16XLV/4jVb40mJuXYFb4D2+5IhfZLS+4Jv6mGSQ5VoIl1kSB0a2jUQijDgH4ftwH0jNYE+xVBE97YiyryBEF0UZmosvGCKHrhTegVmVQDTfgeiqK6r/Z9FV1b9KoUSK/fEWi6tTU0aMLfS/5+zurrjXkDWjfdgdKy5c2giZYD9ZAXawZN6jjBzaCJdgOoCJooAwUU0yvka650rZiSTsJj+4SUHM7pjrwzhCxqMxCxcwp53TvhsY8WCZfJmAT870OenwYnXw/tGqpDKZkmRqveHdHjiZE6XKm56KlvtyGdNAkUYyLZGqsClmRlawuaXP7jAOKvh6Lr48PgO6CLykbGR88XTkMbekGYkbqe0oCIpu74OAICPkUhpQTIFOa1Sc+JDBlKC7d0+LU7Tgs6aapRTmKawFBhNyYh9YnclVqSyxJHfPQC6td5nfulCTQR8rVNJFh14TNcTbqqdFyFkzW6N4Ml+gZWAljE7hgGBqrThNyt3bGizwTci18P99ZbaVOoWvNB8xPX8CWsjPVgdPY0xBs3ITAhB/f0KvCrtQSTC/TgWyoV8TR5YirKBw9BLullqIrGAk34mWEnL8VgUJbB2foMdlcyV0FcY52PPX9uQtTtq9jyR00mgqwdJSR0HHIzBvy9LnGwQricvMeEUcMxgBh5rH9TQuk7rFki+lfrgdMPWPOB/2lrqU+aOXl0okhCyuHhgq1wupkdKvSrC1salJfCo0zKirPs3g9fT/iBHBQowacWjhDyG9QDiwaSo0ntn2tLulR05BjurViFrH/1TuTnycXKFH6d6Pu/di3yKwyq6brU53xqWxeDJizie/vWDIFNomi9LhMYZfZZQKeb2lbbZMu9vTuInJLSSS9nP6wkhyv1qaz1ymC4awdCKr5Ctk8B/Pa7wvlOFaP07sgUpHTJgavzdDh5vKdyXjWBJl+t3wR7ewdh/Njxi52/5EMV0yTizgBBc03+t6epTQIzQEIyb+Ojsysqmy6z/q0BmigwQFaP/AotLbwrBaRlFciDJsxiYQvfN469gdCMqnQrLiv9PTxXAzRR1Pjisob6hvh2zHpYG6nXU2lq41/X9jY0aDKdRMnjSZz8+ye7o5Nbw7C56zoG9Xl9M2hSn6PZdOtqBk3qOHfNoIl2A6gImhz4aAOl2+TVuHjq6mVKK4y7Tq4u5AThNzYSJk7nKDXkNUoNeQYJMYsoPeE0Es4MofzusdUcbGTuKs4EmAwm4KS+48rWQ4i7egfdpgyHT7/O9Vq9MtCET7UnLF/YIKAJgwlnvv8b4sJijHztWdi0kDq2KIuYiGkQFYeQJeafAl22oaKivEDQNvH0XopLGbmY2H4m0estKvOleRMbeeY6CskmmY+H5QEQblPYbTo9JjeegI7XKefaRHjeFJkC8kAdp3rl5RyEm+dnsLYbp3W3NIEmFuZ6CKdFYWBKoMo6S0oSUCK6S2lCDtAnnYjSEsoZJ1ttI2PVOjkVFcVwMUxDz5Y9YGg8Quv2NlZBFsG1ITZCxhdrELH1H6QQMPBrSwtMTiuCLwnbth4zBK4fv49c0mVRl2bUWKCJMqCXx5JtzdnevD6DN87WnE7zBjFJoqOrVc02u1sNyhFmZoC1EmPBLlUxJB9/DJGbJ1KTsnF41S8wsrFEjLc1SkXFGNirG/p37UAuS+rTCZkdZUoWo68cfQkJOQnQTyEWVGIiYk3sa9zPkNxe3EtySayxNSps7dDWqROWD1leK72Bg3dSsOJACHp52+PrqarBW23H25bGqmLjRlz6fkuNSywph6nzXxshcnWvlVittm3QtpwMNImK+gIZaRuIUVndLl1M74jo8McEK3KfgH3aVttky4379pwg7rt56m2U5P5UKX7LQLS1UQUuXSKnIdLT6bneF8YFVc9zobMYN2fGCOljfu3OqNSoUgWaFBcXobi4WLBRNTOTArisd8LClwzqcZhSatcPtGFU1DQpLUlGVOgIYsDaw699TXZKU5gM3nAXlGUJDJAyEn2WheDyRmkz1UATSs9RTCN1s3LDN6O+ITBWvxpgJQ+asPDrlqDfsTuiujaZ7F6i4mCU5+ZXMU3IPUdVuqqvvS9Wj1ytVk+lKYx7fbaxIUGTGBJOfurny1I9k0Xqndzqs0+NWVczaNKYo//g3LsZNKnjXDSDJtoNoCJocvTLzcKpv3wwg4KZFMqCy/I13sOuw9L9NlzdP6D0nCmCi4DgJnCnA7wCPiBBz4DKyyvoBJW1UIrph7fXk6PJsrh+T4OPrPoVuSkZGPbiU7D3lFJT6ytYO+HUeiklVj7YdrnXk9J0ElWhK9PkKoE/sQT+yELTyXlU6EhhU+/b9rDaTX19jEVR/jYEZoTgq0vrpAKonefAyOSRalXz6f+9wDC07tsJHcZIf8DLytJpczGJAAgTaudx4e/CTl5BBAl3FucXVbtepoOSkvgRsjP+RAu3t2HnOEPr5msCTcxN6AS7gqgUaoJZNaXEimGtHhbAZfDG3LI7bGwfVXmVWBRJefO0EdSzg6Pz/UsR0XpglBRkMKCU0m9Cn5yLlITYKtDE3BZuv2+EI1n2yru4KLtXY4EmDLox2Csf/M4aRylzmthftRkzXvSaZ6VBbxGx50g/iSO3uBQhyXk4ROk2oRZGeCEhHw4WJpRXLkcjmTsXpUOHIZ/0RNafuQub3XvIGrgC494mW+2EGPTp05fAR4la7Q7akxJoV4E1l7/BtZRLgo6JhCyIc0g4uUjalGphXlECZ3LRkLi5gfw0hM8m+E/AtPbTUVaimxDsW8QuYCcldith15K6hgBAEVvl2tQ5EIVUP9F2f+NluI0fiXxyAXoQQgaaJKacQEL0QoFt5u37e2XTCvLO0EHB8ySO3Z9SVX54EJrcYG2ISi/AM79cEbRnNk5JIWHV92BjT8xAj4+Fe4qLziM6cgEs063QeZMCuEyaJyFuO5FNByosVs6i5cpCFWiirlNnItOx4mCooI/z0/96oJ2rVENLFsIhDh3mWFiRdXrrnxpsfBqqYtn3hUWfI7OkaU7yIRWCTSEh2NaCpomevQmls9Y8NOrv0R8v9n6J9E1A7xppDTLQxIQYYFdSLmL1xS/VdqMo7QbMDndAWY80GLah9E0SnFUVI1qPwJwucyESN3175/qY24YETbZei8fak1EY074F3h0rdTR62KMZNHnYZ1i7/jWDJtqNk8pSzaCJdgOoCJooS69gEVe2jVUWMtFVj0GnYdMqGm5eq2BtOxY56ceRnLQUhakt0HnQfhiRc458RF+6jevbjgoirS3aeMOcdEFU3UO7nkhLyRx99Gh3Mfnzl4R8+foOBooYzCiizZoxibMmEDBQRhaJLv6e5PjyqCDYqix0AU24fgZN5IM3gCOWPVMpqKp4j/CgnsQEKEabjpcJlJC6EzREGOrlIDHrABYdqnLoeb7HcxjUahqd4lWJQ2bFp0C/KJ/YFoZwadtKSG1hajufinEwW4MZMTyehSQAe2nnGeQTc0UWMqZAespaBN08TKDJULTrqJzxpKyfmkATTWMj2wgZm3jS6fEBIReec+IVN0yK9bDQIAsO2jlMJ+vndzTd5oH5nNfPYTfDkPzSEvxKAqXMNGn17sfw6tkJ1iqeafnGNxZowm1gMPPm7lOCKLUtWSx2mUgMNyU26fU12IL1b+A16H36qVBlKLFMMgvFOGpvWgma8N/3aeVANHU9Sm0ajNcT4jB01KOQtOwI1gaZmhlJLJACDH9+Clp19qHNXoVGYMrYuAJHog/g19u/Cq5GGUkZyE+Tap8YCEk6EpAJsfS/KTXH1UwPhgFtCBBj0leVKMiyvsvQ3aUPpelo937klKDh35wWnHL+ea6/UhZNbcaWNxAlSUm4M5m0p0qktsTWj45Bm3deRhGL1dam0ga4RgaaZOfnIjyol3CHNh3J+llf+q7PJpA0JfETAVxt4f5uA7Tgwany7xv3sPp4BEbTxmzZwFxKn5xHQHIvEsD9WWhkatLngnueu/lUeH3ANvH/xogRqJg9G4m5l+ma54TUTE6TURa1AU24nm9ORuIvsrme0s0dLw+rrpeVSQyhtORvBCYsM2KbUvC31MS4HJuDN2N/pBomUzyBqKfLpEKwpGnCDnd6SlyyZnWZhWHeIylNVppix6BJTkEJMkTJWHRQtdi8bMwKU68K7jnoqwc9X81pegt7LER/98FK9VSa0jzUR1sbEjR5cftNXInNwgePtsfItspdFuujDw9SHc2gyYM0G43XlmbQpI5j3wyaaDeAiqBJSlgMzv64E4YmZFnpaCtoAvAfdSe2hz/7BXYd/oKVewLleq8TXHNir11GsdEc2iAboV3XmukPvFE+9tUfgrikLNRpp2jXGyCNXTSICWLv5YphS5/U9rI6lWNr48ub9yOfXG6sXRzQ++lxtHFzqlGnLqCJIstEVpkqHZgKAiLCg3oIC6SATjfq1B91F/Npl6lRHhbsHIK43LhqRdeO+x2tHMdVy5cO3X8adm52uBJ6C2V69BxQTrR8sHicr1dPWJUZ4dzWqgW0PFMgK/03vP/2PnTt5oPZz63Uum91BU3uxb5E1shH4eS6lBgj8ygXPgsRdwYJApAsBKkqePPEmyhZqprWDX4ACnI6x+Wt27Bmz1b8r+cQDFkwH0aWNa07lTW1MUGTxhg6tv41IOtf7N6NoKRcgW1ysU973MhIwac9BwtN8iBLXSMnR5SMG4eJ06Zg+oynkdeiO/JEpWidEI2sGyHoNq4/uo/rh1wRbXjUdMSI0h7u5cfi9eOvQVxQRGBJFkqKpUCDJYHOduSqY0CWr8n6ZANcWgozshe16tGFnlcDVMiJw3J52upg/bjvYGvkXE3IWdXtj4Wl4r29d9DFwxbrp3er1+G2MJDA+HYgri14FWIvb3T6izbfNBCq7FHr9eZaViYDTXJJRDc28ikUF92qprGUmkTaLPSecnZdRqk7s7SstWkWe3dPMI6Hp+ENEgMe3aaE3M0ehbGxB3zaHhQ6FB3+OImSRiDA7yc4nM8AfvkF8KU0udVVaRqxkTNoDINU2jPXFjQJT83HrN+ugtO7Di8ZRL+HVWOcGPcaMQUP0D0/opThiU1q8Bkg1TPk77p6GPHG1WtY99U3eO+jOaT5UkqstNYqhcjNSZ8qh55nxlIZNCmmg59NtzYho4jmTE1wam1exgWkXNGHe49usHDR7vfh2c7PwsrQSdBp+i9HQ4EmxTSuw74+LQztocUDKY1UM5j1MMxDM2jyMMxi3fvQDJrUcQybQRPtBlARNLm56yQiz95A2xF9KKWiv1aVXPx1L4xafAOLFimVdouXNu+DqfdKmFjnopX/dlJWb1utLlWgQMCwXrBzdyE2hY1gSWxsrj09W3D+OXIRkaevw4eskrupsUrWqmM6FBLlFeISAScsEssb/j7/G4cWxK6QD11AE1U6DfLWvfJ1l5amICpkuNrTOx26o7QoL0BNSEvhp8Dv8c/N92qUaeXYH989thvikqp86Qiai4oCEk91N8L1ENpgKkRLt3bkFrIIf7//E3JSs4RPefw4FUmmRyEpu4mFz32I7j3bYfHiT7Ta5HE9dQFN2I0gKlTq7uTX/pTgBMVR5ZBxiJgyylMUEugUtYDE8mQAYl3H/X5fnxEThmVvvoZ3XnsT/t37au1a8l8DTVgw0caEvhTLlyP+5EXEZxfh+rgBuBwRih8spELB+vSlMe3aGRmEFc49cxTDWrRCD7uWsKUFrYmpGU7EEpvHwRQj31uAXAmBHSqsqXnTZGhUht8DNyONmBlFrBdEYWxmDCtncswgJpAhNUU/kzY8sbEoKilHUSsfSKysYUP57crC0cIRU9tORXaB+hQ1vvaDfXdwJDQVS4b6YkYPz3p/JK1J3yRi7UYk9xoAa3JF8XGTinw+KCEPmqQlr0Zm2s9CagmnmPBnkREvkXPZQbh7r4aVTf2Kjz8oYyBrx/j154hVVYKtcyjNxdYAYUHdBft1FsCVvTcZWA7oeAk2tG/T/249JNOno9jCBiLiQ3HkZJHrXsK7Ku2bawuacN3PbbkOtk7n9AROU5CFzLWtlf82Wo80vdQFfpdoG0WF13Ev9gUCTG3gK2js1LT+JdPvync7gyaZBQWkk6IZ0OAU4NxsWvMRU8hGR/Apn7SbLAwffnFSdfPUUKDJyYg0vL07GF0J2P62noFtbZ+7xijXDJo0xqg/ePdsBk3qOCfNoIl2A6gImhxa+bPAmHjkhRlw8NbONpEteEVGb8LMIYNESP+ilIv22PXmWrTodQy2re+Szsn7gg2xfLDeBQuGagreQMsAFOGfwh9rAVDhf+f0HmERRsyVq38ertRjMbe1wshXn20QTQN1bb78+37E3wgTirBzDzv4yEIX0IQBoL0ffE8nxlXMDHU2zaLiUMRETKXFYBsCqXZoGtZafW5OmwMJxCgsIzE+OiUsLUmsrEePFmWWNo/AzNCCHD7KoF8hFekTkVPI3ve/x8CnhiADFxEREVF5jbGxMcZPmI3kMAOc3bQPzr6e6PzYYGFeZcymiooEpOScwBsv/Qmr1hXY+MEqsrb2o3aodnGR3aA2oAmLbPLaNDHhG9Ll+UGwbmYLZ1lUOhT9y6hSNpB3Q8dSpkE8WgfsIZCp6Vn+5edmY+3qlXhmzkK4e1YH/tQ9OP810ITHgsEMC3EB9BYvRmRUEv60sxDSc35KzYQesT7KiDmRR1bAkXlifOlljcHZYvTJFZPWiTX0bWywzaELrKzM8PiHC1AkUZ/zn3Mvjr4rMZXvBK+OPrBtVR24MyXxTf1Ll1FoYo4wOzeEZorxeFfVosV8cF1OLC9VkZeXi68//wgXTboj18QZ2+b2hTuxZ+o7WEA0o6AYuy5FE+hghWnd699VrS5tlgdNZNoY5hbd6Tv+M21My5Gd9jcSYj+hd2/T3JDzRk6bSKHneNWRMNiRFo1MMyH41iBKu8hA+04nkZdLuiFxpGtmNxKunqsFxyEWThYTI6qwvPqmn63ry0pTlbqi1QU0+edWIrUxvJpgsURSSgLkXYUuBnQKfOAdzbSZC01l4qJmUjrsNa20wBQth9XVnZO1gwCv9+m3kXRsPKU6Ns2h/Qg0FGjy6eEw7LmdhOcG+eCZ3l7aN6iJl2wGTZr4BNZT85ssaJKdfZk2DGlwcRlfbSjKywuRkroX2dmXaCPhDEeHYbCz611Zhj9PTPwTeflBSj9XHFe+T0Zm9XxYc/PWcGs5XSjaDJpo9yTKgya5yRk48vmvMLW2wPgPntOuAip171YEMnJnwcQml7Qf9iKLTCXObtgJj74JsPEn4MRhMgEny6vVp0w7hVklnl0DSCC2QNAm4D+sUaIuzKwtBQClICObNujVhUTVgQxad64WBW/vOY3wU9eEK9uP7o92I/sI/64LaJIWGY/T320XqPUubbxIL8VLbZpUYT6ddFNuOavYe/o0nMgdn67LIj/nMGkipJJL0gmUiu/BzulpODg9W+O0/MIve5BHKUzjXu+A02eOIy1NKjQ8aNBAorMPxO7lu4S5GzB3ElzbVYEMRgb6tEG8jCUH5yJ7W0uUuWZi2OQ2eLbL83Tq3lfjzOgKmvBJnjlhMYZ6BmQtOpXcCIKEPH3O15eFLF/fmVJ2HChlRzEklN4SdlsqvhfQ6RYtzpum+J0xa03oaEv7XwRNeJ7NCagwuRsJvXfexg90UnuaviPbFiyAPumd5Jtb4eq9PEpNQzXQRCYSu8mtvyDmOn75czC1Uq5DxNpAQQfOIi0iXniu3Dr6ofP4gWjt54rU7OpWq7JNahmBroPWXkAWMQJOvDhYcBSpTdwjHZa3X12C5Nbj4NWuOzaQwGZDxSkS8nzrnyA8QYDJ0kf8Guo2tapXHjRhbabw4L6wtGyHth3/wtJDL+JZ//ZwlJC4r/PbZEdeXYC0Vje8jxfxK93W0hhJyckkeq2edZSYXYwwSoFpYW2C9i2ljIG0lEW05guHs8sa5Of/TYD6GXi3eh8WttMEty226RYR80kxMlJ/JLH4NQSSPUIMnTXVPq4LaMJpCqPXnkUpCc5vmd0b3g4W0CPwPSRoDLG7fNG6zT/3cXQb71acisQpSez21rrNLrUN0QU0kTGt1An5Nl6vH/w7NxRoMun7C0jNF+GXZ3rC30VOgPzBH5I6tbAZNKnT8D00Fzc50KSoKAYZGSfoz3E6ZeiN1q2WVpuMxKQ/BcCE/14sTqNTuU/QudMGASBhwCQy8hOy63NGC5cJlZ93aP81bWKUn3Ryffl5QQTOTKi8jyGdcltZSa1Wm0ET7b4L8qBJ+ImruL2PFjy9OqDn9FHaVUCl8iitIjZ6NIzMiwRhtyDKfY86F4h245yg77hKJftBPgWFRRvbjepbwyJUTKePMgBF+GdmnvDfRfSngP5IaGGkKpiRwuksjRGclnKLhCk52PaY7Y91AU3O/UT05ZBoAlz6EvDST2MXZAska1tKa/H6QmP5+izAVofxd+dK+xqwn77H1U857t2OxJ0Ta9FpUgGBpVNx/MQtBAR0gq9fL9w5FYPbe8/AieynWa9FFryQNzYW49MTT+Bc/DmYH+opgCYlnaOxpPfLGNbmNY2icrqCJiYksnnoLqVYFYRjHD2PaSn76eS4ekqRjFZuQ9bHLckCWTFKxDGU4z+eUnc8yB1ImuP/X4n/KmjC82tlUAGjPf/gh9834wwBZ3/OnA19svkVv/8hLkRnKAdNJo3EXgN3hJJzjFNvP4x/cgYJi8qd+JPYQNCBcwg7fkV4hJg913HcQHh2bwsGLx1tTGqAJlyOF+Wc5TObtB2CKE3hi8c7o5+P9ukuvMnl4M3n3vO3sGPNu3Aa9BRGDxuKRzu6Cp8p2wTX9Tk/SToZb5NexiA/J3w6sYqhV9d66+N6edCE60uIngMX1wnYFHYDFxJvwqwsHGvGrIOFBTmYEQjW1ILnvFRciIMHDqhsehk9VKHkEJVLejy+TpYEnEhTZx0c/oK52R1kZk0jXZ099AyL0K79QUgM1bOFystyBI0o8nAR2JHMkpRFXUATrmPloTDsDUrCs328sHiIH4GGGQi6/T9yeOsgiNX/V4L1ZkrEsQRKfUXg1AiV3dYFNLkXu5S0vo7TOH5Jov/arxP/K2OuqZ8NAZqEpuRhzuZrgqPVjvma14ua2tiUPm8GTZrSbDVcW5scaMJACAMn2TlSgURF0OTW7Xnw9JhbyS6Jj99IQm8FQjm+LvjOi5UgCl/Pn4tLUuHn+5bSUWbQRCxOrXEfWeGmDJpwqgmnZ/BGsqFDHjRhAVUWUu3zzKPw6FK1gNGmDcHXulGqTAmdfp7B8a92EriRi0eWTkNajtSGV95pQLE+tgxlgKM2UZQtBVFYvFY+lYXrYiBmxLKna1NtvVzDrjqsc8LRsoMPBs2aAFv6UcvMU8+ekbFMWIz30fcXkPOQZmtQtrhNZfcGsuRla977HUkJ7yA36x/BOUlxUcrCcUEXh8DIIg9e7qR9Y0untBaWKCDhyz2UgsR6MP3nTETL9j6VzTYm7ZRj0Yew5uxsQTxWHjQxNHLEhkmn4GTmpnbzpgtowiKbcbnheP3YEhIxvIsXe85BL7cx5PzTvdpQcloSixia0AK/tZI0qCpby4ffelTxGfsvgybMUrIxouS1Lz6H5PZtmK5fD5iZQW/nTlz7/AcUkDWxfHpO6w6+aPnrjzi98yz27tmJ8PwY/PzHTmIpSNMN792OQNC+cwKDjoMdzBgwkaUjqgNNZPPyw9lo/HopFk/29KSNIwlxahFmtHk2K85H2fkLCCZx27vpGfjl/H5M6DIQbV090cPTHqY9uqLY0hbFpGNRnyFb+Ps7W+GXZ3vWZ9V1rksRNCktOYdDUTuwNewsDAztUUyuYL08hmL5yO1k5aonMCyaWpgb6yM1NQkXL1yo0fSk3GLEZxWT5oUUEJK307a1PQQrywsoKOxJ7/Wr9Nj7wdtfPbNBdgOZnbyi61BdQZMbCdlY/GcgCZNbYMfCHjgesQldyHpbVFREDME5TW1qat1eFidmkWILq75ks1zdll2+Ul1AkyptmL8J6Aqoddv+qxdqA5rwoRGnLGob/9xMwrYbCRge4ILZ/bzVXvYgCWxr2z915ZpBk/oYxaZfR5MDTWRDrgzMYECFQRMZs4TLylgpAQEfEwPlMmJivkG3blsqZ47/LjV1D51IK8+ZlDFXmJnCbBUZw0RWQVMFTRS1PlS5pdTXIy4DTUqKRNj9zrdCtZNWLhHcc3SJ0Jt0MqhHVFzRFlz76yjM7aww7t35tMEkAbii4EqBWF3q1KWsYrqPopioLnXVZ9n06HuCsw6nHDl4tsDI5yaizFS9HfC5DcQyCdWeZcLtTU/5ljQ4viNxwoUkTrioPrugVV2lJcnEsBhDwnJlJIC6njZ/3WjjUEqLNTvBipPdZApTWsCg6C0MmDGCUhIkCD56hVgmp+Hk444hi56ovA+n5YiRB3G5CGWU6ldUdAMfvrYHHbu4YdKTPYh91pUox64wJ2ZZWYnq51Rb0IRTUcoqsjBrx0ByQEkW2sEaLZumXoQDbQDEcmkqMpciFtZr2/mWUFI+stI30yL1s0YDr7SarAYq9F8GTXhIWQ/HSp/SEEi3R+TjD5FEXxDCLFrxMbHvjuNjNwsMzSnBdENDuP70LUSu7gi5eAdbN24UQJO1a3+l740BgikVR6aL5NjKjcCSAXBsXV27RBvQ5GpcFpZuu4mAFlb4+WntQQhLYz0U7d2P4PdXIYO+GxvdLDExjazMi8jxZ+Z0uCyYhVy96hby9fFI5VD9Y789CyvSTmLnkwcp5EETQ8NyxGZfwYv7xhNgYkeCmK4QFYdQyqATnu7+ASa2M2IlTAAAIABJREFUmUx6T/ULKN2vsbAgYePgoNvE/I2svCXbTQcm5FQCJrIPWJfHwYKEiC0vwtaWmCUSL0pHjCOnsWfJcexVrZosFkWS284k4T3q3/60AEBxaAJNzEw0p5t9d+Yu2ruTtk/kHhz9ZScen98eE/vOh5mp5o0+s4Uehs2lpEIssHkqKgrh7bsZZhZSXRfF0AU0YW0Y1ohRdxCm1eT/RwtpA5rYmOpDnwT0kV+gcZS+3PQTJEaW6NxjKDq72aq3g3ewRxHJ5InJYe1hiWbQ5GGZybr146ECTWRMku4EihgYSDeMDIrEJ/wkACmcnnPr1jy4uc2gH9/ewn+nEGDC13GKjrJg0IX1TzhK/mW5MMAiS+dR5UJQt2lp2KtDz93G8Y17q93EhHQ+nvl8EfifDRG8+OaxirgUjCM/7IZn+9aY8MoMnW5VXl6Ms2c7oqLcEMV3ViAmMAIdhnbDkGfG0OLrfdKq+QM+Pq/Dw6NhU2V4/BLD44Sxat3VH24BD4YYVm5aNg5/vwtpMcnEsrDCKAJOWrZR7kBxLyQW/3z+h8AumbX6BXLH0G5zEhn5AY3z7/Dze4++R8/oNH/1VTg+/jtER38pAJiXLg3DqZOn8NPGNxAYKH2e7tImQyL2wNy1L9OiS4JfXl6DwpwCjHthKlrRfKmKoqK7mPnsS2jf3gCjx+ShRYvJ8PJ6XmOz+fRf3iFA1QUVlE6xbN9UXEs4Uq2Ir307/DL9Sg2Tx8uXR6C4OAY9e+4nOn51RpZsHnx934G7+0yNbXyYCvC7hE/Ym94Ze/3NAosI6xUXo4KccTgYUuP/LiGh2EfvJWAWMUlmLFkCCen5iIipseeLrTh3+5IAmoxzHSSAJhV0mm9AwErfKUPQZVSV7pdiK2XvblWt5/d6u/cO0WZXgqtvD4c9bXC1jeS0XIS9/xkyzp6qAk1a+cNj3ZfwbSl1BmqI6LT8CArFZQh8d4RWlpnFNLYcZsTqacgQ5pX+x++twtJCLNw/D9FJe4QZZi01fkeZmXnRv/vi3YHvoodbD61dpxqy3bWpm5/ZEydOID09Xbg8vUCM2/dyalTlaW8OP2IFmZiEwMb2D3IYs0ZZWR46ddpIdrdSy21tIjj4eTpEO4JWrV6k9/pi4RJN7279Mtr53SLQWg7cUbxXqoMTwo0L8c7uD2F6h9hAg27jt0lb0CqLvgeJVSLmNdrYgVK8PT1QQc5TD0NER68i5vaPlMo+EW3bKk/d1fQukY1DcXE8Ll9+hObcFX37nn0Yhue+90H4TaAXSgV7PasJff78jTeAMKmxgKqYJRbBpqAEE9JFGNKGUuJVuSwNHw7Mm0e/TQ2zl7jvA/nvDeV19hqrDc33bfwReKhAEwZBrt94EvKgCYMeDIzIQBEGSBKTtgpAiYmxM6XmpAn/VMU0UZwi1kjhkKXzKArkNf6Uam7B2Y3/IDEoqkbBRxY/Qc4iDZOq42JnKuTFX/r9AGKvhaDrxKFoM6R6SoKmlpeVZZLtICnoi0wRe2Cu4JgyaN4kId0iO3MXEuPfoUXVKGIgrNZU1UP7OacOcapOAul7cPSjFCjPbjVPvM5QmlESaZl0IB0T/qNtJMS+Ilheenh/Tqr2Y7W9rN7LRYY+Bmubjti2W4Ibl0Lx7fo5iIl8k9gvz+HWFhtkxiej37PjUZSTj5uk+cIsk2FLpOLN6mLRvKfRtXsA+vSWstH82pIzjWlVOo+ya63MDQmApZN+2oSpCiOjcvwdug2/Xn0Fkorqopp8zYRO72N+9+eJ0cLOQdKIj1mKvJxjSsc6Nmo+2Q2fJ2bVelhZa79x0NT/pvC5A4lD5pDwaHn5fxk2kW745BfErBehFxGCya+9gpn+AXj845XIlxgijHSPAtniPT++EjThxbRHF390eWwILOxUb9p4oWhnZUwC3GK1j8aSvwJxJTYLnzzWEcMCnLV+jMSkFRWekovMZUuxsSIbE/Mq4P35Wjg72cGzhZ3W9eha8MmfL1NKUAE2z+oFTtPRFMtemE/aSG2wcMkyTUXr9Lm5iSGBAiD2QRk+PvcxAlMCSSj6Gh0U5BPDxIH0lTIpVcGftIzcyEHMDGvHrIWlgb0g8tvUgh2hUFGCA6RvUkbghIi0bZi1pBheBJp4UsqLiXEMnJx+Fj5m6+F2na8L/9Q2CvLOI/bufBpHWu91OClcZmtphGJxBbH8lFvg8vNvZUpskzffBMilSjH02pKg/NjhmHF8IfKIFWF2vS2BJkFop98Sawd/A70//oKErLlrRA8Cu15/HfllrAv0cLzHSsjlLuKO1Abbv90h0hyruZZklmB6rkgj0FeQd47magExSPugle9Gbae4uZzcCDCzlZlr2fnq07T5e2iWkwE9AtlJi0DpGKbmifAaYYAutMaZkVdKdsMq3s0+tFb68kvki8sfut9n3sM0R/MIPFSgCU/nlauPVUvPSSUnHWaKqNIsYY0TO7s+lW44mh4Jro+FZmUgS1NMz1Flw8tiprXV/NA0brL0nD3vroe4sBijXp8FaxcpRVbbKClJwN3QMSjJt0LEzinQIzHDyZ+/KKDpYlEU0W8nCotJ37aHta3yoSzHQrCBO46R+KnUarkzbYz8B1cBVLXRMpENFAuxsiAr5y1z/nJjRanoAkor0vH8ylWoiLPBrHe7o7uTD2mdzBQspvkZt3K2Ix2TInJGEqPfrMfIDUSz3sLhA7vh2tIDTo57kZO5nYChR0mI9VO13dSUnmNsTClCaTfxyfmPKYXsJlmvVj9N1dM3FdyIFnRbgEGeQ8lZQroRSE9ZR6lQ31Mq1HwCg16o1oao0NFEzb9Hgrj7aHHq3VjT0Cj3/a+n56gbdAvS9TG4ehn6gwejoEQiUP8v/LwbnFaoCJpok5KpTXoOt4c1TVjb5HFKbXtlhG46VfdyixB28TI2//IVHhs0DgETpqCdu/aCsrV5CF/deRvn72YIQrAsCKspXlk6n9h1AViw+GVNRev0OW9y9AxKsP3ODvx1RyoOzb9t/F3X0zcjwLUYZuadKtNL2jq1xcpHCBwrok1KE9Q3MTHSIxA+A2dOnxb6GkT6NrnFVc46poYG6OJhSwKruWjZ8nvabFc517X0+Ag29hN1Gu/YyCfpHXwbrh7LYWs/WWN6DlfOaQ7mhbnQW7iQlImrAG89OztInpuDFdc/w0mDczDIoHZeYtDkNiQ2hXhUMgpLA+ZC//uN1Cdpu22YE+boCMnatSjUN2mSYJe6AU+Kf4vmcw/pucwix7qaAKO26TlZGX+QdtpK2DlMQwv393Sa4+bC0hHQJj1HNlYWBhIY3yaL7E+kh8LykUQgV3RGATZQ+mQLcqcan14sWNlzyly1IPYi5X6iyMYBImhOa2tq89ScntPUZqxh2vvQgSbRpFliYuIigCAytxxHx2H0O/VIjRFkACQxcSs6d95QLZ2HRWZlArOc3iOzLJbVZ2XdsUlbDrP46/6PNggisLJoaNtcfuHcuhKBU99ug3ULB4x6babOT3R80DEUVrwIUbY9ovY8JlzvRkKH/WZL/z08qLeQU+vuRQrutqoV3HW+cRO7QOaec27HGQQfPC+03n9ID7Qb0UcQs2UXmdSIOMFFqP0o7VkmXE9MxBTKqw8jF4LtdOLZtlFGhjdyRnr38NbRpxF2jE5g7zmhaMwVrB71NfxbPIvA/ecr+80NZHBtzFtzdAIES0uSEBUqPTXz8v0F5haqLVDVgSY8F/llGXjt6KtCCk95eQ6JOd6sGjc6KTUh0MPIWKol8cGQ5Whp7oViWpzkkdVyYtyyGlaZrOcSdruLUL5t59v0/3JOKI0yI/f3ps2gierxZsa0Da1lRSI6uf/3FF4GksuDJmy7PmLZMxq/E9qCJrzZXfDHdcF2le1XdYlMYg39fvQSbvz5BV5e8hI69x+qy+W1KvvlsQjsCLyHF8lyeBpZD6uKZNowfHMyEvG7PofIogW6jZ+Fd8Y03HvP0oK0PtJu4YNTH1Y2qawsnYRF79CLjDYilOJnbtmbxBur0oTG+o3F/zo+Q+nD2rMuajVoDXSROWnbREaE4c6dO4jJKEQiicGaE2vK0cIELW3NYEjvew93FnwNrNYCfQMrtOlwUadWsYg4i4mbmrUXHMs0aZrIKhc2lcFk7f7RR1XzMvtp/JN1DptStqDYUQyDVLtK0KTCrgDmGSZ43nMehhsG4MPf/0QZvf8/JY0HyWefQezuhSI0zflSN+DFhbcQG/UUPZ+UUtX+DP2z+um8tqCJTJ/MpeWrsHd6Vqc5bi4sHQFdQBMub006WYZ/bwN27Kg2hNfisiEqK68GmlgSI66Lu0L65LJlKOnaAwV6D4+OifxANIMmzd8sHoEmB5pwug2n15SXFdIpWqEgzirvliOzGWaAg8swYOLmNr0SFGGghNN1hJcKpeW0IlcdrkMWLPyamrKnUiyW03EYOBEsi6k+1jLx83ursr6myDThvjJgwnazGTGJcCV9kd5PjgWLmjZU8Avn8K9HEHbiirCB7zxB95SCK9vWwKrNjyhKc0b0wXGVTZ348WLSsSJHnuQv6CRKSrNltfVW/n83VHce6HrlLYdjLgeTYK6UeWNobETpH9JTPD0SQZ340SKdhXijQoYREyIVvu2OCsKEjREmJuXYfP0dbAvaAOOgVpWgibu1O36YdAFHvtmHlMiEak1jV5AulBKmS6SnrCGmx4/EqFHvUKMONLEyN6ClcgVRsKvo86LCIBrDZDottqXUHz9B5FEWBvoGyCjIhomejeCuEx3+GFkie8BHzlZYLIqmv59ADBNPYpqotu7Upa9NqWwzaKJ+tgwN9KqJS/K7/hQ5ll0Nu1aZnsP24toAptqCJtyikWvOoIDo2zsX9Ku0idXmuboUk4k3Np+AV8hmLHn5DfTopRuQq809FMtsuRqPdaei8EQPDywd6qeyijf+CcKZyHR4B/8igCYprUZjbAfXBgFOeJNTTELRiw8tQlFJ1YFGBbFLigouV7aR30d6ChuTF3q/gJ4t+tIapeltWDjNzJIEKS9evICd5+ndSClbnWlDZkUbMw5LS0taw9HvfmFNzQVmlTK7VJeIChkhvH9ZSNzTbTilVZZrZW0tbCp30ppi+3ZUjB2JIKdyrLj8GQqsS1DiTAwvRdCk1BVmElt8NPhDBNPzdvX8eXz52uuoaOmGEgbAZEGgfm75w3MyHx89H4X5F6AM8NAWNImPXkB1nKc5WgdL6yG6TG9z2X9HQFfQhF10bEigWQAGb0hZyqxTxe9nDnmmSQ3QZMoUlD82EbkKINnDNBnNoMnDNJu170uTA0207SqDJ4bkeiEThJW/TtAzIRBE2WfK6mcAhutTdk1TBU24n2HHLiPowDkEDOsl2Ew2ZPAL59c3f0BOUjoGPTcFLv66i6de2EJ0zfZ/oCDJDbFHpSwAjtFvzUBSymQh71s+HF2ep7QGzUKeDdnvxqhbHjTh+6eExQgAmUSBvt1zxmgww0iXCAvqTvWISdH+Wo1TJF3qqW1ZIdUl/SbePzZLoKzLgyZc59BWSzDNagoubDmJEjkmlZOPBznnTNPptrxZiQodRRuRLLh7E3vJRjl7SVN6juJNY6P+J7BNtElxYkYJM0vadLwinN5xFOSdQkLMYlhaDYBH6+916tPDULgZNKndLP62bh2OnzuC1at+IIct7QBPXUCT13fdxtmoDAFQYGBB2/jtchy+PxOFuWRhObNvK3rOG545dSI8De/sCcZgSs1ZSSk6qqLf5yeEj+RBE1eyc98xv36BHQa6rM2N8PrxVxGVHQl2VZGFqDiYtEwyqppIDCILYr5xWp98rB2zDk6m6u3RtZ2T+12OHaHyionV8+s2GJSXEmhiU9mEkaNGISN9HdLTNldrVm2YJlxBRtoGpCd/I2zGO3ciMEZL0ETYVBKLy2D7NmS5WOL5Y0tRUl6CIhK0ErX5P3vXAR5VtXXXpPceSCUJIdTQi/QuUlSaUgRF4KEoRZAmKCo2wIJSRVDpRZEmUgTpvZeEFtJ77z2T5O19h0kv01Immf1/vP+9zD3nnrPPnbn3rrP2WhnFQJN8szSY+upRkQK3scT7Q1bjxpFTeJMYYEbkGFggKtmqFfLHj0dCxZJB1b0cSp0vJek0QgM/IFDfhUD9o8X6khU08aPy0+x6Wn6qVPKLNJYXNOGmrG9iIibRaxIUp91iobfHkSmIS8sqBpo4mhsKNttCtGlDFNnPkZRFTFo1LBGUNd8a0ETWTNXt4+osaFJdy6bOoInf5Xu4s/803Hu0Q4fRA6o0ZUbiTGxbuJ7cWvQx4huJcr284Xf7d2TrrEJykCuCz0lYA/wy3GWSG4L8JpfqztS8P73srpH3NGp/fEnQJDEsGqd+KP7AyZMsWtoky6S59IlLoJgazjaA1R38EJArSsceb2Ka5aYL2ip+ZzIQ9TgH3WeYCSUuenqN4ZpsB6tMC9w/fKNgiIqUInFjqbWvgWFLYi4RdbWMkBc0efKgAwEh2WjqeYWA24qdEwJ8XqdyqMdw9dhFWgZthbPHx2wju+HvYGXzBho6LqnuZajx82lAE8WW4MjBP/HXHzvx+64DdN3JVhogD2jyx+0QrD7zDENbERNjqOwlLEuPeOP0EwIx5ARbFMuCpNXjyGRM3XFLEIHdOql8m2Qpe6YoaOLRwATbJnVR5vSl2hoQe26n904c9/tHEPiVgiZ5eanEMrlV6njWMSqpZeRi7kIliqtA2INa2tjuvxdKJQJZpL9zDQ70UsbRiQRT7R2ciHmThmC6x3NpKAcDJg7OXwuli/JGbm4Snj3sI4DR7dofgkinmUxMEz6PIZUNkQ41Nmx5H8ExEjF9MQm5JiEbmQYixJw0ht0rWTBPz4RudCESouXWEePbvIncWZ+Shb0WuQGZkKpmQ0EDgsWai4Jk8s6nNh7v/3QUMSV9SA9sJemCFbKCZQFN+N7I90h2jJKUn7IPjCbkzYAioIlwjZPNtoHvU4jYUYevbwJCrgfEYxNZ2bOmycRUsaBpwmVzZGGI/PXrkWZgguwc9ROjlienGtBEnmzV3WM1oImSa6vOoEnQ7ce4sesYGnVsgRcmVK0TSsxdb5zb8S+c2zdD1zdfVijr0nrkRL8miLo9EBYODcBsCQNzEXy8S4uSapgmEtV0pucf+nhdqZzLq2OTQ+r4zLzQ1bMnsd1TCq2hso20dAqV4HNyorFt8xrcvO6PH9fPg4GRJwE6+kiNTcTlvceR6CPZnWVgrQfp3ihafsYlMlwqw4J0LExXMuQBTRgAYSCEX3hYxLWyCA9eTMJ6RwqEC/n4yNAvyS3qDwJMFhNwMqGyLurc5xrQRLElDQzwQ6C/L3r3e1FmNoc8oMmz6FRM2nZDKM3hEh1ZY9xv1xAcny4AEcLLZDVEYnoOhq6/SM4ouvh3VvksSwaBGAwqCpqoGtyhfQRcCbuINddXE5glKgaaiEkPKTPdu1RGdHTthBLUktHHpQ/e6zSDmLFalTqUVEOaZT5FdEoWRmy8jBl93NDPPg/eD+7DnZw4WtMudnp24UtzSpKE+WNg2Ezuspyig5FqZtjZjaPf1s9kBk3SqUSbdVBEiQkQXS3UU8mgF8YrBj7YuP4yPpw4Di+0IfbStWvCzjt749yxtSFNExr3J2uhQ6BYVzcr5JPLSKa9EzLy605pjjTHCXF76T71FWmBdSRNsG0FqZcFNMnKfEblpyNlvkfKfJHVswMVBU04TabaedA9Rs8n27cTyyRbAJl/dTJFCwL8FmkXlgDmL1uGrKYtkJ5X9ezAml4+DWhS0ytQO86vAU2UXAd1Bk3CH/rhMtkP27dsjJ7/G6lkJipufnPbYQTe9xVADnlLQgpuxLG7wQ87ljbjYW01v9hLcEzkBtKf2FA4CKoZbtL8hPCCX9+iJNOE539zzwkE3iQxwefBAEIPcpSxlcNimh/eA56NowfW8lkX1Z3rnVs348qls9jwq8QiWBpp8cmI8QsR7FQtHBsoDJhwf0kJ/yA8+CPScLEjLZeT9JfiDwjygCaJcX8hIvRzYfeNd+Eqi7jo30mrZxWJ4U2kGnHJzk+w/zSq975K9d4/E8W8asvqKhtfTXyuAU2qL+vygCY8qld/vkys7gR8/7I7WrjYky14CbHAEkNnDRRmc3B5yoUP5dMcUjYLA1efpxfyXAJNehN4Uj7z5h0SuE09uRqZJqRp4jpYYKbIYlMsy/i0tMRIotKbWSck7MuSoAmzIdJSLpXqigFiHR2bMk8xtd1U9HEdgLycEu4Wsgyoho7ZQSVaP1/ww5BWdvh2dGs8ffIYnp6eSCZwix2gVB1Stz3u17PdReTmy2dvbUr6JronSE9qmwQQyDEWY/+roTh0sCHeS9fDgFGjIAoPRfJP6yFu5IIvyEI7VZyPCZFpYEegTt98hJyevZBSZzUg8sl+uI9Q2trI/Tdyh5OIQ8sCmqQk/UflPXPo3taH7nHrVb309aY/ZUATQVCcsBGttWvwdN9RxKRmYWsjMzQnLbz5Ws9/KydNgnjgICTTRlV9CA1oUh9WufI5akCTynNU4RHqDJrE+Ifi3Lo/YNPYCf1mjlUyE+U3z80R4+BHa2jnKx+vLHsPBqYSbQZ5Iy76V3qB/Ins7KaSnd3cUs2Zuss7USnJp5GV8ZReNN+kF81F8p5G7Y8vCzThSbEVb5iXL4EItgJwxWCCPJFKD+8h/tNJGLU76XFskqdplR177vS/gvPCtPc+qLJzcMdBfm8LNHlbu5lkATy92LnkAU0iQ5cRS2QfXZcL6fp8q9IxpyZfIP2S9wVL4kbuvwrHM9uHWT9cL8514/UtNKBJ9a24vKDJ5/88xKXrN+H47AA+WbYSHs0qLtO5G5KIGXvvoKW9GX6dWL5DVVXMeOKW62SlmVYpw0UKmpjZu+KBdV+MJFvlBXLaKpc1ftbx0NfLwwcnPkBYSphwSEnQhP9W0nGLyxD1DSq2T/+m/zdwNyf7WwKFqioKdDlUcIIP/ryHoPg0LBncAt3drWFiqIuUtEwCMyrfwVZURyE0cC49L5yCveNMWNgU/02vbErCS6VOPrTWE4OT7JJT7DPw4M0gREbqo/U2VzTV0YHu/6Yg59wFxN0kDS5y38mlMhMGTRqPeQV282ZTSQ856ageD6ps6NX2eUzkOtrI2ggzi5fg6PKDcF5ZQJO46N/oOe9H4f7I90lNKJYBZUATPqMuASRG2rm4NmIS8oOD0cbFCvr8m8UfduuG/DlzBQHjvLp8ERdJvQY0Uew6rGutNKCJkiuqzqAJi7Ke+n47zB1sMWh+5S9wiqYqzOsZrmz5GzZujug3a5yi3UDqZmJrN5teXN8pt58MYkQEEiOCgx10yqIxKzwINWhYHmii7NC5TITLRcyIJeEoA0tC2fPVpvas5M+K/iLaVWnS4iTt8loXDE8e0CTAZyzV5T8UKMtMXa4spNbHvKvs0eqcoIVS3+u9NaBJZVeN6j6XFzQ5/CAca/edlBk0+ZNKX36iEpjhbR2waFDpchPVzaR0TwsOPMBlv1isGNkavZvYlnsqZqSY+hzH4E4tsC3WWSifOTqjJ8zpxV7RYDkAff08rLmxGpdDJLbwHGWBJtLPGDwRkQisllblJUw2hjZYTeKjolxDZBcRlVV0vCXbmRoSKJCThfx0Eo1UMhIysnEnmBzDiIHR013CntEmsdTcrMJSzPJOITI0QCaxldJ1ioviyjIkZusxa09X15YYhGdlaVLsGEG8ly+BuXMRa/gQT4eHwdjHBO6HnGBKfxb17gXdjxYiacZcLHpIrkAEkMxt6IKmuzaT6K24Shg0ck+iChuIc2Lw7JGEPda42WEC+txlAk0iQj5DYvx+KoddSuWwVbeZV4VTrxVdKwua8CQeUllOjq8vGixdBE+H5+LMdnYSLZ487TqnxVPRwmlAk1pxWdf4IDSgiZJLoM6gCZcwHPtqM4yohGHY0mlKZqL85rf3nYL/1QfwHNoTLQZKaJqKRFTYCsTH7iQth49Iy2FihV1Ehn2NhNg9JBQ3gMRgVytyOrVtU1WgiVQUlXU0WE+jvoV0Z7Lk/GUFTZhqz244HCyky4K6soSPd3fabU4WQJNccSLVe48o05lAlr7qwjEa0KT6VlFe0OSXi37Yd/KiAJqENhuDd8hafmxH53IH/PXxxzjqHYH5xNwYRQyO6owf/vPB/ruhmNPfA2PKGWNoQgbG/HoVDUz1cWh6D3x0kCyIfWPwbq/GmNTVVeHh6pML2En/Y9hyf0uxPioCTeQ9WSf7Tvio12IwrpGnYlcLBo7MdfMh+v474HqhHbK8Y+TjfWNSEZmcCSdLI7haycFCbUEsphUrkJQuVti1I9T/TaSk3IW90+ewsH5N7uEbkDCsYVQYwre9gcB+0XC4ZQW3M8TgNDRE/oYNyDEygW5SAhZOnoxUYtx+uHINHJu6IpN8depDRIR+Di5Jld4zZWGaBPkSqzPtlsCsZIalJhTLgCpAk4UELLdoYITxaX5w2L5ZGEhd1uKpKNMa0ESx67CutdKAJkquqDqDJtkks3/4Y3K0IX2LEV8r5mgjS/qOfkG2fokpGPjhRFg6kWK8ghER8intQBwg4bYvYGE1qsJecsUJVMYwmB4W0wTQhMGT+hJVBZrERK4luu0vZZao1IfcSkVcea6Nmx2knTMPYdqygiYZ6feJATWB2jWl9gdkTlmQ71v0EHlHeIjMI9eg0MDZgpYJa5rUx9CAJtW36vKAJiwEy6U2eTH+BaBJhomDYM/LNr1lBQvHcrtNEzoW7mRW0/R23wzGunO+AqjzAQEnZcX5ZzFYfMiLhDutseq1trjqH4d5++/LLXZbtG9dAhvCUgKx7MLnpU6pStCEOx/ebDiGebxK5XyyuSXJk3ouLzJFDjBrFhAdLU9T4VhqKYik3qac5hLFv4OzJYwIhJApDAwE1450PWNkSTUWZGpY/CBxxjEq71xIbNQWxErdp0APgAnDTnWkAAAgAElEQVSlNvTGTERonxMAEwZO8pcuRVYrErHNFcGYSnN2rPoe0QmpaDpiMvq3c1XoPOrYSHrPZIaUR6vzcLIlXSACIiuq6GB2CrNUWGy+PmrSqWqdlQVNEtKzMWz9JYFZd3tudxjuJgdGV1fkdO+JFG35mV2qmldN9aMBTWoq87XrvBrQRMn1UGfQhDVG/pq3inikIrz+w4dKZqLs5vHBkTj90y6Y2VrgpcVTlTpHWNB8JCeeoPrY76lOdnClfcXFbEV0+PdCeQ6X6dSXqCrQJDL0C9Lj+JNos58QbVbxMit1Xgepc42ZxVC6Dr8VpiIraMLMJ2ZAWViNJODvS5nTUOCWQ/o8XBnP1zQzrZhxVR9DA5pU36rLA5pILYeNkoOLgSYMSJTFNmEry94/SMoizs7tK9TLV2eceUo2x397o4+HLZaPILeTMmLL1UBsvuSPCV0akbOLREdk8vabeBqVgk+HtcTglkRVlzMsTHWJOcZeKqWD8y2i+7E4V3X2neK8XLIhrprcsgWvQZAfRPPny5kF4Ms8MaJonuOCk4VSp9ZS+r8MPeV/8gmyPdsijUAJZYKdcG7e7IfsrDBBdJTFRxWJyMCZSEg6h+aHHGHd6V3kDh2GJFGhQKaISplOe4fh51tR2DettNOfIudUlzYhATORmnwOtvYfoHXz2RWCJrm5KYITohYJ5DZrXdpqW13mXBvGqSxocuBeGL4/9RQ9m9gIgLEZleTlU8lcYo5IADvrW2hAk/q24mXPVwOaKHkdqDNowlM/tGQtcjKzMeKbmdBl70MVx6OTV/HwxBW06d8RzV7uq1TvIQHv0c33olyuIWxdxxZ2sgpvKjXAWtK4qkCTsKAPCbQivQISdWNxt/oYOTmRxGAaRFukeXBx/x1GJl1kBk0iQj4hptQh2Dl+LDhAyRqFYMtoeqHSlgBXjkuojzdk7aJOHacBTapvOeUBTS4QK+MjYmWUBE1WECDRm4CJksE2llN33EJjG2PsnKx42aai2ZCen51w2BGnrFhKoMppAleWDm0pOLsI98z7Yfj25FO0dbLAz+M7KHr6MtsZk4sPa2UkpTEPQz3CRE8EPXaS+e03uQb8RW4OwnNyMTEsFU1sTQT2jkwxfjxyhwxFkrZs5Y0V9cmgSUDgRoSHrirl1sKAkKxCugE+r5FW1RO0DZkC41EkkCnWKl4SRdjO6F+uICIpExfn9YMqRXRlylkNHsTPbPzsxu5zvXperhA0kerRsaW0W9P9NThq9T+1sqDJrD/u4jZpDUl/+7g/Fl2uCjcrdci2BjRRh1Wq+jFqQBMlc6zuoIm0dGbYp+/AyILly1QbZ1bvRlxQBF6ZMwYGjcqvbZflrEG+k6hM4bbMIprcZ0rSSSpnIBaNiHba6EXX1Ly/4Kijq1e99fOyzE9Vx1QVaBLkN5kcZG4WsxBU1ZjVqR+pK4CxaTdyEdosM2ji/3QUAXg+cPXYDUOjNjJPmV172L2H27AOSlrqdTg33ggT054y91GXDtSAJtW3mvKAJjwqLrcJ831UwDQxtXcTABET/dLlISwau/LfJ3iJ2BqfEWujuiOR7GyHrr8o2A2z7XBZ8cbv1xEYl4atb5HNcEPJ/ZF3WYetu4jEjBysH9cB7Z0rtlWWZ17qCJpInGTyoLVxI3DmTKXTZYZRSHw61hqIiOYvwtvhaejsagU9cuuoNDp1Qv6iRaVBiUobln0AgyYp6YnwutuDSkZy6EX9T2KmtoQuzcfYQA9pmXkyiV1Kdae6vHANWWKzMsV3WRuHNXJ2T3kBrtbGCo5YPZuxMD8DIi2ar4DI4OVyy3OSEo6S2Pwi2pQZRJszxILWhMIZUAY0CU/KwGubrkKHmG8nP+gt2GTX99CAJvX9CpDMXwOaKHkdqDtocvLbbUiKjMWgBZNgbi9RrldVZCSl4p9lv0CLHoZmbF6EyMTK1fArOneAz+u0m/NYqD3mGmRZgi2IWQOiaOjqOQgOKHU1qgo0kbJ2WI+DdTnqa+TnZ8H30SCIxXEC68bZ8WVh9yUts2zKPecpLy8DT70ku9nN29wXGCOyBou/+jzsSYCJEbR1zEmfIILsho+RGGwjWbuoU8dpQJPqW055QRMe2fd7T8Dr0AZBCHbKsN5CaUtZ8f1/T3Hgbhhm9W2C8Z1r5lpmZ5x0suX9d3ZvmJYAdrKpdKTvqnPC0C8QO4BfIKSx6aI/tl4LxIstGmLZy61UtiDqCJrw5AUnGQP6TfuQNij8/SvMRzABJsEJ6dhPApOpOiJMItDE2lgfLewq2bSxthZ0TNJEeipzBGLQJD0rF0EBX5HI/C5BDNbF9QvkaWXgt7u/4v1OM6i0SVShrWoelZQ8FUpKjNCu4+1y2SmshcOaOCtHtkEvKnmoT5EYfxARIUthZtYGTo13lwuaxERtQGzkBsEdkV0SNaF4BpQBTXbdCMb6874q/31TfDY131IDmtT8GtSGEWhAEyVXQd1Bk7Nr9yA2IFywAmZLYFVGwHUv3PrjJBxaueP1heOhbK78ngyj2uMgemE8KriHyBLhIR8jKf5wqUPrshVxVYEmUoE2j5ZnoKNLDgH1OPgBOypsOYF3zdCu/d+VgibsBsCuAAaGrQj0+0PuzD17NAAmxq4wNnJDWMSfaNHmgdx91JUGGtCk+lZSEdDkodc9fPv1pwJo0trTEz+9LnGMKhnv7roNr/AkrBnTHp1cLKtvUkXONHHLdfjHpmHbpC7waFDcyvdJZAqm7LhZrHyIwQGOuNRszCT6OsdCcv5p36g020QRGru6giacB77vGMVFQvT++0THKVQ9YCHJvCL/+1ZQAjLFucVAEx0tLRLbtarwGshfuRJZzq5Iz5cdcK7sopKCJknJz8iV7FWygW6I1u2O4+tL3+Je1D2MbTUWr3iMIGHS8u2lmT3ILEJ9gyYk8H2o3FOytTZbbM8kkPCNGgIJK8tHVX7u+2gguLy1UeOfYWzaq8xTMcuE2SYOzl/D3Gp4VQ6nzvetDGjyv5238CgiGd8Mb42+Tcu3Y6/zSSwyQQ1oUp9Wu/y5akATJa8DZYEAJU+vdPOLmw8g8nEAek4bBfsWbkr3V7SDq9uOIPS+Dzq8NhC9XumqNGhS+NJ+ll7aZfshjwpfCbbKLRlNWvxbZ0t0qgo0Ybtcts1t3uYuMSXKf4hU6UVUizuTMm/cGn8Ga9vxFTJN4mO2Iyr8WxLQHUNCup/KPauo0I8RFNgIQaERGNBXBCu7z+Tuo6400IAm1beSioAm0VGR2P/XXuxJdINYzxTHZvSChVHp34t+P56jUoY8HJ/ZSxACrYlYQJaal/1isWIk6a40KX5PYStktkQe2LwhvnilFUxpDrppKchPThFAgRuB8UjOLNQeYY0TWxOJLpjI2gpp2XnI0taTa1rqDJrwRNkpRu/OTYi+lYhks6gtA00MILHwPMe90ESkZonlA02mToW4Vx8k68phSSxD5qWgSSaxjVizy9yyDU6FR+Cw3+2C1p/2+Qye1u0ERkpZwSKnLHZqQkCAMwEC5cVfZG+9imyuR7R1xMJBzWQYXd06JDZ6M2IiyMnQrC+c3NaVOTlpGY9rk50wNC4bbK1bWam62ZQETQx0ReSEU7mEaxKVHZ58HAVdYoiPaOtQ7gD5p0/FTuZVlwwV9KwBTVSQxDrQhQY0UXIR1R00ubbjKELuPsELE4ehUYfmSmajePODH62BOJvqxj/5Hzw87JQGTZ56daEyh3RSVb9OVFjZaoJZg4O1OEpGXRYzrQrQpEDVXtsEzTyvqfQ6UdfOkhOP0YP2Qujp8e7kaXqoLn8m0h00e+dl5J4zWu4p5+XexicrVyDSLwN7tv5Adp3N660gmwY0kfvyUbiBIqCJ9GTzqRzhCpUjLB7cHK+0Lv7wzewOZnk4WBjirxp0E/mBXmL308vsHHL4GUPWw0Vj7Vlf7LkVjHd7Ncakrq6C9aY5YSCib1ci7dJVPAhLFIQRi0ZnFyvoDxuCvEmTEBifKnxkYVkxg6Joe3UHTXgu5lpiaO/eBRw5QvfpfKTmpMJE14Tu3RKWDjsPxaRmFQNNHM0N4UaCwGVGnz7If3c6EqFboVWtIhd5UdAE+YG4E7wHy6+uJSZE94LujHWNsW7IOuhrmSM7p7SrkVSouzJA/DqBbHP33UPHRpZYO7a9IsNV6za5uUl49pDWkjZeyiuxZuccftZo2uoilaLWDPtMrZNcZPClQBMSNs7NTseNGzcqnKK0fI6FmVmguWSYmZmhc+fOSCSx6rx6hJpoQJO68s1Qbh4a0ES5/CkNBCh5eqWb3/7rP/hfuS+wQdy7t1W6P2kHkU8CcXHTflg6NcTADyeCf3CUBZge3/cUum/R1ov+U3arQdY1iaVa2ezsMAFsERNFlIMtY9k6tq5FVYAm2VnB8HsylAACJ7i3OFHXUqbwfIL8ppA47g04OM2EufX0cvvxe/IylZYFyqXHI+1MTy8ft0IOYuWqldCOtkSfWU3xftdVyMouLa6p8ETUqKEGNKm+xVIGNJG6zLB+A+s4FI1/H0Vi2dFHAvWbKeA1FbtvBmPdOV+M7eSMD/p5FBvGHHrBZTZJUQ0KXbJFNs3PRvikd+D/qLR2R+PuHeCwaS2SM8RYtnQRdHR0segT2e3F6wJowteMuYEWtD5bipQ7V/As3gfulk1grm+BmJRssGsRxyE7Y0EI9jMCmxuY6hfTjClYiEakdfPjj0imXW1Fyp0qu66koAmzYFLF8Zi07wUCRuIEzS7WPpOGp60nvur/FYnG5pYCyqIjViEu+nc0sJ8D6wb/K/eUUnFNnuuh6T0qG1qd/Dwl7luEhm4XtGPsnT4vNkdxTgyYTaytbYGmnpfq5Pyrc1JllecY6WshNDgQt26VtnNmhkkAiV6nEaOKeGFgVzG+VosGM8eGDB0KLR0D0hWqnLVSnfOt6nNpQJOqzrB69K8BTZRcJ2WBACVPr3TzB/9cwNMzN9H65V5o3r+L0v1JO7h36CyeXbiDFi++AM8hPZUGTZhhwkwTFltr1rpipLyySUgfcvg4h0bLiZL7SmVN1OrzqgBNMtIfIPDZG+Tg0prcX/aoVT6qcrBpKVcR7D9NKFdiceGyysZ4h83Huwcdo0elTXfkGo4B6QTEZQbSw3xn6N91EUCT9EG3MKfnT+jbeBwBgPUPONGAJnJdQkodrAxoEktsgld/vkzXPXD6gz7ga1kaDFQwYDGtZ2NM7uaq1BiVaXyG7IQ/IVvhPmSJvJyskYsGj53n8Nc73eBATAhpsBVtwn0v+E8m7Y4ioW1uBtMN69DIzQHJpAm9fNkS2i3XwbIvvil2XBF5j1JDrwugCU/KhK2TU2JwcewAXMozQM+MOPSwbgb/mGxEp2TCxcoIW4m2E08vZz9qlV+alb9mDTKsGyITqtMxKZp0Bk2yiD3CL5jzTs7D46hLgti8FjEqjYw7FVuflz1exoTWbyIrq/hYwoLmIznxBD1LrKRniWEVXo59SFg4hwSGz8wp/n1Q5hpWp7Zm+mG4fuMlYcgeLYuXWUt1vwyN2tIzBjGVNKFUBsrTNDHRF+Hevbuk11wI+jJg8pg0nMR5hUyqsnSGunXrBhtbO2Tlyr5pqdQkalFjDWhSixajBoeiAU2UTL66gyaP/7sO72OX0HzAC2g9THUWpidWbEFKdHyBwKyyTBNxTiztQvSlnTsbeLQ6p+SqgWpr1yA2epPQj73zl1QyMVLpPmtLB1UBmqQmn6e67RkwMaO6bbfy67ZrSw6qcxzRoQsQF3ccljbjYef4calTS4EVrtHmWm1Zg7UATAy1Mf3QQPjG3IL+PfcC0AQiHfwy+gYcjd3A9fj1KTSgSfWttjKgCY+SxVLvBCcIDjPsNCON2X/eBQuCfjeqDXq415yTCLMepu64JdgJs62wNOLTs/Hy+kswJkedU+SsUzL0RHl48tseZG7aLHxkN3wIbN55G/GkuRFFbArekd229mt6+dbBlFkfgfVOpO47afSCklUOUFAXQBPBSYf0X/Z77Yb4ui92HryCKcl+cCF3MQ/rFohNyYIbWe5uystFKoEmH2qVA/zOno3sjp3JYacQsFL1lS+AJrlZ2Hp/G476/CN0n5Z6Ffl5WQIrlUtEWOBVGnO7zkUX+x7E8iscSeCzCWSnex8uTXYQ0FJx2c0EKkkLKEd4WNVzq4392VsZ4tbd9whkOkkOOdPJIWdmwTAT4/eTw85nBDy9SgBUcaCxNs6lto+pPNBE+v08efIk4uPjhWlIS3JKzqm1g3mB3lTLli3RxKMpiTjLYA1e25OjwPg0oIkCSauDTeosaHKNaqmjk2mnq135QkZF17O849NIsOzw/XDw5w1NDdDa0bxYn+oOmvheuoe7B07DvUc7dBg9QCWXeFJELE5+tw0GpkZ4Zdl7Qp/KgibsmsPuOWyzynarqoiYyPVUtiMBAJgqypTRuhBVAZqwAxE7EWkeaEpfIbrww4P7EqX/xk33Q58cdYpGXPSviI74CVY2E9DQcbFMlxjvzuvqibHt/lYcfPAV8nJTi4Mm1EsTu5FYM/QXciTQQQ4JataX0IAm1bfSyoIme2+FYM3ZZ6WsK4esuwje3eQyhZIU8OqbHZBA4MgwAkfMDHRxYlahowcDOgzstKH7/cY3OpYaEn8/jUS5CF++CqknTsJixrtwGDcKj2cvRuKV68Lxu6j8RJtAgXGR6cKzg8fQvsj/6CMk5ZCbTDlaABWBJry3qw6EeH363dr5cCf+fnIEA3R74+zW0xgX4wP7jGQ0NGkAzwbupGtRyU41lQDkTZhIOibyCenKe+1YmmrhXNAF/Hj1J6Fpfl4m0tKIyZpf+Hsq0jKAsUlX4XMR/d/6oRtgpWeHzBwJWC0VqG/S8j/o6tpVOISPDnnhwrMYfPWqJ/o3q38OdAya+IWcIye5qQRIWZF2yXkhqxxSBrCt3SwCVN6Vdyk1x5fIQEXuOfxZnjgTx48do9+iPAHIC0vKKJXDFnZmZAeuh4YNG6J3795IzcwrVZ5WXxKvAU3qy0pXPM86B5qwwNxpUn4+/TgaXRtbYc7AphVmoLLjlxzwgputMd7o0kiwJvzpv2fCfx/QQnLDU3fQJOj2I9zYdRwuHVugywTV6Hs8PXsTD45cgGvnVug8frCQJ2VBE6bMBvi8TpatzUkX4i+VfXtjozYiJlKi5G7ntJTcTcaqrO+a6qgqQJP4mK3k/vI9rGzfQkOHhTU1tVp5XnNjXfj7LUN01G7SyBlMWjnfFxsnuzLwzhrvnjHoJEvo6opxLvg0Nt/ZjKxMX+RkhxYDTaQP8t2cuuHDrvOQkVnc1lOWc6jrMRrQpPpWTlnQJCwxA69vviqU5pymkgR+PZJqO/DD+JH3VcduVDQrA1efRzqxtf4lRokpMUs4/iBr2NVkETuynSMWkKVwWSHs2BpQqcYvvwDk7pJGVrjGWWm4/soE5MTGFQNNRLa2aLBlE4Lpe8oOO04kgFtWlAeaJCcnYeEH7+CtKdPRvVc/Rada5e106HfrSugFbLi1QaD7G8YbwOV2Pl631oLT3RsCONXEyg2WhtaES5QDnLRoQbVNywlUK60fosoJaGvnIh1xeP+fGQUvgvw7y7+3JYNZgqy1weFm4YYfB/+IVNI3yRFn4cmDDsQs0qbSy/uVDm/9eV/sulEoLlxpgzp2AIMmkQkZVOr7FtLT7hR75goN/AApSaeF+yffRzUhXwb4t7po6JH+Ev+eJJA9elnBP3WxMVG4fPkyIpMziW2SVuwwfR1teDqYwcjQEIOHDIGYft/KEkKWb5Tqe7QGNFHftVPlyOscaBJNX34GN5gZwlEZaFLZ8a+svYTV49uj8XNl9910w+M20n7VHTQJf+iHy78dgkMrd/SYOkIl19b5n/ch+lkwur75MpzbSx44lQVN0tNu0+7EJKK/diQa7DaVjFPaidQKj/93Q8clxAh4Q6X9V3dnVQGaMFOCGRO2drNpF+id6p5SrT4fgyYZGZF4cG+A4AzQyP3Xgp1JHrjv45cI9AhD42aHilG9y5uUtg49zJMOynaijHNwnxnp9xB0KgXJwUCryboCeMilahx9XfqiuXUr5Iqrdle2tiyCBjSpvpVQFjThkf5v5y08ikguEFQ9Tzvti2nHvaubNVa9pjrxcUWzwi4+/MywbVIXeDSQuEUsP/EER7zCMY82XUa3dyq3awaDjPREZKGbR8KIeQL75PaZG8hfvLgYaJL59QqcyTbGAe8YoS8GjFram6EF/WtJu7n8303oLaY80CQpMRqzp/8P/3vvPfTqM0TRqVZpO/7dSsyOwazjMxGXJhF8NU/Wgae3EUa+8zpc166CcSKJrNLLXEvbVjDUNiq9a21ggPz165GuZ0wlTFWn18SCvvp6eZh/ag5CksMKxiEFqEsmysDIs+D3lj/r79of0zq+i1Rq6/t4KLECnUnT6nil+T38IBwr/32CYZ72+HgIgUO1NJhJpYooqd8jBU0S44+CHeVYcLdxswOU2zwkxG5BaNCPComlq2Ks6tyHHjFHjLPSizGktJ/bfbOte8k4c/ECXJzpmm3eHHe9vHDj3kPhEHIZFhyq+HfflAAXdgzr168fLCwskZhTNbpC6pJ3DWiiLitVteOsc6CJNF0lwY3K0lje8Zsv+sMrLAnD2zoKzBVmmnDJD5fpcKg7aBLjF4pz6/+ATWMn9JupPMsiOyMThz9eL+RmxDczoWsgUd9WFjRJTb5ImhrvwcSUNDUaq15Tg9XvmR7KwUwKZlSoa1QFaBIR+jkS4/6iMqbPqIzpdXVNTZWMm0ETdnYIDCSdHHJpMjJ5AS7uvwnnEotJi+dhX9I2MCarZgltv7Jg6mxOfmapwzat+xbeD3zw08+rqD+zYp+nkZWgoZZkJ7SuhwY0qb4VVgVosu1aIH6h++jLre2xZHALbL7kjy1XA/HWCy6Y3tu9+iZTzpkWHHiAy36xWDGyNXo3sRWOkgI9G8Z1QDvnir9XhvrayCDHCWkkJKYgYtef2HXqgFCe8/rQ8RANGIhb0VkCkMAAEoMKJYM3Zlj7pI2TuaD5we4VHBG0SRMdF4FViz9A+1eGYOTQSXCxNKo0b+wIc+HsKbi6ucOF/lVlSEGI2cdnIzw1nNhEvHmVWgCaWAxrhnEurWC1dClYSNdA2wCtGngKbJO8Im/W+fR5Vqs2BBqr6K29jEnzhry+fh7W3FiNmxFXBcBEah2dl5dKbmglnEVIP4rLc0T0/4vGux3eRTd7Dzy+/zL95neh3/zfK03xnZAEzNxbftlXpR1U0wFWhs/fnpU8X152DhLzCvMmBU14ydmNj135mjTbSgzMDgiK3AekXIK1w0pB8F8ThRnY9tvP8Lp/B9+vkWgolRWC1ffOHcDRo8LHWnShs44Sg7kl47VcKkskdtR4S2tkT56Cc8Q2SYqLhTF9N4tGG09PuFGpXLaBGTLy66eWiTQfGtBE843kDGhAk+fXQXmgCWuaLD7oBRM9HWE3qmTJT3nUN3W5vBJCo3Fk+VZYOjbAK0veVnrYAbce4+KWI7Bv7ooXZ40p6M/SRK9cmqAsJ02IP4EA37mwtBoMtyY/ytJE7mOiI7eSHdtKoZ2j8wI0tJ8idx+1oYEubRcY6GkhhWwvVRX+z2YhMeE/NPZYDQvLQarqtk70Y0QvTWSIQIKsmfC+N5A0RqLh5v4DlXoNRVLiefj5TIepGe1iN1eOIbVx/Rrcv3sbP/+qXD/qnnQWmUwjUUnpi466z6c2j593Gk2NdJCURp6vCsaz6FSM2XQVlkZ6OPNhH3zwxz1B12ElicAOalkoDqtg90o3W0Gskj9Ie2XBoGZC6S1Ht5VnBM2Kc/P6Fgghynoi3qUX0+bBx1Pfpp1aLXz682YYmhoX0yMJSUiHd1gyHoYnwTs8mf4llbqeDYnF0snFEq91aog1F76D1hEfhDfXwmdvryN2SgM4FnH0KWtsrFUwbvQrGPvGmxj9+jhZhy/3cTxfLR0xVpMuyJXQK0L7hPQcPAhLLABNvD3TMe2lsRjgFwmD3yTggqWhJRpbNpbom7BYyxtvIG/YMKTrVp3wK59Xi14uj/sdE/SitKnEiuVl8otozGRnRxKz7/HzPIiI3epJWiVlixV/3XsOdJMP09rpw6Vx5eKl0SSC+9LqC7AiptHpuX3kznV1NTBELrQP7Af27i3zlImkR5RKz8YWhroCQ6rMmDcPYhLyzdQpZEBa0LyTCDDk5Y6O3IKoiM1o2nwVNjw4Ad+Iw1g9eAP0jbrX2992A2KVlhXryJXr9t072LK5bGAuW5scqCipRvTchyVLgIcPBTFqBr3F/HBSJDLFuRhH5xlIp+oWkw4dz5ZwfvM1XLp4jpyhyP/7eTg5OeGF10Yj38wSGboG1XXp1drz8DuMJjQZqLegSeiTIKQlpqJZ11bCVVAeaLLs891oYWcKe3pAYeG62+QEYG5qiDnzJG4rRXeY1PFySolNwp4lG2BqbY7xy4tbKCoyn7O/H8Gza97o+voAtHmx0MK45G6cvH1HR/0FX98laNBwNJo0WS5vc5mPj4jYjgD/r4TjXVzmwdFJdYJkUsprRZaTMg+0ggOFHQZ6GFRl/am31xtITr4Fz9Y7YUYAgCYKM8C7rLyry2yTyIidZOX3BYyMmsLe/ldcubIahoaH0bzFJLi6LlIqbVGRkUhOSYYHKdjX5zCg3bAseqGt6u9Rfc6xdO78m8XMNWUdmoZvuAyfqBT8Rg41Hx/2QiQxEY7P7gVXYlTUdPx+OQDfnXyKSWR9/NHg5giMS8OQNRcFm+HTBPIoEsxm+GjhPLIg18WXVJpT2bXKbAtmtDKI8oDAlPshicI4PhjghkeJZ7Hvzk50vmUCX/cMOLZtjY3Dv0YTG/OCfnXz6A1IXPyFKzk9C2MnjsXIka/jnTcn0BZZcfZGjq6EBaps5CEHx3yPkgPNVqErFrm9F5ooPC9Jy3MYNLFtbKgC74cAACAASURBVILvB8yE+RayrD9zRjjW2cwZDYwbQNSJ7imLFiGHXv4qy5Uy482DGIGJ/lh4WqLLxaAg/3aXJbCbEH+WjsinTYLepVgm0jGYaaVhRe/ZEIlpfg1lY+p2+vo/pGWLce2jAXIDcsrMXZ62fKXo8gv8d98B14szJL3pOo0hK25pMCvK9Xn5esEfX30V+WPHIcegOGNEeA5ktzdKeF5eBkIjtuFU8B0c2vEM+Yli9HzHHQv6/AJtkWquTXnmXNPHCuLv9CyBHcQWoXu9NHwJdP494BmepSfhy+Yd0IQYaPx8VxBvvw2xsSnydPUk7JJEcsSZMQOi9HQBOCnK5AolsDYgNh3fOhujQ3IO+iZkCjpD7d4ehXgXF5y9clno1sTEBIMnTICWUyNkFwG9ajpHNXl+vnY1oclAvQNNEiLjEHDvGQLuPoNjcxd0HSmxEywLNPEJS8BX2y7jm1GtC66UO17BuH/tMZb+INF1UPfynOx0Kqf5ZD10DfUx4utC+zdFvxp/f/ozslLT8dKit2HW0LqgG2XLc+JjdyIqbIVcDiSKziEhdi8iwyTAiSqV3A2IEsxPC5lZVfvjWxXlOf5PXyWBPH+ZdTkUzb06tpOW5zD7gcPfZzSyMp4iOXUqNqw9iwkTw9G155ckblc7tQjULeea8pzqWzFVlOfwaLk8h8t0uETnH6+Icq18q29mhWc68zQan/ztjT4etlg+ojXO+cRgCQE73Rtb4/vRimuuHPv7L2gR22PwiELGZWXzK6ppkp2fg2vBDzHl8BzoZWsVgCZRDXMwu+tEzO81mcobJPcSU30t6D70Ag4fljyXECgVFJ+Ob2J90MvQCoMsGqAdlf4IQTvILFybQOwhZQEKHdYxyYnF9nuF7LeHVH7ErkTMQHCiKiS/fd5we70VGjS2hK2xDV5yJ5e+uR/SD6W/MBzHxm2hv+FXJJNTTlmlBJXlTNbPWRhTVzcXe733Ip1ADg7+W9HynKJ9sVBpXm4yiorAljxXZsYTOBuTUGbzd5Gd6yjTUN7eflMAEH+d2EnQsqmtwS/wpgSIgayfERUlDFOqVVNyzO2dLQtLO1rT8/LnnyOJ1r4kG7BoeY4u6Zg8jDyMJaemweCWJ0QpOhC/FI2Z3b9D30YDBFe4+hZcmmuUGAsRgR6UgIIyt+PWhggw1Mb7oakCyMGlewz15c2chaS2neCbRps2BFbyxo2TmQ5s/Z9A+6svBdCEnfUYGGQyVQABsQyirHIxLQBNbEiYujlZrmPCePjSOR88eIBBBHqZ9OiJZBJj5j41IZEY0IQmA/UONLlwPwR3vEmk1EhSg1wRaMKlOeM2XRNEX6VuOau/2o0scwssnCVxmlF30IR/TP+at0r4cX3tB3qQUSKk+igMljBoUjSUBU1iozaRy80aQYSUxUirOhLj9iEidJlwGpuG79E56SamROjp5uPjT+cR/TET365cA3EVPhBUBWjy7GFv2siMhwdZBOroFIJhSqSkzjQtCZokJ55AWNB8hITYYNdOMwE06fviAcEuWxPKZ0ADmiifQ1l7UBVowi/S00gQlkt0+IW6PemErCe9kNoQrDMydcctNKUXh63EhPntSgB+I/bJm6S58l41a65IQRPejdclQOKE3wlcD4pCYnwKQnacgk2fdjBv6YJW5GoxpEkfmNBvcV6uBDiRahqIj/wDtkzOIcDmW1cz9ErMQnf614h0UBrZWyJ/3TpkGJgiUwVCq3xfy8kvZB1c8o1FEO1mmxAbjC11Q319sPzzZVj8+Wdo3qqlME59Yt8YkbuQ6D1itjLL49uVSHV0on6q/qVEW6d4mZkRuR9li+lls4jug5R3kpJ4Cunp96m0si9plnQq81JNiP0D2dkhMLEYTlotEtZyZbH0iDdOP4nGZ8Na4qWWFVsUV9ZXVX8u6M8E+0NEpTYcUq2akufll3jBOtyUXuZZyFekS0K+VDJSIqSgCQMyVOCD6UfeREzCeejfbAatVENkDfSHoVEbrBz4PdzMmklYKfUsjLXzoUf6JSJykGIHqri0LBQFTQrSQY420SPH4uOT/qXAz0X93eBxnoSJ//yzzOwVBU0Y3BQAVWNjiN6dhti0NJj36IFsstrOLKHjU8+Woth0NaBJfV79wrnXOdCErYaZNcKAB/9rYGaAab3cSItE8qLHn/19LxyfNNVDakIq0kg9uqLjmTLLYrCsaaIXGwsjPz9MnD8GDraSHQJ1B014DgcXr4U4K5uEW2eRcKvidXteRy/iyekbaNqnI9oO71vqB0eZXEndWxrYz4F1g/9Vy7c3Mf4gIkKWCudSBqzhcoKErChM/5DGTaj96h83wM6wkdKU9/KSUBWgyeP7beh0eYKtItsraqIwAyVBE/7E9/Fg+PrEYc8eewE0advhdRIYVq48R5NzSQY0oEn1XQmqAk14xK/+fBmxz2n9XVxJVP31dtU3kQrOxCDOsPWXhB3cE7N6UfmQN8761MxLbVGmCb+wcrA+yNFbT/H3T4tg13M0zD26YGIXFzQjkId1V6RsEV4rc9qNTvpwAbxOXRVKToqCJtbGtKO8Zjmy27RHWhUIrUodh1jnYvWY9oITUVxcDOLpucnKxgbW1hKRXQ7hxfDuLYji4pDTbwBSUPoFuzouDitTPaSTiG9Z5WcsfB4R+jmJlL5MdvEryhwO/86zTbF786MEirvINORNJIS89WogpnR3w/96uMnUpiYPMiF3KL3/TgrW2uUxTfjFu4mtCYxXfI2spi2Qnle2aCiDJjHEgjIyEOHTs5/ibtgJweJZCppk9LtHJW02aGTdn/RNVhMgqC8wJepbmJMdtvbePfDasE0ocysJmui39oTWiuX4+UIAYkgnR5fKdXS0tISyHda0syTdr7e7OMHwx++pvOqGUJnHG6MRSRlCKouCJg1NDQpcw0TujSFatBAZRuZII+BLE4UZ0IAmmquBM1DnQBNZl9X73B0BNJEyTSprxwDMpZ0n0LRjM7i18yg4nG+46h67F61DWkIK3lg5A8aWitNFD3z5O+JCojBkzjg4tSz+MMBimcrkKoB0Ilgvwq3xUtjZv1ltKY+JPgTfZ5L6Z0end9DIZb5c5+badhaee/fQcAQdpFpTsRYcRhlj86hj9OXTESiTqg5+eOabZ1aOah42xOJE3LzehRgm5uj8wk1VD1ft+9PTkYgJSmmsyUk38NB7IoICDQtAE2fnTLRpd5g2c2qvzaS6LASDkNn0slgV3x11yUF1jZMfttlWV9kd30P3wrCEBNWLxkdDmuOtrq7VNZUKz8M6E+msM7F4AMZtvoZAEn0/+F4PNCM9s+oM/t3mewazH4pGHAEPU96eiDZDJmB/tC0xTcyx791upYbGmgaEVODSS2OQT5oGxZgmM6ai8VtjkE36B6oOFtPdfjUQevTC9tukzuhIAraVhV4WvcDRBZatV3Mik1wOwb/bZYlKp6Z6kWPJaGI+NEG79sfKnM61Ky0ItMrFC9286T4v24bTYfousLnAMCpV+64WWG5Xtk78uZ44G6JfNgpaNDcD4wURWGmwtW0ua3pNfAsWI4bBs5mToBVTVvBzYBoJpu99uAcHHh8gofQrpG2SWQw04XaWVv3RxaELFvVYRCK97EFVv4LTpyfKR+yCJfA6eh4nbAzhT6woLs+xJS0jz0M7BR2TXNIxKS8EAIWYzXkzqew+RmJ1zqA1bwRLQZOBVEPVvpFFoZjvGColHD4CWSW0aOpX9sueLV+7mtBkQAOaPNc0qexSYB0Uf9JBGTBZUpYjjcTU0taBlfVV2z4//NXvSIyIxfCPp8DCoWyV+MrGnBKbiAOfbRKYKm/8MKfU4RakPK1MrgL9lyAu9iBcSaHe2kYiwltdER/3DwL8Fgina2g3GU6NJCBKZSE8Nmjn4Oern+DvR5tgcIXoyUSlzuzlhb7ur2Fx/43IE9MDgYqfCHSeu+ekqsg9JzMzAA8fDIW+gQs825yobNr17nND2mVj8UMWJ+WIjtyOkODlpUAT50aL0cBOfa2sa8vCsntOKunHcM41UbUZ4JcfE3LPSVbCPYdHOJaAiKek41A0TA10cHF+v6qdgIy9v/bLVfjGpGLH5C54cwvvzIpwe8mAcl/+ZOxW7sOYJcjAR0aRl1LuJIMAkEUL5mDiW5Ox4m6+4OS38CVy++lcuuQvh1ijd4+cg+jrLwtAk94ebdDll++Qo6X6+83P5/0EzRqOtePao1cT2Z4h+Nril8OadMFiZg/rqJTFZsjPz8Odm6xnl4f2HW+TzXtxUdPs7Ah43esPXb0GBIifl3mt75NI7qStN9GK9Ex2TX1B5nY1eSBvxBgQwIS5cyH29RMsunn9Wjuag7/HgXR9PZswDZ+c8BUYW7P6NSnTGYsZJtdCb2L5JYnTUErKTWKTpBYDTdja2cy8l/D52FZjMbzpCNpgqn/CsAx66GekwWvEROzOSYW/oQ6+SRGj0SoyQmjfDtlkaF5R8HMgi5fmPSInqIWFz6wMeE0U5aIfAbMzDPQFW2Ih2hHzjyy/M4glVFQ8tiavu9p0bn6H0YQmAxrQRAbQJDszGyd+PiiwUhq42he7apQpOaktl9+ZNXsQFxiOfrPGw8bNQaFh+V66h7sHTsO5XTN0fevlUn0oq2kSGvghUpJOwtF1Fd1Qq9/yVqpTwRMzNu1OQEcO2RWaEnV3BEzN+5eZM11dMc4Fn8ZPF6bSbklmMdAE9GAwq+dvGOA2iPRNVEuDVHV5TkbaXQT6vkk7bm3h6rFLoeujLjcqWZ6TknQGoYGzS4EmTq5ryr1W6nJ+VD03TXmOqjNafn+qKs+ZtO0G2Hq4ZFxZUPZvZ/XNUHKmBQceCC+CM/q6Y/05P6HUYPvb1e8SVrQ8p7wcnCbh2qUkXMsvp/ve6UYisMUFMz865IVuzibocO0UPrn4D3plaaHTt+vhYG+DBiT6qMrYczMYa8/5Cl0ue7kVXmxR8xbS8syvovIc7ifg2Vhkpj+ES5OtZD1cXNeEhWKDfN+S+76YSOVWQ9dfFHb3T86WGBGoQ/BzhVF8FFKnvEPuTvHC+AUtDDvSZVm7FrciiNn07xNyf0oSpjOgeQNM7+UORwuJVg23z9aKw9sHpwnCpBxicSzl17sYaKKr50QbNE0KUrK096dobdNeKaayOuS3rDEaaeXh0YXbOLDiUwQb62L7W28j96XBSNIpDuCV1ZZZVCZUKpeVkQW9U/8CmzcXHPZaLpUkUpn1ZAJRhTAnJ64NG5CmY1ilYszqug48bk15jjqvnurGrgFNSoAmbEUc+jioWNkOl/JEBUSWYpnwMtQF0OTi5gOIfByAntNGwb6FYjW2l34l/Y9H/ug87iW4dvEsdYUqC5oE+7+LtJTLcG68ESamPVX3DZCjp5SkU/QyPLdUi7JehrW0xYhOD8P8/+YhLfVamaAJz+PLfl+hqWUrlVpXqxo0SUk+i9CAWTAhQTxnt3VyZKx+HFqWpkmQ32Q89vYuKM9p6dkdfJ1oQvkMaEAT5XMoaw+qAk2+Ov4Yx7wjip22N7nVrCC3mtoQP/zng/13Q4WX/lOPo4Rd8s+HySbsqcrxywKa8PmkIM+Yjs6Y07+wXJi1Mlgzw93GBH9O6YBxY0fhpR79EeHxIkgsAvNI1F5VcfhBOFbSSzLHwkHNMKKtbO4xqjq/KvqpDDRhMXgWhWc9Kivb4mXBSQlHER68SHBFc3Qha145Ysi6i4JWxZH3e8LaWH12sI0Jn4s7exH+C5aS8KsBubiYIP+HH5Bp74SMfMkL+B+3Q7Dxgh+yiMHDbJTpvRrj7e6u9AKvjcVn5+NxDIFsRUiCrAkjuqRP7jn6yB0cT8wdp2IWz0YEEKwbth6GInOVlRzLsVQ1fuihW/6I2LsecQkR+GHnbiTlUDmwDCxLKWgST5on5jr50NqwHjh3TpjPSWJRuUEEj+dlVPlffYUs96blatHUeBJqwQA0oEktWIRaMIR6B5pwmY3X2TvIIfYIM0iMLWhHZkhXOJH9MAcDJE+vPsToxZIbJB9z5Mc/0Gv8wFIsE/5cnUGT3FwJXfrm7gsIufsEL7w5DI3aN5f7sswT5+LAR2sIGMjDK59Ph4GZcak+lAVNgojpkE6MB5cmO2jHp73cY1RVAx9ykcklF5miYWDYHG5N/yr4EyvD6xDLZOaxGYhJjyFbyEDhX9HyHOluirm+OdYNXQ/tPCOVIfyqBk0y084hJPBjAk36wd5ZYsWsicIMlAWaCN+rqxuwbvUJfPDhMLTt+IbATNKE8hnQgCbK51DWHlQFmjAlnIGTC88ktfXsnvPJkJawN685PYuiOdhNjIl1xJhgBx22g2XXHHbPqe4oEzQhzQz+e9HgF+5LvpJc9mxiSwKwuoIg5I3AOOFvnVysKLeGOH3yGFwcnbEvRIdeZsNxbEYvoZxC2fjvSRQ+PfJQ6GZm3yZllgkpe47qaF8ZaJIQ9yciQ78gRumrJAYrKSmRRmz0ZsRErCZh+iloYC+f8+A7u27BOzwZG8Z3KLSCro4Jq+AcIRFxSNmyDS6XiFm85EPkdOuBFO3i3+NouhY3XvTDiYeRwhl/GOuJzqRzY2OqU6bo7o/ffoew0DB8v+anMkeoQ05PKaSBI8qteoclFaRIZV14hydh3v77+GlkS/QgM4tU0neR1ZZbCprEJWcJGndmpImCOVQ6HxhYfHyTJ0Pctz+SiWWiifIzoAFNNFcHZ6DegSaqXnZ1BU1iIjeQqv0OqidNQV6WI/xPdkLL/mPg3r2t3CkK8/bFld8PU2mPI5X4jCuzvbKgib/PaKIZPiVwYj8MDJvJPUZVNGCQyce7tPheSdCEH8QCE4OQnJVccNqM9HvYueY4ckj3Ysr84UQ/bU67KZKyHBN9E9iZ2CEzQzVCU6oETXinSE8nGJFR/xCAmI4GDhLrQU0UZqA80OSR932s/GopPv58BZo2l9htakL5DGhAE+VzKGsPqgJNpOdj8CSC3DPYWaU2xRkqefn04B1YUvVKQrYIK1/riB7usmlzqHIeZYEm7IZhbKCFy5cvIzW1sMSJdU3CyQ3DkMoeuFQikYCUnNw8OJO1sIuVhL7v6GAPOwdHnPJLw5fHnqgEDLrqHye8yHFM7uaKaT0bqzIF1dpXZaBJRroXAp+Np/u1Bxo3O1hsbAymMKhi5/gxLG3GyzXuL449EgCFJYNb4GUShFWnWHnyCYa2aoBWN8/DavQrSMrVKVeoNYoMBi75xSGebHP5uYTLeTo0soSBTvFnnc2/bkR4eBg++/TLclMhLenhA6rC/ak2roEUzH2fygankRuOlM0jy1iLgiZ8PAuoG8ZEQPQ+WX1Lg6yF82fNRhKBMTKQV2Q5bZ09RgOa1NmllWtiGtBErnSVPlgdQROp5kLR2eRm60E35Rc0699Z7ozc3ncK/lcfwHNID7R4sWuZ7ZUFTfweD0F2dgjcWxyHnp6z3GNUVQPWquD8FQ2m7Ra1k9UjpknJiI/bjR+/+5NAk3wsWfo+UXpfKnYIK/irSnxLlaCJjm4OidiuhrORNlradIa2fs2URqlq/aqin/JAk5joKNy+eZUch3qQeHGh3WZVjKE+9akBTapvtVUNmlTfyMs+E++4lhV+JAL7ybrt0Hp0HOJ+c7DurZ6wLUP/Q+qQVVXzKK88h194MtOTcfJf0iZ4Hmnk9nMvJLHYC6sRHdfBudC5plWrVnBv4oHTT+OFkh5m9ux/p7vCw78flogP/rwn7HaXLA1SuNMabFgZaJKfL8aTBxJr7Gatb5FIbyGjIsR/OlJTLlHJ6npiYfaRaxZbrgZiM5VRMZuJWU3qFON+uwY7uo42TuhImiR5Ba5xJefAlR8W+loQnT+H4Ov3EZyQLhzCICCDenZmCrDMWD9l5EjEp6i/AYMsa876RMzOWzq0JYa0ornLESVBE24qWH3fJqHr76iczJHK6VavRkquVr20dZYjlcKhGtBE3ozVzeM1oImS66qOoEl4yMdIij9cauZ5sR+i1YApcmfk6JebkZ6QjIFzJ8LSuWwhOGVBk2cP+9ANOg4erc6T9a213GNUVQNmmwSTXkVmhqSWm3egXJpsr7T0gjVBdu98SKCJCNOmD61SxoaqQBMdnVwEp/hj3tFRMNRKw6aR/8JIt5nM9FBV5by291MeaFLbx62u49OAJtW3cnUNNLHIz4Iog6xuxYWWqZzNbGJorP/rH5w9fQjTZ3yCoW3LYE8YG5H7jA5SRVWnQVGRpokRvYCGhQTh5k2J7TsL67o1di11MbCILdvAWlhYwKNpU9KBkADym8jhJjI5EyPbOQquJ/JGFNH8d14PIstYsfCyvJhYEuoelYEmPL8AnzF0v38k3OeNjDsUTNn/6XBkZfoRA+UAPQfIpxUjLW/q29QW3wyvHbo+sqwlOx31+uGscOiNxQOF66CiYIDEVJcETKgsJN0vECEEnMSQ7S2HpZGeAJ6wpXnac7coLjMrN/T0kL9+PTIMTZFJQvr1IVgwmIWD903rViCoK+u8ywJNuK25iEwMdu9C/oAByGzggIxKXHhkPV9dP04DmtT1FZZtfhrQRLY8lXuUOoImUeErER+zo9ScsoI+Q7tXX5crIwkhkfjvx10wsjLDsE+mldtWWdDkqVcnEr/KpN2em7TbU/O1lxEhS5EYf1CoZeaa5srC78krpGsSIBymiHBcZf0X/VwVoIkeKa/nIh3vHZuOmMRrpOMSiy5ub+CrAeuQlpFfozaR8uSiOo7VgCbVkeXCc2hAk+rLd10DTQyJiWEQ5AfR/PnFkhgcn47DBKSctDbArNBUvNCAnNGKvsA1ITcPErxMJhv3qmSbVCYEa6wvgteD+/D19YUX6R2MHtATxn7PSIzNu2A+FobEGqXyhwYNG9I9kwxznzuVMGDCtsrm5LpTAJo8F4Ks7IpiUU/WV8ig8lLLMaPQqKElcnRV68RT2Riq4nNZQJOIkE/pXn8ADR0Xw8pmQsEwnnp1pvxmoJnnVbIjlk+v6klkCqbsuAl3Arh21IBLk6K55JKwiVuuCyVgf/yvbFZxyb6FspCIEIhmzxZKRILj0hEYn1aw+cLACpeVcehoaQnXpjEdVzLylyxBdpv29aY0h9lvb269oTA7rDzQhH/TzclGPicppZQWjaLXRX1opwFN6sMqVz5HDWhSeY4qPEIdQZOc7DD4Pi5eHpKVaIHs0CXoMmGoXBl5dOoaHh6/LGihdHhtYLltlQNN8vD4fhvqWwst2j6Qa3xVdXACKepHkrK+hdUIGcRRefysFSORjDckIVtXErStqlAWNOGbqomRFj49+ym8or0EAd683CRh3CNbvolxrd4gAKh+7PTIskYa0ESWLKnuGA1oorpcVtZTXQNNeL4mtJmtd/oU8MsvwvTj0rLxODIZd0mLikGTmSEpMM8XCWK1+lxqqa0t2HFmGJtX+Q53ZaAJr4cZvfCcPn0ad3yCyUkDGD+oJ3RXLAfu3BHcSixoB9/GxoaGrVNKp+B6YLzwgmpAL6b+xFwZSbajlRnei4ldwIAJ69GYLZyH5q8ORGodEY2UBTRJiN2LyLCvit3rWQyeReG1tc3R1PNyZV+jUp8zs+LFNReE6+vs3L5yt6+pBmd9ovHxYW/0JL2fb0fxM5lsIXznLl2Awcb1yCTgjRkrQQSesCZPyWC9k04kGlssxo9H7pChSNKu+Q0z2Was/FEH74Xhu1NPFXbyKg804ZHxZ1k5FbOElJ9B3epBA5rUrfVUdDYa0ETRzD1vp46gCQ+dy0uYcZKdFQxxThQyEyyJPjkPPaaOkCsjZ9bsQVxgOHpMGQ4HT9qNKyeUAU3yclPx1Lsr7eaY0K7ONbnGV1UHp6fdRpDvJBgatYGrx+4KT5OV6Q//p69CV9eeynMiyFLPHk1a0EN7FYWyoImBfh72Pf4D+x/vF0aYnnqDdtTSYWTShVg+RpjXbR46NuyKbCo10gTRXY11hd3ntMzilH9NbqomAxrQpGryWlavdRE0YXKFuXYutDZtAqEPCKDd8zB6eSsKmhjT97m1g7mEbUKslOx2HakspzJ4Qfl1qQw0kb7wiPJzcOzoUXiFJtDLvBUGtfaA7pwPYJyWAhsrCxgaGpUp7BhEjBoukXhka4Qj5B/7p7YeKnoNZZifARN26zEbNRzN572H1BJOKcrPuuZ6kAU0yUi/T2KwEwQBehaiF56f0h8i4NlY+ltx5zx5ZvLqz5cRS6UqB97trpi+hzwnU9GxUkvrCV0aYUaf8p/3yjqduZYYxnt3IvPvfwosh28QiMelcSWjq5s1sU6eP1907Ij8xYtlttpV0VRV0o2WdA5FemPAzJiEm0tGSRvhZUcf4d9HkZj/YjOMopI6eaMi0ETevjTHazRNNNeAJAMa0ETJK0FdQZOi0/bxGkrIfzCSfYfhhdErZc5IZnIajny+ESKiVI5aMRtaJRTRi3akDGgizonGs0f9yca3ATxaFhdhlXmwKj4wV5xAO029ZAJypMK7JmY9kZp8ib92xJjxUvGICrtTBjTRo/pjr5i7WH75G7AIHlslMzOJn3L09N3onwvtZmoJNsmWug01uxWUGQ1oUmWXcpkda0CT6st3XQRNOHuCBachvbjMnYvgW96CSGVJ0KSFnRms356A3FderbYdbllAEx6/ga4I8XHRuHTxImmM5MKjkTOaiDNh9vXXsDC3gJhLciTExmLBZTY3g+Jx00wPZ6wM8Cs5BTWsQEfiUUQy4tOzYdS2NTy3kp4E6aMwS6CuhCygSX5+NonBSrRMmre5Q653eiQG/x9CA+fA1Lw/nFzXKJSOGXvv4C4J+a4e047seK0U6qO6G31BL/In6EVeEdcf/i1paKGPzHkLgEePhaE/pjKlOHLWKRpcotPV7Xk+CBBkHZM0LX211FIzM2RXmjzadJII5gbGpQnuYWL63yw03Zx+Y6Ti1CJ6LiTSW0GM3nRFOHY7lW+xTpG8oQFN5M1Yns4jTQAAIABJREFUxcdrmCaqzae69qYBTZRcuboAmkT470RiygqIMyzQuiu/1MsWATe8cWvvv3Bo5V4pQ0UZ0IS1QFgTRE/fFe7NaZeiloRUnLZJy1MCi6S8iIv+HdERq8AuO8mJJ4jZE4MmLf+jNvKpocs6bUVBE26XRADVe0en0/N2Ponc+RJgElrstPoGTYgp4wR3S3esGrQKKVVc4y/rnGvyOA1oUr3Z14Am1ZfvugqacAb5984oPgq5707HNf/YYqCJg54OWrzUCzqff4YkepGpLqBAVtCEx0/SJXj29AkePXokXBBd27WBx5PHEG/ZToB32cAGl9rcCU7AZWKZMGiy+nVyfjMzKtCQYDyEnXGYjZNOZRQZBMhoUZ6sBr9Itid6yMgTUS7qDsNQFtCEcxvg85rAznVtshPGJu0QG72dmLrfChonrHWiSCz/9wmOPAjHAmISsDivOsTUHbeEUraNb3REGwXEhO2tDJEVGQ289x7RdTIhBfGKzr2xjQkcyJ2HI3/FCmS5NEZ6XmlHQnXIF2sopaUm4r9Tp8C6SVIHIenYG5oaCPbrvfv0gbmFNeVD8kl4YgZe23wVFgRoHpvZS6GpakAThdJWbiMNaKLafKprbxrQRMmVqwugSVp8Ep7cGQEj2xhydZkPa9u3ZcrK1e1HEHrPBx1GD4B7D4ktX3mhDGiSmUFUWB+mwrYkeuyfMo2tOg4K8psilK40avwLjE17lHtKqZCcndOn5Fp0EBnpXsLDl6FxxTlTdA6KgCa822FKtfJzTsxBQKJEsJbtFEFsk6IhIstFYxOJANwAtwGY1uEdAleo5l/RwdaBdhrQpHoXUQOaVF++6zJowlkk7AB6d24i/ctv8FdmFv6iP6xIFqMZucBp/7wBaXrG1brDLQ9owtR/U9rJZrZJREQEBg8ZAgsDetlcuxa4cKHMiyScdq79Y1MLmCZfvj4BAYEBwssZAyapVGKYV+TXnAxjYdKmJbTJiadTlxeQr6VHmijVd/1V9ZlkBU2kwu92jh+jocNYpCedxjOfuXI9L5Wcy84bQdhw3g/jOjljdj+Pqp6qSvofuPo80glIO04v8hU63ZRzNgZNkpPSoffwAURffikcxUwpvia5BIzZF80aPhfVnToV4t59kazm+jnsehUc6I9NB08jU1z8y8OsmneG94Wrmzt9VghGnngYiS+OPULvJrZYMVIxdyUNaKKSS76gEw1ootp8qmtvGtBEyZWrC6BJdnomzm5ahEb9TkNbx0LQ25DFoebg4rUQZ2Vj6Mf/g7F1xRaGyoAm6ak3EUQ2v0YmneHivkXJFVNd88jQL5EQ9wc9RC0SWCTlRZDvm4KYaiP335EQu4eovafg6PI9uegMVt1givQkL2jCu4qsY7Ll/hac8D0u9MSlOWkMmpQI1pUxMu5U8NfpHaejV6O+xEipv8KwGtCkSi7jcjvVgCbVl++6DppwJgULzr17cPzwIWzIE2OHti7Ml32BrKYtqn2HWx7QhMeuR0Kietp5iIyMhKW1LVV+6sJUhzQiqOwIISGlLhSpfou0PGfdxKnwjQiDv78/wSMigWFYNHSdnWHayAGduveEja0dsnLrDsuE5ykraJIQu5vEYL+Bs9sypOt1gGF+MNJidsLI7HW6jw9S6At5/lkMFh/ywuTubpjWw02hPqqzEbsvjfrlCqyN9XDk/Z4KnZpBk8iEDJiKcqFz4C9g3z6hn9hUKoGKSqa+9dHCjkCT3r2R/977SMzXoWcRhU5VaxrxN8bEUAu/Hz4NryfkdFUkXBs1wgfjhpLlssQWXBrfnnyKQ/fDMLNvE7zRuZFCc9GAJgqlrdxGGtBEtflU1940oImSK1cXQJN82mL6a/4quL54EiYOYbBpOB22djMrzEzU00Bc+GU/LBwb4MV55QMG0k6UAU1Sk88jJGAGTMz60EPLeiVXTHXN42N3ISpsOT2sjgGzSMoL1j5hDRTWY4mL2SLYPTckRo+VjIweeUcsL2iip5uL88Fn8MsdiZuENJiOLM6JLPY3LpHif0Xjuxe/h7MJ7ZTQjlF9DA1oUr2rrgFNqi/f9QE0ESw4DbRw/8O5+NvPFwvefAs6g4bUyA63vKAJXwlcAkBFM8QAkFwXgsVreDBEH3xQ6kIpyTRZIjJH64/m4OTJk4iLjyt+PLFLRGS13Ll9W3g0bUY74epZIlHRt0VW0IQ3PRJjfoKNw2QsvLAT5lrh+LrfEnKCaQAdvaYKfSHZUnbB3qsYahGO4YMGwrZh7S7RYdHWOfvuCa5S68dJNF7kDSloIqKdGnMqLxMtJ9enW7cEtsndkAQYUVlchx7kyvPjj0ghoXmpFbG856ltxzOTNyEjG7/+cQgJCQnC8IyNjTFpzEiybzZBDpXEFQ22dWZ7518mdBQEqRUJDWiiSNbKb6MBTVSbT3XtTQOaKLlydQE04RQwa0TfMghuL52gemYdgW2io0s7V+XE/cPn4HP+NloMfAGeQyvfdVAGNElOPI6woAW0ozOEGBrfKbliqmuelnIVwf7TiHnRES5NtpXZsdSaUEvblJx/rhJosg3R4d8JzBRmqFRFyAOaaJOLRFxWJOb8W/oBm8fGLkF5uSn037Sgb9CYrgk74fooGnbGdlg9eDXEYt1SN/+qmF9t61MDmlTvimhAk+rLd30ATTibemTBaZyRAtG2bch/510k5bFdb/VvcSsCmvD4eZ2K6q4IFq8Xz0tKdUrEvdBEnKWSAdY0WRCahnZDekNvYB/s/vs49fEc+NbTQ75na+ib2+DNkUNIu0piE1vXQlbQRIRs5OdcxFcXl8M3w5xYmFcw2H0gpvf4mViW8ot0ch5ZO2b32cs4+9t3mE/uMG3adavVrIp9d0Lx42kfjGjriIWDmil0KUhBE/5qMUvKJI9EYGfNQl5MLK6QrhCDKd3/2YVM64bIgLZC56itjdad90UbOwNcOv0vCcHmo3uffqQTZISBzYvr4bHw8svrLyltR60BTVR7JWhAE9XmU11704AmSq5cXQFN/ln2CzKSUtFluh/SMy5QmY4lgQHtYW45QlCILxknVmxBSnQ8+s0cC5vGTpVmURnQJDF+PyJCPoOF9WjYOy2r9FzVdQBbNT97NEDIVdNWF8s8bXraHbImfousiVuTNfEeQQg2LGg+5fRFUt3/sUqGKitooksPLbq6Ynxy5hPEZsSWOZasTB96KAwnwIQsLfXK3wnraN8R73aYTra7RPCue8/WFa6TBjSpksu43E41oEn15bu+gCacUSMqGTAwNkBKZm6Ngb+KgiZlXREWVHaktWM7cFxSclk0dlFZ7V7CvrfkasOGmSovD0OQmTn+vXRFOCyveQuk6hrjrbGjYEg6Kdk5pW1hq+8qrLozyQqa6OvnYset+fjTe4egRZaRdo9oEtpYMmAfujh0J0am/OWpenr5+P7wXtzetgcdxgzA/LEzkKNAP1WXneI9f//fUxy4G4YP+ntgbEdnhU5bFDThDpglZRDwDKKFC3ErKAFp099Hq+EvQsvUTKH+a2ujjRf9sP1aEIn+euBFVz1EJyTjaow21p8PLGU5fc4nBksOewmOSuyspGhoQBNFM1d2Ow1ootp8qmtvGtBEyZWrK6DJv99uRXJkHF6YHoe0jL+LZYUt9YoCJ3wcH69vYoRXvyAVdBlCGdCEy1miwldWKTtDhimUeYiPd3fk5ibDo9U56OjYlDomMf4AAT6fEvj0ChwaLRcetgJ9JxaAKIqet6J2MoMmunlkd/e8p3JK1dNTbxGDJFZg01TEPJKOh0Vha2KHtiryKGufGtBE1kyp5jgNaKKaPMrSS30CTTgfXNpSk2WGqgRNhLIjEvfGImI0PnlSbLkP5efiN2KV/KmtB0PpLeB/U3AvOhpeKenItrBCv4ED0MDGtsDRQ5brRd2OkQU00acykoex9/HJyQlCuSqXp2ZnBZLumxHprHXB2sHrYGvoKNd1wy+0V4IC8M6Od+B5Vx+Pm6dj6fhvMKZ1N8GxqDbGrD/u4jY5L616rS1ZAlsrNMSSoAl3YqqVC92TJ/Dw3jP4DBoBHWMT9HAv/Syl0AlrQaMHYUmYvvu2MJJ1Y9ujl4eVwKj56KA3jnlHYnR7J8wbWFjitfasL/bcCsZU0rqZqoTWjQY0Ue3ia0AT1eZTXXvTgCZKrlxdAU3OrNmDuMBwtH57HzEFUotlhQETBk6k4XPuFu7/fR4unVuhy3jZxEyVAU1iozYiJnIdaa28S1ors5RcMdU2ZwCEgRAWqGWh2pLBVsNsOczj5vHn0EOX76OBAgDh0fKsagfzvDdZQRNZTu73eCiys4PRuPnf/2fvPACbqtr//03TvWlLKW1ZZZW9QaYoiqIiiKg4cOEEBNy8uAfuBeJGQVFBQERFQRFkyJINhVIKtKUtdO+VJmne59ya0p2b5PbSps/5/f2/2jznOed+z22afO4z4OYWIWdKs7NhaKLukTM0UU/v5gZN1FO29pWUhCZiBfHFyZNanmqmT5davJpHIhV8TaKQwIEaijb874eawEA4PTsPW6mAbGCr1mjXPqJKR4+LrU1DrG8Jmgj9CgxZePj3h1BcEk+d4k5RZGkA1SjLkv7Xw7M32vq2xftXv0/yyqvBIepbaCnKc8yX05CceBp9D3tJ0EQb3gI/374YYT4tLlqkU30aX//JDirYqsOPDwxD6/9aAlt7JrVBE1GI3p9uwrhcHcGFg5jQOxS32lj81Nr9qGH/wHf7EHUuTyroKgq7ivdUcc0nUvJx59J/pS0sv/cStAv0lP79/m/34dj5PCnKRESb2DoYmtiqXO3zGJooq2dT9cbQxM6TcxRosv3zNUg/E4Nut35XQxF3j0hq9UuVzmmkn0rEgTWbyqNSpl6Ltv0iZSloDzQxg4fg1o8hMPheWeupZXShnfBzVBD2lhrLJsXPom45m6kWy7tUk+Uq6fXow6KFnAmRvQ/VqA+ixL6VhCbRh6koGzWhjOx9gPZKj9x41FCAoYm6NwVDE/X0ZmiintZiJaWhieTTqQyuUYehmT+//otp1w5OCxeg1GikByeaGh091FVCndXqgyYCbvh6uuDxPx9HbFYsRZTm0gOSg9A4ucNUVkLpqqGUtloeITCq7ShMHzgDulKtxfRUd0r1WbD7K7y9/Tt4FWoroElWgAGTe4zGouuoQw/xrcYUsZlPraiv+nAb3F202DznUpsPpzZoIpwJrXdQTZNHVx7GhD6heHqsvM+VNm9EpYlLdsXji3/OoH2gF76/d0iNVd/44wR+OXIO1/ZsjWfGdUMx9fMe8wHVIqLx96Ojpbomtg6GJrYqV/s8hibK6tlUvTE0sfPkHAWa7F62DokHY9D7rr/pK3J8FVWCWk2nSInp2PnVz0iOOlXxWuTlg9HrupGyFLQHmqQkv0qtelcgJOxZtAiaIms9tYwy05dSYdd3aF+30/7+V2PZ0yfGUyhvHCK6rqn4gHXq+JUUcXKeiu1uoA9eluvBWHstSkETfWkSTkVfTXVPQtCp+1/WbqPZ2DM0UfeoGZqopzdDE/W0Fis1BDQRfn01hvIWr6vLH37UNkxUNLa4RUto3N1gMJoaZbSD0qdRHzRxczXg22Pf4reT6/5b1oiCvO1wO9AZJg8qYNpXS6k67Sq2dG/fezG6/RUo09f9cIGkxa7kf/DervexKy6zBjQJopa7L4y5D+M7T6RUIHMMkNJXbb2/qHO5eOC7/ejaygdL7qwZUSvXY13QRMzfS915ZtvZnUfuPhrS7gB1AVqwORaxaRcitt+9sQ+GRtRMaUrMLsIti3dL2/loUiR2/L0Bq8/5oEvHCHxOnXPsGQxN7FGv5lyGJsrq2VS9MTSx8+QcBZrsX7URZ3YdoYJkfeEU8AlEu1npwxZFR4SEv4iU6FQJmlQf1zx7P7wCLBftsgeanDs7D7nZv1BNkNeoNsj1dp6YstML8rZRO+Tp8PIeirYdv6jm3ERRJSJSQ0SVXIjUiD81VXpi1a7TUqoVMlDZDZE3paBJYcFunD19H6UdDaT0o6WK79NRHDI0UfckGZqopzdDE/W0Fis1FDRxEvVN3CgtQESb7C+vr1BlzJmD0r79qfhreYpAcxl1QRNnKpC+M2kbPt73cRUpigr2wu2vLijzLYRmpJbSbFtVeX3+5fPRyb87inU165KIejlOWj0OpRyW5sRTS9mo6AQc/vYHRE64BgEdO0g/D/J2w4SeA+Hh5NtowNVvUecxf300xnZrhRev62Hz7VEfNEnJK8Gkz3Yi0MsVv0633JHR5k004MTzuSW46+t/UaAzVKzionXCimmXoGOAG0Xq1IwcOUWtp5NzimEqyMS7Lz2J8Xc8hDGjR6NjkFfNnTo5oaSgGEVOlqN+GZooe9AMTZTVs6l6Y2hi58k5CjQ58us2xPy9F72vG4Wulw/CmZOToCs+SR1fvpfydo/9sRPH/9hVQ61BVNOkPdU2sTTsgSZJ8bMpxWUT1VX5gArSXmFpKVVfN0djiA9PnbtvqrK2iDARkSYurm0oquRCBwPRPlm0UQ5t+wZBoOsU369S0CQnczXOJ70I/4CJaN3mVcX36SgOGZqoe5IMTdTTm6GJelqLlRoKmgjfUotXQ7HU4hVZWRcu7NprUXbrbcjRUBhEMxu1QROtsxE5pel4ZP3MGmoU0cMOt40REjQxDddXiTQRxoEegVg4biE0Rg+ppXD1IVpbVx7/Hj6O919+CvfMfAptIvth2b8JyC0uRUsCJ9f2aI0+4f6N4kQ+2XYay/Yk4D4qTHovFSi1ddQHTYRPkZoiUlT+eGQUfNyt70hk676UmvfD/kQpyqT6EB2H7hjcDj7OdE+IwsznzlWYlBrLKMomGxl0uYsDnTEh14gb/L0leFRlEDDBO++gyDcAJTLaMTM0UepUy/0wNFFWz6bqjaGJnSfnKNAk+q89iPr9H3S7Ygh6XjMC5locZlAh0nJqizQZdu8EhPXsZFFFe6DJ2TP3ozB/F9pGfA4vn2EW11LbIOboIJSVFaNLz53Qai9E3YhaJkJHb5+RaBPxScW20s69i8z0JQhuPYdqtNyn+HaVgiZp5z+gIraLKTVrJhWxfUjxfTqKQ4Ym6p4kQxP19GZoop7WYqWGhCbCv4cbtXg9FQPN3LnlF9a9O/Daa/RF3QhjWTPrFU+XXx2auBBYcnMtw6z1s3Cu4MIXWyGVeEAiCsF6bO4nQRPdwJNw9+xZo2vegNYD8L8R88rrkljQNCH+DJ6fOwezn3gG/QcOQWp+CV5bfwJ7E8qh1lNju2JinzB1b8JaVpu79ii2xabjlet7YkzXYJv3Ywma3PPNXsSk5uOLOwaiR2vLEcw2b6SBJgqNhFbVx7NUr+Qaqlsioo08kuKhefTRKiaHk3IRT92sFod5Y0J6MQboTejXphowe/xxlPYbiAKNvLQthibKHjJDE2X1bKreGJrYeXKOAk1O/XMQB9dsRqcRfdFv0hikJM+nOiLL0YrqdARQvQ4xNr67DDnJaRWKiQgTEWkiZ9gDTeJjb0dx0WG07/QtPLxs71svZ5+22MSdvIXSmY7V2J/omiOK2Aa0nIpWofR04b+RlfEdUpNfpzoot1IdlGdsWbLeOUpBk+SEJygiZkODRcQofuEXySFDE3WFZ2iint4MTdTTWqzU0NBErOGjpRavv/8m1TcxffQRipzdoXOS90VMXTUafrXK0MSJWpq4uhmwcM8CSs3ZWWNxka4qCsBWhiZOWu9aU2wnd5+MG7pOJtBSf7REbk42Tp86idah4fTPBTjy/qaTWHUgSdrDTf3D8eiYCy1pG16Vmivc+uVuJGQV4Zu7B6NTS2+bt2AJmryw7hg2Uir4c9d0x7geITavo8REP6cLKTZy/e2jlszJ2RTNVWmIIrdXdgtB8X+ww5t+1Vy3baH+w4skq0JqMX2Q6qBkUhSSGZpEFuoREeSNUHOXosmTYZwwEblUhFjuYGgiVyl5dgxN5Onk6FYMTew8YUeBJgn7juPf79ej3YDuGHz7OIow+IK+8C+QutWIrjXmsebpBTDqDWRzDdl2k62ePdDkTMwN9IQnloqp/kTFVDvLXlMtw3Nn/0c1V36lFJaXKZVlUsWydXXWEalGIuXIx/cyhHf4UPFtKgVN4mOnEKyKarSwSnHhbHTI0MRG4WycxtDERuFsmMbQxAbR7JiiBjQR7U796IubU1IiSlqHo8hIP2imozI0cXUrw5+nf8fSw0trqGEyGSja9R/p53KgibCbO2IuegcNQKneNn3XHk7GW3/GSGuK1rOiu0qwj/opVKKLz4h3/pb2sfWx0RA1OmwdlqDJ4h1x+GpnHO66pD0eHBlh6zJ2zxM1gPzd6ToXLwZiys/A0hAthDMKdRDwzdvNGUUEQ7wositi3GXwuOlG5Bi1FS78CVw6LfkK+OMPZBaWIjolrwY0CfPzQAdR16QXdVt86SXk6kxWRYMxNLF0Yta9ztDEOr0c1brZQJPs7D0oLU1Dq1bjq5yl0ViIlNRfkZ29G25uwQgKHIMWLS60BhOvJyevQF7+0VpfdxRocu7Yaez4ci1Ce3TE8GlEtKnwqijAKmpuiNobYuhLdFg7bxGcXV1wwxuzrPqdsAeanIq+ip7YJFNdkD+oPsjFD1WtfuEZBJjSBWBqeTeCQ5+oeDnh1J0oKjxABWK/pEKxF+6pEgIRcQQk3D26USvnVVbpKMdYKWhy8tgIGA056NxjS40QZDn7aC42DE3UPWmGJurpzdBEPa3FSmpAE7GO+OLrAQPyjLZ/AVZXmYZZzQxNjGV6JBbEYe6mCxGh1VcsKY6ijjYZVaCJ6H7n5l57erK71h0fXrMI3toA6PQ165vIuaJDSTmUrhONJCoUKgrECnAypH2AnKlW2RAjoBbHtU+Jo4K1ty/Zg/AWHlh531Cr/FY3tgRN/qQokxcp2uQySgGaT6lAF3NINYD0ReU1gLKzq2zFQGIlUuRNbole6jQlQKSoxSJ+r7qH+F6oxxJB4Oe995BXYpTszENqZ+1BUUhPPgnDiRjspk5K1SNNugT70OfJICkarNDdm+CbdfcQQxNl7x6GJsrq2VS9OTw0KSqKQ0bGZvpnE/wJhkR0mF3lrJLPrZCAifi5TpeG2FOvoU/vLyRAIoBJbOxrFLIZjJBW11e83rPHB/D0LC+G5SjQJP10IrZ8tBItO4Zj9IxbUFiwhzqnTKPOKYOoc8oS6VpzUzLw51tfw6dVAK5++h6r7nl7oIn5y3uXHtuhdW5h1bpqGJsjR7x9R6FNhwvV9k8eG0XQIYsKxG6mKvsX8oANhgzEHhstXYu4pvqG+OPqTH+IS+iphdyhBDQxGvNwMmoYnJw80bXXv3KXbpZ2DE3UPXaGJurpzdBEPa3FSmpBE7GWeCIuogia8xDQRBRsLaHPetN/fxh5urw65RDRJsVFh6gQbGepponhkjR68NGTvjDXnYITGRiJN694E/nFhipfmq3RPLdYj/kbovHPqQxp2uzLOuOWgW2scVGvrfgdd6MAlqLi2u+FLSfTMe/noxjeMQhvTxLdAG0flqDJCapnci/VNelIKUDLKBXoYg9PjRFu8aehmTevylbOEjA5S+2CKw8BTHqG+sGL6pZIg36/TJSCU+wXiJJa7hEBNTzzs6F5+GGcTcnBwYKSivSc4XBC52BvaF95Gbou3VBUZj3cZGii7N3D0ERZPZuqN4eHJgKECHCSnVPeC706NDl85H60bXNfRXTJ2bNf0h+3AslOzIs6NqcCooj54nVdaSo6dyp/E3UUaCJqlYiaJf6hLXHlE3fC3PnF1a0dOkZS/jONlOg4bP9iDVp1bYdRD0626p63B5qcONIfJlMpInvth8ZJ/fBUSxd6oUtOOEXDbJDMjYZsnDw2kloMeqNrz/J7r/I4caQfXZOegMQ+AhO156mKpxce7ibqeuCCwqIy6KnKupyhBDQpKT6OuJM301O0LpQWtUbOss3WhqGJukfP0EQ9vRmaqKe1WElNaKLulTXO1QJ9XWEoM+DFLS/hcGp5K2BLw/RLKeBP0QWj5H0WGddpHKb2os9UpfbVjTF3sBH7u753KOZeFWlpq7JeT0yIxqbNf2LavTNhNF1IITFP/np3PD7bfga3DWqLmaMtF/2vb1FL0ESktFyxYCtcCUBsoVSgxjB8tGVw+e1XYNmyiu3sS8hGiaHqgyxn6m5zSYdKUUCPPYbSAYNQgLrP3UtLn++OHISGijGfpGt/nNJ2ZhMgucKFQNxdd8FwxVjk2fiZl6GJsncPQxNl9Wyq3hwempgPRkSU6HSpVaCJACoCmpgjS4StOSolMpIKoVJKT1zcAvTv/33F+Yqfpab+AvG6GOezqhZ9aqo3QmFmLn57dTG8Avxw7XP3UdX3Ipw4Mlj6Qh/Ze590WWd2HcG+lRvRYUhPDJpylVWXKv5Y2qKVeLoTfbiv9DSnW59DVq2pprHYo9hrZO+9pJkHpeUcRHzsVGrX3ItScJbX2Mqp6HEEphIJsqyjSKb2tW7V2cWALfGbEJMVgxkDZxKsc6I1LF+Vm7MWXh5aZOXThzsbR17On1R35TFq8Xw5Rc8stNFL85jm6+kiPUUs0llfOK55KKTsVbak4njZ+Tr6siPjl0HZpZudNwFNAn3dkJZDrUB4NLgCnlQLQUQX5hXpG3wtXgDwpZqmP0StwopjP8iWw/QznU0LDUET+S1xHxn4CIaEDqPoZfvAyfpjKXj192gpQqh3mJ+UrtM2wFP23qsbulFX28++X4jNq/7Cp998CX+vVjVaJb/823GIdf93daQEa+wZIZTik0qpRvV9jpnwyQ6k0fv76geGIszfw57lFJkr1QByJki2cAHwT3ldm91nsujvT9WHWKKOSV9zx5vx41F2yxTkymjj7etkhHb1SiRSYebpRj2e0jpj5LDhMM15lNLntDZHg7lRepGXhwt9DtQpokNzdyK+w/BgBZo1NDFHkgwgKKK46XNxAAAgAElEQVTVUsElGgKKnE1cLIEUkZ5z+PD9CAu7Ff7+Q6T/TiFgIuaJFB0x5HyJbQq3WUlBMT6f+S7cvTzwwEePS1vetr0fDIY8jByxHy4u/ti9Ziv+/WU7hkwcJf1jzRB/eGzRymDIpX30p5oavhg18qA1S6pq++/ea1BQEINBA9fCx6cXzp9fhegTcxESMhHdu71bYy8HD95G0U970K/vMopyqtlGWU851gm58Xj8z/KzmNZ3GsZ0uIJCP8vv03oHaS1Kz9mit9nv2bOf49TpN9Gmzb0UVaV8hx9Ll9CUXhf3tiO9FzR27aX3Eknwxr5Tx9ifre/djnH16l4Fv5eop7eIMDmYcgCvbn/VukXNbFw+M5H8Lxq3CG1821q3Vi3WR5Nz8eTqw4ihwqO+9KX47cm9MbZ7eaeZb775GmvXrsWaNT9ZXEdn0OF8QSqmvHwvfKM0CJ/WC4tveZsSQ6pGm0z8aAcOU22VVQ8OxUA766nIeS+548s92EGpSEsoPWd015YWr0MtA42eHkLNpvT+5GQcoEiTrKKqD6UEvOrSygfoSbVYXn4ZJoIfcofGaEDuCy8g+tAhhAcHI/zTT2FylRfJVOcaCnwOlLv/5mBnfm9uDtfK11i3As0amggIsv/AbagMTUSkiQAjZigiAEnyueUSKHFzDaan/WnS/5ojTRwlPcdE1Hz1E+9T+osGk98p75ZzJmYida05JaVniDSNvcs3IH7vMQy8ZSxFm1BFbyuGrek5en0KTh2/gqBNCDp1/8uKFdU1vdCe93UqnjteajUsWg63DHkEQa0erLEZc8ed0Davwi9gYpXXRQEyJxc9Zv42AxnF5XnMYsy/fD46+XdHsa7++iZKpOekJL2M7MyV1BJ5HrVGvk1dMZvYapyeo+6BcXqOenpzeo56WouVOD1HPb39fJyhdSrvSFKmQtQaxaYgpzgfTmUyHnzUI4MvRT3QEzxEnc9FSm55BJiofyFa1H793TL8Sqkkq79fWasHE83LgatUsNTF1YRLv7gLBcfOISLOHXsG5+OuwTfjxTEPUFT2BXBy5YJt1BbXgN9njoQ/QRp7hqX0HOH7nb9isOZgMuZc3hk3D1Cudos9+xZz3alWiUdSPIyz51CL4Bzo/kvPEWk5rairURuCJs6+PlIdk0JPX6sKt0pFZw0UtT5zJkzPPit1tSquJVXKmmvg9Bxr1LJsy+k5ljVqDhbNGpqIA/5374Qq6Tmp1ElHdMox1yypfhOIGictWlyCsNAp0kuOAk3Etfz0v4Uw6PS44fVH4Exxm2fPPEBt9naiTcQn8PYZia2frEJa7FmMfPBGhHRtb9Xvh63QRFdyhuDN9QRtIgje/GLVmmoap6d8jIzUj6lF8/3Uonk2pbbMQn7uZoS1exe+/jVTmUS3HdF1p2XITIIqD1VsVbS6c3cvw9s73sLec3uBBAoBLaQPSd21CPQIxMJxC6ExetQIoa18rUpAk4qzp8K2osAtj7oVYGii7t3B0EQ9vRmaqKe1WImhiXp6iyfHLbxdpYcQJdT5RI1hT/SneX/Sl/fsdGiefx6JVIw0gYqSiuHr7oINphLs0ujwmrYFQRQviBSNijFuHIyXj0EedfXxcDNh3l9vY+mB39H6vGsFNDEQkFlxy2sY3mYYPSAEUvNLcMOnOxHg6Yp1M0bYLZEcaLJyfyI+2ByLSX3D8MSVXe1eU0kH3sSM4lb9ivQ33kUL0qRHa98q7k0ULaKL7GFT4VYPak/sUZALvZMz8umM7B0MTexVsOp8hibK6tlUvTV7aHKGapa4ubWSIIi5W05Q0BgEBV1e40wFUElOXo4+fb6oSOdxJGiy7qXPUJxbgOteeBAeft44n/gccrJ+QuvwF+EfOBkbXv8K+enZuOrpu+HbKtCqe95WaFJcdJRqg9xKtUF6on3nFVatqaZxXs4GiGgTH78xCG+/AKdPXE81S85QPZMfqcJ+zT/82Zk/ICXpFUlXoa95uLoasS72Z3wfVV5Hx7SDYoHTKJ/2hvInPANaD8DcEf9DcQl1Pqjj6ZgS0OT0iWto/2clUCWAFY+6FWBoou7dwdBEPb0ZmqintViJoYm6eptbDlvTnU7dHda+mjcVEHXZ/y80b7+NzIJSxKTlS7UvtrZwwz6qQfR4Qh7cqbbZwHb/dRvsRZHBL72EXJ2JuvYZsSn+Dzy7cSGSc4trQJOerVtgxU2L4efSEv/EZmD2qkNSrY6Pp/S3+9LlQBPRfvcxSj8Se194cz+711TSwR/RKXCj1OlWq75Dv+N74OlSKZVp6lQYrrxKglK2Dm9qQ1xInZaUyDxlaGLrKdQ+j6GJsno2VW8OD01Euo1IrzEaqEUcpeOIVsKVu+WY2wwLYCJsBDAJC5tSAUUEKBHpOmKItJwO1FVH+DAPR4Imf7y5FHmpmbjqKYIiIYFIT1lE0ROfUiTEdIqImI41Ty+AUW+oiESx5qa3FZpcaH08hFoff2nNkqra6kpOUkTMJCrq2gHde/2GQ/sorxVlVBiWOv7UUgysIG8rEuNmSBE8IpJHDBEuG5t1HC9ufUH6b1FYtuyfImjSCZhMNFKBWapaR2Ny98m4oetk6Etrz5lVAppEH6HWgiax/wO0f6oWx6NOBRiaqHtzMDRRT2+GJuppLVZiaKKu3k0VmgiV/JwM0H73LbBuHaLO5VLqj74KNBE2g9oFwK2FH0yffIJCV0/pM8W5wrN48q8npGKrJwm2VI40MVKkSadgHwxv1wPvjn0X0x6cgZP6Fhh+7S14eqz93XrkQJNzBHImf74LwZTysvah4ereEPWsllGgw9Sl/0oRJkvuHoTWrzwLnDxZPmPIEJgeexy5dhRuFW7k1HyRKwhDE7lKybNjaCJPJ0e3cnhoIvcABTxxdvaqgCWV50n1TAiUmIvFVn7NkaDJ5oXLkRl/DpfPuhWB7UOlmhaitoV/4I0IaDEXvzz3MVw93THh1RlyZa2wsxWa5Of9jaS4RyhF5DLq4vKh1euqNUF8GDlxpC+8vDqjd5+VOHTweqmjirkFcfV9lBSfoJa+kymKozNFc/wE8QeuxJSH6b89jGLKbS0rK6AOPIfgtr89tJm+KLryAEWsRMKZaruIMXfEXPQOGkB5s/9VIa20gL3QRF+ajFPRVzX6OjJqna2ldRiaWFJI2dcZmiirZ33eGJqop7VYiaGJuno3ZWgifjf9POnBybx5iNv6rxQ1UjnSRCgpoInr/Feg69INBkr7cHExUqegFVSjpJBqcpRhX0IWdCfOQ7c3Dr630Bd/Sv0RozOBk9ERffHlc18iUROMW+6ZgSkD7a8vIgeaiPVHv79FSkH+a/YoeLrKL6jakHfPs79EYXNMGi7t3BLv3dQHnjkZ0FANEuoSQVV+FyHf5Aw97bmxDIYmyp4EQxNl9Wyq3hia2HlyjgRNtn/+I1JOxGPkA5MQEtkBFdEQviPh7fIS/npvGfxCW2LsE3darZqt0CQ3+zecO/s0fFtci7C2b1q9rpoT4k7eiNDwOxCVp0c3byMVgt1WEUVSfR9GYw5ORo2Ak9YH3Xvvho+nFv/b/D9Ep0dLpiXFUTDoM+B2oFMFNAG1Xfb2Kc8rdqcQ0A+vWQRvbQB0+qp/qO2FJhXRPV4D0a7TUjUlbJJrMTRR99gYmqinN0MT9bQWKzE0UVfvpgxNhFLii7FnUR7y7rkfR0+drwJNPCh1ZMBzc2C4YizynMo7sWipwLx5bDqRhuiUPJTG7sWBDavx9qdf4kwedRSiIqdihFBr93UfPI8stzBcNnkaZl3W2e7DkQtN7qSIjlPpBfhq6iBEhlBHmos81h5Oxlt/xsCL2govo64+Ib7u8KIUKdcj1NExMFCRwq1KXyJDE2UVZWiirJ5N1RtDEztPzpGgye5v1iHxUAwumXod2vTrSl/czdEQXeCufxs7vlqL1t0jMOK+G6xWzVZokp25iqJdXkKLwJsQEl6ettJYR3HBr9iauB1Lj/2Gh/tOxpDQUXD3HFPndmOODqKIkhL0G7IfK6JWYm3M2grbosJ9KDMWVIUm4kM1QRMNwRMxIgMj8eYVbyKvyCB1ADAPe6FJTtaPVM/mBamrj+juw6N+BRiaqHuHMDRRT2+GJuppLVZiaKKu3k0dmgi1POnLu9vxo0h/8hkspTbKu7xcpJomGDoUfd99CQatm1TvpPIQLYQfXn5A+tGcjjn4beVSfLz4O3h5++D7vWexaMsp6bUOR79CkU84UtuPxRsTe2EURVnYM+RCE3NUx4vX9qB2yq3sWdLuuUnZxbhj6R4p8uWZcd1wbc/WFT59tUaYKGU9/z8oZfdiCjpgaKKgmOSKoYmyejZVbwxN7Dw5R4Im+1dtxJldRzDgpisRMbQ31XjJwsljoygtyQ9OOR/h4JpNiBjWBwMmX2G1arZCk6z0pUg99w4CWt6FVqFPWr2uWhNEcbX4zE149PfbpOiRMmM+Pp3wO8L9h6KuInOnT4ynGjojEWfqhw/+/azKVkWrZ31pUhVoImqLePkMq2I3rtM4TO19FxVtvRDCai80SaPOPplSZ58ZVM/mYbUkbLLrMDRR9+gYmqinN0MT9bQWKzE0UVdvR4AmQjFfbRmcf/oRXy//Hr+YjHjTNQBJL7+FrfF5eGR0pxqizl55CHspNefOIe1wc09/SsXOQJt2HeDqWl6/7PIPtkodhSpDk35UDPYjO4vByoUmn/9zBkt3xePeYR1w3/AO6t4U1VZ74sfD2HmGav11D8EL13av8qrodmgiIKVEVySlL5KhibKKMjRRVs+m6o2hiZ0n50jQ5Miv2xDz9170Hj8KXS8bJClz4kh/+oNQCkPSApzYdAg9rxmBblcMsVo1W6GJaOMr2vmKL+/iS3xjHC7U1k+EvT78801IzNxGkSAupJkeXVqPpxSapSjRaaA31sx1zc/6GIUaLzy57WuqaB9Q5dJEjZTCgt1VapoIv57eg2oUZn1k0CMYEjac0nnKwYm90CQ54Unk5axHaNvX4ddifGOUvFHtiaGJusfB0EQ9vRmaqKe1WImhibp6Owo0EV/e/ahe/E9zZuGvhHgseG8h3jxehG8Pnsecyzvj5gFt6CEYdeKjSqObYtLx4m/HEejlitUPDKvalpjkL9AZMHbhNukgKkOTzsHe+PquwXYdkFxosuFYCl7+/TiuiGyFl8f3sGtNeyav2JeIhX/HIohaUy+7ewj8PMq7GDaFwdBE2VNiaKKsnk3VG0MTO0/OkaBJ9MbdiFq/Q4IiAo6IcSr6ainioeDkU4jflY7Bt41Du4FVabscCW2FJmkUZZJJ0SbBoU8gsOXdcpZS1UZ8WHF3L8PbO97CnsTNVLx1P60virOaKCpkKC5tdyVmDJpJ4MSpytMIZ60GWsRgxi9TkFrqQZ1zLoR8mi+gqGAfXPaFQJsVCN3VJ+lDTzbBlUBqv0ztA6uND69ehJYeYVJUi73QRLR4Fq2e23daBg+vxtXyT9XDlbkYQxOZQilkxtBEISFluGFoIkMkBU0YmigopgxXjgJNxKX6ULtadxiB06dhbNce+1KK8OPBZDgRKHl4VEfMvHsyJtwwGZnhw6Q2xSLNZIC5JfF/WpVRmq+okTZ37VFsi02vAk2mUdTHNDujPuRCk+Pn83Dft/vQpZUPlt5Z/gBP7RGbVoC7vv5XWvaV8T0xJvJC10y192LLegxNbFGt7jkMTZTVs6l6Y2hi58k5EjQ59c9BSsHZjE4j+qHfpMslZRJO3SWBgOwjU5F80BmXTr8ZwZ2sr6JuKzQR3XtEF5+Q8OeprsnNdp6W8tNdXAz4/dSv+C7qO3JeRsVzy5/QQKOV2gmLMa3fNIInY1CmLw99FW3lvDw02HhyKY6d20htittL/1QeZWXFKCrYg5N/6JCXrMWlVEVenIOpTEe27aTWxpVHgEcAbu5xM3ILDXB1prU9tMjMK7Xpgk8eGykBms7d/6ZuPfblMNu0gSY2iaGJugfG0EQ9vRmaqKe1WImhibp6Owo0caeuN54FOdBuWA8nyhXR/1fCRHzxT80vQQC1yZ23/TeM7dAFvQPbw8fNBX3C/aqK3aYNTIOHINvgJEWbfLA5FtHL50Pv3xbDJ94jARNvKoRqz5ALTfJp/aso2sWditlunnOpPUvaPHfmioM4kJiNCX3CqN1yV5v9XKyJDE2UVZ6hibJ6NlVvDE3sPDlHgiYJ+47j3+/XS5EkIqJEjOSEpyhV43ekH7waqUdaY9y8afAOohZrVg5bocm5s3ORm72OUkXeoFSR66xctWHNXVxNiM06jhe3lheoNdchMa9aGYbMv3w+Ovl3R7GOngTRcKW5BYUHSds/KXKkB3z9r66y2SJ6LT93M/LzKQJFMxCdunQh/3HIyVoj2flT2oybR5caF2jUu9gVaWKkWiwno4bCyckDXXvtbVgBHcQ7QxN1D5KhiXp6MzRRT2uxEkMTdfV2FGgiVPOmzBHXvzdB8+mnUp0NMQwUObI/IRv6MoqGbeeLIXk6jMrWoUdrP7TwrJRqEhICfPgh8su0VdrmPj7zPnTq1hMPz5ijyMHIhSZises/2YGMAh3WPDhM6laj5liyKx5fUF2VcH8PLLtnSI0UJjX3YutaDE1sVa72eQxNlNWzqXpjaGLnyTkSNDkXdVrqkBPaoyOGT5soKWNOj0k9MAjpR3ti0luzKUXE+qcNtkKTpPhZEjwIb78QPn7l0S+NYYg/SDpTPqb/9jCKDEUwGDJQUhRVY2ue3gMJQHhDRIIsGrcIMLpLVdjFKMzfgbNnHqQ0nkvQNmJxlbmJcTOkls+ie43oYmMeGVSgNZ0KtWq1vmjf5QeCLzWjfuxJzykpjkbcyZvg5t4ZEV1/agxSN/o9MDRR94gYmqinN0MT9bQWKzE0UVdvR4ImIinYj7q5OH1JnyU2bqwQUkRLFFHabmVo0i3EV6ppYh6m995DSUgYik3aKgfw1JwH0a1Hb9xzvzL15KyBJjNXHKBIjxx8cFNfDG5fteZbQ94lR5Nz8eD3Is0aeHtSbwzvGNSQyzWYb4YmykrL0ERZPZuqN4Ymdp6cI0GT9NOJ2PLRSrTsGI7RM26RlMlKX0bda95EZnQ3ZEVfjutfsq2biq3Q5OzpaVQQdQ/adlxM7fAusfO0lJkuvkj4eGoxb/M8HE8/LjkVdV9EpEn14ebeieqVhEs/7t+6P+aNfAZFxZTII3KHS07jTMwEKTWnY+S6Cx9gqPCuaEdsoir4nXtsgbNz1T/ayQmPU4TKH6THYNLlq5prUkirrek5+bkbkRT/KHx8L0N4hw+VEczBvTA0UfeAGZqopzdDE/W0FisxNFFXb0eCJkI5USvNl2qb4PHHqSDdKRQSLDlI0ESMytAk0MsN3UJ8ysV++GHohw5HvrbhozksQRMBfszj7b9i8OuR8kK2k/qGKXJjVG28XLvLacv2ITolD1MGtsGsyzorsu7FcMLQRFnVGZooq2dT9cbQxM6TcyRokpOcho3vLoN/WDCufHyqpIxIH0lOeAx5Ce2Qf/pWXPHoHTYpZis0qShK2vl7SmPpbdPaSk8ShV9/OLYcP524EIlRV6SJu2fPKtDjxm43YlLkTQRZnKktcQFioi6pkQqTn/c3kuIeoSKsfakY67c1ti/aGcfFTqE2wwnUivlOasX8VBUbeyJNMtOWIO38u+R3Kvl9WmnpHNIfQxN1j5WhiXp6MzRRT2uxEkMTdfV2NGgi1BNflj2z0qCZMYM66hmwOy5TErVWaHLllSibNg25RmcqXd/woz5oIroQ+rg5VWwiKacYcRmFCPVzR8eW3jU2V1xcDKPRCG/vmq/VdSWlOXkocPGs80I/2XYay/YkoBOt983d9nUKang161+BoYmyJ8DQRFk9m6o3hiZ2npwjQZPCzFz8Pp8iOgL8cM2z90nKFBceQvypO1Cc0RIlZ+dg2D0TbFLMVmgiIjFEREZE158pZaSjTWsrOcmNapHsS92Dd3e+U8NtUeE+CYSYh7NLENw9etawe3r40+jTciBK9RqpfoioI9Klxz+U9lReKyYl6RUqfvuD1GJZtFqubRQV7EXC6Xukl0Lbvkb1Xq6vMLMHmpjXbhX2PwQE3a6kdA7ri6GJukfL0EQ9vRmaqKe1WImhibp6OyI0ke4jCjZxPbgPmjfeoKiJfGQW6mqm5/ShLojvvou8YgMMRjWQCVAfNKEAXvg5m6BZ8AGwYweyikohuui0oCK2PVr71rgxPi8zYgtF436vvZBmVOfd4+4O06JFKHLzhs6p9vTyvQlZmL3ykORi0S390L9tC3VvRoVXY2iirKAMTZTVs6l6Y2hi58k5EjQpLSzGz899DFdPd0x4tTyHVV96ntoOXwl9kSeMKW+g3w221RWxFZqcOk5r689TMbKNtbbltfP4rJouKtRnlaRg+vq6U5QM+hRKvSmh6BF3giBB1Cmn5h9oN60bPrxmEXy0gYiOElAoFh26rCbAEintx9zmuX3n5bW2FzZv2pw6pdG40vwVBJXKC8PaA01EjRVRa6VNh4/g7XtxqtZbdSiNwJihibqHwNBEPb0ZmqintfRl191ZSrHILdSru3AzXc1RoYk4Tj+UQrvyB+Dnn3E2qwiP+DpjVJEBd2udEejrAdNHH6HY2x8ltXxGaajbwVJ6jhRt4kTF8ufMQXH8WexMykGMrxuuDvBChGg7WGl8ajRgK3UsXC4DmpiefRalPfug0FjVh9mdqJt7x5I9iMssxN1D2+OBERENJYFqfhmaKCs1QxNl9Wyq3hia2HlyjgRNTFRhffUT70NDyH/yO4+VK2MqQ/SR8rQYp6yv0PUy20IWbYUmJ6OGUyRGLrr03EHFT6u1yLPz7KyZLj7I+ng648fjPyKrOMuaqbXaBnsHY2LXiTh8ZBoVfN2Odh0/haf3CJQUn6BCrJOp1W8ravm7yeI65xKfQW7Wz1LqUntKYRLDHmhy+sS1UtpPY4nssShAIzBgaKLuITA0UU9vhibqaS1WYmiirt6ODE3E766fO6W7vPgicPgwJhpLcaNGi6lOVOz1iSdQ2ncACjSVOuioIH1d0ER8wTcPVwInbmfjgccexY7UfLwW4IrZFB0yVnuhSG1KbgmWOJXhgKsT5qUWo1OwD7zooVat49ZbYRx3DXK1HnVe4fubTmLVgST0DPXD57cPUEGJhl+CoYmyGjM0UVbPpuqNoYmdJ+dI0ERI8dPchTCU6nHD67Pg7Fb+B/XYPmpB65IPr7LP0LbfcJsUsxWanDjSlwqiGhDZ+yBFbaj7B776hbpRFKjBqNwTwDLKIj6X8DpyMlehV+9VMGi6ITNtMdUU+QD+ATeidZuXLGottImPvYVgSwxaBN6MkPDnbYYm4o/s4f29pAK0kb32Ezxzs7g+G9ATPS8XKby5sMTAcqigAEMTFUT+bwmGJuppzdBEXa3Fao4MTcT1CQDhpSuAZuZMzM3JxGiCJlfffAuM46+vFyI01EnUBk083LTw0BXBdKg8NUYM59DWcNq/D7HvLcQjgb54hKKgr6UHeGIU641SgdtvfDyx08MVb1IL5bQiIwa2qyWdZuBAmObORS6lQovi+7WN7afS8fRPR6WXFt8xEN1rSQVqKD0a0i9DE2XVZWiirJ5N1RtDEztPztGgybqXPkNxbgGue+FBePiVF9g68s+VcPE5D3+vBWjdaYxNitkCTUzURebEkf4ES1wJmhywad3GPikj9TP6Yx6PgODb4O7eDadP3A9RrySs/Xvw9Rsra/vF1Oo4ngrDiiGgSUjIrVZ3z3F2LqMibMDBg9dCbyiVFeUia3PNwIihibqHzNBEPb0ZmqintViJI03U1dvRoYlQ01NjhNuZU9A8+wzQpw/w/PPILQWMdUCEhjyBuiJNfJwMcNmwHvj66/LlKaqk9M67kLx8BWYV5uDB0/EYk5EFD+oMWFRqgJHyab6O7Iwd/n6YnVgAA0VJD2oXADeCRBUjKAimDz9EIT38KTWUA5fqQ7Rinrp0D85T5MpDozriziHtGvLyVfXN0ERZuRmaKKtnU/XG0MTOk3M0aPLHm0uRl5qJq56+G76tAiV19m24Hl6tz6Bl0GsICrtQcNQa6WqDJiIVJT93M0GDfCo6egfVLKnaVs5oyMHJYyOkAqmiUKojjtLiHSjTZOHRv97Em1d/D13qe8jI+Atde/1LdVHqrvJeXYuczNU4n/Si9OMu3VYgOKg/MvPok5GMIfKIXVwMWHn0S1we4oX0lD/RrtNSGTPZRCjA0ETd+4ChiXp6MzRRT2uxEkMTdfVuDtBEKOqjLYPLH+thuvxyFLp61QkRGlr9uqCJKFciisA6fbQI2LpViiQ55ewL34fvxKyPF0jQ5NK0jAvbo8KuX/fuiW0aE2adzZd+Xh2amN58EyVt2qPYVEfaDs15bcMJrDt6Tpq74Oa+DX35qvpnaKKs3AxNlNWzqXpjaGLnyTkaNNm84HtkJpzH5bNuRWD7UCppYsLOVTcjIDKaWtDOpVa0yrQcFtEUifGzqNtM+R88McLbL4SP34VCs/rSc1QUdSzBlFAqBPunnSfV+KaLLySuzll49o+bcSQjDhGBQ/D6qPuRkb4dQa2fs3rDKUmvUtedFVRQtgv691+D7AuNfOr05USfVkQL5Xd3vYN/4tfigZ5XYFDrwfD0utbq9ZvrBIYm6p48QxP19GZoop7WYiWGJurq3VygidSZhrKbdZTaUlQPRGho9esrBCvqxvmKDOxHH0Vm9Cnq+pMHzSX98EbKaTwYn4hLz6dCfF5x0TqhuEskPnN1xV5qUTyboEmYnwc6BHld2D61UdZfNgb5FKVceRQVFUL806JFIDadzMCL645RJDOw7O4hiKg8v6GFUME/QxNlRWZooqyeTdWbw0KT3WcykZanw/V9Q2WdTV3283+LrjHfi3Iw51xR3qnE0aDJ9s9/RMqJeIx84EaERLZHYVYe9v78CFr134/A4HsR3Pq/ArionhoAACAASURBVLGyVL1gVD3SJImAiYgyqTyctD7o2nNXxY90JadwJmYidYXpRIVJ11q5YuM3d3Uz4Kfo77Bkz+NUP8RDKnQ7rHUXPDr8LYo+6US1Ray/Bqk9NLWJDg6eiMDWr1p04OJqwPpT6/Dt0W+pAGycVAT20+t/RniLUSihpz08LCvA0MSyRkpaMDRRUs36fTE0UU9rsRJDE3X1bi7QRKgqIkr1daSpqKW6pe45okOhR2oyjNNnYHdcJvJoz5+Ee+OBTpEYvexbKT3Hs0snlPj44a0SPfb/B01EpIj3y/SgSXxmCqII6XYdoEfNTjmrV6+iDKAlWLFyDY6mFEJPtcg6tvRCKEGX6iO32HhRUpiUOguGJkopWe6HoYmyejZVbw4HTc5kFGJTdCr9k4ZLIgIq4EZdB1SffaHOgKPJuVWmltun4cu7Bko/dzRosvubdUg8FINL7rwObfp2RcaZZBxc/yrCR2yHX4vrENr2DZvu9erQRHSIEek51UcXgiZagidiFBcdplodt1fpDGPT4o1wkquLCcczjuDVf15CYcZOaPT0RIT+X5lLEWaO+BRjIibAqLe+8K0ATaK+iWh73Cr0KYoMurPOq3ehOianc2Pw/JbyqJaS4uMw6NPQudVYLBq/HCUlGvpQUXsucCOU9KJtiaGJutIzNFFPb4Ym6mktVmJooq7ezQmaqKts7atZgiZilrczfRTauR1nX3gdUfklEjS5Z8AluCblPLz37oambVvoTRp8XmbEX9R2WKTnRLbyRfDYS6Ht1ROab76Bnj62mGp56rRSX4plVLPtjTwTReLqEOjlim4hvlU3O3QoTA89jFyTMy5C2RfFjomhiWJSSo4YmiirZ1P15nDQJC2vBAJs7N5FX8iLijHn/ivqPRthH3suB3v/PgRNaho6+FFP+IdvgKt7eVhfaUkporYcQFrceXj5+2BTvhZd+nbEbYPbSq87GjTZv3Ijzuw+ggE3XYmIob1x9sAJRG1ajA5jN1BL3EHUGneJTfd6zUiT2RRpUrWlrrtHJDp0WV3hvzB/F86euR9ePkPRNuILm9ZtjJPEH7N8QyZm/D6d/rjrUZx8EO6be0A3OAZlYcWk82DMv2w+OrXojmKd9dEeRXm/IyHuKenS23X8SvJXfbjSHvQowPTfHkahvlB6uajwAKVL5cHDqx8u6zAeMwbOpGgTJ5siXhqj7g21J4YmDaVs7X4ZmqinN0MT9bQWKzE0UVdvhibq6i0Hmogd+VFhWO2yb5Cw9lfM1Bpxv5s3Jr34LJx+/hn6fQckIPIbdfnbS0Vhr0jKRysfd3QO9oZ2yVcwHTyIsoUf1riwOPpe8BPVQPnb3xWPJ+TRMyoNBrRtUbV4bBjV1VuwAPnGix+VY+/JMDSxV8Gq8xmaKKtnU/XmcNAkOyUTcYdisXvbUZQGBmHO4zfUezaFOQXYtOQ3ZPgHIs+vBSZ3D0Jw+9YSNBHAZPvyvwiWeKPr0B7Ye/wcDqz5G3c+NYUiLoIlv44GTY78uhUxf+9D7/Gj0PWyQYjZvBcx239F54lr4OrWFh0jf7fpXq8OTeJjKY2k6EKLOY3GWQIjAsyYh4AqSfGzqc7JGKp3ssCmdRvbJClv19MFT/z5BE5mnZS2V5IcBbfNXSRoomnnIaUjtXBvgUXXLILG6GF10TY3CmFNT3kHyUlfwtW1Ddp3+YGidy48TRFfhLw9nfDc5ucQlR5VIVFh/g76MKInSDVM6lg0rd80XNpuDMpEFAyPOhVgaKLuzcHQRD29GZqopzVDE3W1FqsxNFFXc7nQRLzv+HlokfbkE5h24jhmu7rhyq+W0OcSJ5TNmgXk5EgbF91vDiRmw5XqnAx+/yWU9hsArbsbtF8vBdZTN57/Rlq+DifT8rGbHopubeEmQRM3giZDI8qbHZiH6f33URIcimLUXTxWXcVsX42hie3a1TaToYmyejZVbw4HTQQEEeBk/V9HINJrLEGTAxt2o5AqZiZ27EI1UEqqpPMIPxs+WYvrH71FAifz1hxFn/xUhNJ3yJG3lkew2FJ3ojHfLP/+8g92r9mCQeNHYOiNo7H12z9wdMtOdL/9W+rm4o7Rlx6zafui2JZZq5OxLyMp6Wt4eXZCaOgUxJ56lbq3+GPkiP1VfKekrMXx6Mephe5EdO/2rk3rNrZJOmMJlh1Zhl9P/iptraTkPIrOJcDj7z4SNNG2d4GPTw/ptf6t++OZEc/A2cnKNB3SWmTzHjx4J7KydyC45dXo2fOjCinEHlYcW4E10WsqflZWZkBW1lb6UKJFYODoip/Pv3w+erbs1dhkbFT7Efe2I74XNCqRK21Gei+RBG+sO3SsfVV+73asK2t8V8PvJeqeCb+XXAS9rXjfLkpKxD8ESTpNnYqI68ZLHyI1sfSwad68io3vPJ2JoivGos/cmQgKKYcgGhPl5/zvf0B0eU3Cw0k5SCdwUhmaULMeKdKkBaXoSGPGDJiGDaf8IG91RWmo1f77HOho31EaSi5Lfs3vzZbs+HXHVsDhoIn5uL5a8hfysvItQpMfX1+GDv0643CmDrl5xbhtXB8p0kSMpBMJ2PPTNtz4v6lSHRNRK2V6d1/E7DqGMfdcI9mk5+oc6g6J2XYA+1dvQpdR/TFw8hhsW7wWSUdi0euulfQdpRDd++yEM7UAtna0JMIvtMrO/Im65jwjTe/Y9Vt4efdHzLFroCuJR6fIFdS1pXeF68z0FUg++zICW05BWNvnrV2y0dmLGiK7kndgwZ4PpL2VmUpQmL8XmlxXgiZ9JWhiaJ1J0Tb94Kwt1/jGbjfixsibYDTKByeuVDzNg4oVp2fFI/YEzaXWzSGhs6iI70N47eV5aNenPTZo/qiij5G6GBUW7IOT1os+M1xI5wnwCMDCqz+EMzykomk8airg7e4sFYwr5sK5qtwe4ulwXmEpLnJNQ1Wu9WIvQg9w4U9fKjLz5bUvv9j7berre1AhTPGUvaDE0NQvpUnsX0R96uh9W8dvJqqcV5CvG72X6GQ/bHTXlME1OxNlXl4ocPGU9uilMcL511+Ab7+V/vt0cFskPfkcddspwK2DytPmRdFbj/wcaB5+WDyZwumMAiTnFNeAJoPbB8DdmaJKxo5F2T331Oi2o4ooDbSIq7OGPgc6I7dQ30ArNC+34jsMD1agWUMTEZXyy/s/IDyyHU6VuUjQpE1OOvqPuwQd+naW0nN+pdc7j+iDj6Pzcc+QcJjOJCCHIlBE3RMxHK1QZszOo9i0+Fd0HdYLY+4bj1Uvf4X0+BQMuG8LtauLw4ABvxLoiLT6N0e0icvOPYaDBybRH0wDOnV6HqFhUyU/sbHP4/y55ejQ4Qm0aftghe/ExC8Qd+YthLe5DxERT1u9ZmOaYKDaJamFKZi5fmbFtkp1KSgoOA6nPM8q0MTDowMVv+1QYff08KcxKHQwtJTCJGc4UZyJE33ZMdAX+YyMjTh+bLo0bUD/HzFlylygpwbOAy74EudRWBCD0tJUSuPxgp//kCrLDGg9APNGzKN2f/LWl7NHR7IRX3LE05wyfqSjyrE6080tIJX4Px4Nq4CG3ku0lFJo4ILQDSv0f95FS1XxRFPc3zwaXgFneu8WUvN7d8NrLVYQnwPFe4k1d7f4nah+PloDgYAP6OHT/v3IeOM9PPlHHDLoR2tnUKSI+XfJYIDm0EHg1VdRQpVhd57OqAJNWnu7oVeYH9CFOmG+8w4Vz3esvyjlnwPpvbuMi/krcXeLe5cHK9DsoIloLSz+ES2DBRQRkSa3vjQN3/97VkrPmRCkwYH1u6XoEjFEis6q5VsJlGRhQGQoCnPypYKw5kgTR6tpci7qFHZ89TNCe3bE8Hsn4pfnP4GuoAiDHjqO4uI9aNPhE3j7jrT6N0fkA+7cPZHqmByFf8ANaN3mlQofeTkbkJzwRI2Cr+kpi5CR+ilahsxAUCt6YtBEh3jq4eZahlnrZ+FcwbmKqzAYMlBSFFUDmri6taf6Me0r7FydXLHo2o/gow0kcGX5D6CoaeJN+cCZeeVPh9NTPkJxwUYCT0/h9jvegLFLFpwGeNMfVG8JYBUW7Kaw1wtPNp1dguDu0bOK2iLiZRJFvOhLGZxUvw25pom6v5hc00Q9vbmmiXpai5W4EKy6enNNE3X1llvTpPKuxBd/ATQqD/EF1ocidxETgxJKrR/23japvsnqB4ZWaR/sqzHAec1qlK1aRS2Ms7DT11WqabKooAxhPm5wdnOFadEiFHv5ocTBHgpxTRNl722uaaKsnk3Vm8NBE5FGIwCId0IC9awtRkFkJO4f2YHaD5fnOorXfjl0DiseuET678+f/hQHOvZCDhV+EjVQOhiL0C87Cfe8dK/0uvjZtK/34Zlru0lUesMnPyG8Wzv0HN1fet3RoEn6qURs+XglWnZsg5EPTMKapxdQyoYThs3KQk7WT2gd/iL8Aydbfb/nZcxHcvJy+jIeifadf5BqZ5iH0ZCNk8dGSj/r2ms//W/5F/PUc28hK/0bap37JLXOvcvqNRvDBPp7T4Vdy6SUnJ2JO2tsqahwH5G5sguRJqG5FMlzSYUG5gldArrg7bFvI7/IQE9q6n9OUx2aiCeXJcXr8fWhJdixoBj6zsko7XZWOgsDaW/Qp9bYl7QHqmFTeTw94mn0CRqIUv1/RTwag8CNYA8MTdQ9BIYm6unN0EQ9rcVKDE3U1Zuhibp62wJN6tqhO6WyueqKkKdxw7O/RGFzTBoep4ehN/YLr5gigIsflSw5P/cFnNmwBYeDPLGBehr/qHWl7jk0nnoKugGDUeiA2XAMTZS9txmaKKtnU/XmcNDEfBCiTXABFXi95IZRVc5G1ClJik6o+LnojiOGKOxqbi8sCsOaC71Wnhyz+xii/j6A8VQY1tyS2NGgSU5yGja+uwz+YcEYeud1WP/6V/AK9MOgaSVS1IeI+BCRH9aM7MyVSEl6WZrSofMKuHtWjWIQP4+PvVWKQmkb8RlFnJSHWJ5PehE5mattBjXW7LGhbF0pwuTPM79j6eGldS5RmpoAlz9bQz80FS4RLWvACvPEqzpehXv63IsSXf2V3atDE61zEX6LehGLD9JZ/jK0AprUd83ijJydg6qYuGnd8CF19JEb8dJQmjY2vwxN1D0Rhibq6c3QRD2txUoMTdTVm6GJunorCU3Ezs2pO78dPY/5G6IxrGMg3pnUp8pFiRpvx0/Rg6IZM1Hipse/bk542skZ2ltugfHa65Cr9VBXBJVWY2iirNAMTZTVs6l6czhoItoNHyWwoafUGwFBRNcbUaNE1C0RQ8AUUcjVnH4jbDZTy2FR30QMf6q+LUCLmCeGACUxu8rbsoq0nMqviZ85GjQpzMzF7/MXS6Bk4M1jsfWTVRR1Eo4+U5wIfLxEqTU3UmrNS7LvdwFCBBARo74olbTzHyAzbTECg++lgqWPSfbJCU8hL+d3hLV7C77+5YV3m9JwdjYiqSAeczdZqMeSTbm06/TQXEoRNm3rz5ucOWgmhoaPpDSZusFJZWiipT2kFMTh4Z/KI6uqQBOK6NE6eVGR2dyqstLPvbwG1gpvugZ2xVtXviUr4qUpnZU9e2VoYo961s9laGK9ZrbOYGhiq3K2zWNoYptuts5iaGKrcrbNUxqamHeRSYXBx3/8jwRRNs+5FAKUmMffFIGyOyELk9xzMfSzt8t/3Lcv8OyzyKWoWUetH8TQxLZ7tK5ZDE2U1bOpenM4aGLrQQhoUlqiQ4v/WpZV9iPqmghgYo4uqfyao0GT0sJi/Pzcx3D1dEefCaOxd/kGtB3QDT3GeyExbga8fUagTcSnsmQ2mfSIi50CXXEMwsNuh08QtYCrYxTm78TZMw9QFEoPikb5QbIS6xXkbaU6KouojspoWWs2JiMX11KUUHtfY5mx3m3l5eZhxZJvMf6miWgdFmrxEgKpo01+Ud0pOmZokkepPFoXPR75fSbi036FqaykCjQx104pKT5BKTop5esSMHF37wRnl5A693F1x6txV++7qesA1zcRIjE0sXjLKmrA0ERROet1xtBEPa3FSgxN1NWboYm6ejcUNBFX8dD3+3EkORevT+yFSzu3rLiw2asOYW98FlZM7Yu+R3YAP/8s1TEppG48pQ7cNYmhibL3NkMTZfVsqt4Ymth5co4GTcqo0vaPT7xPUQZO6HHVUESt34HIMYPR+fKWiDs5mepzdEFE1zWyVDuX+Axys36mTjB9MOySNfVG5ZhMRsQcHSAVJu3cYyulhgQi4fQ9KCrYi3Ydv6I2vBfa4MpavBEYiS8cDTXqezpihiYl+lK8vfMt/HvuXyqkVkDpT1HwXNuP0nPOw9THIBWbNdePEboLG1Ec1vyz+vYuIl6GhA6ndsbyWyE3lBYX2y9DE3VPgKGJenozNFFPa4Ym6motVmNooq7mDQlNvt4dj8+2n8H1vUMx96ryDo/Hz+fhvm/3wYOK4/8+cwRaeTjBKTUFJYHBKDLVn+asrjLKr8bQRFlNGZooq2dT9cbQxM6TczRoIuT4ae5CGEr16DCkJ+L2RKH/jWPQfkg7qVirVuuHLj2J1lsYWRnfIjX5DfoC7ooOXX5Ah7DeFlOZzp55EIX5Oygd521KxxlHUSq3UHeZY3XWQbG0h+b6uoAmrpS7u+bYz/gu6rsqMpi+o4463amtZT/7YcfCqz9EsEc4SqhqfXMeDE3UPX2GJurpzdBEPa0ZmqirNUMT9fVuSGgSk5qPe77Zi2DqirP2ofK6eK9RnZN1VO9kysA2mHVZZzhT+3RqLIj8UmuaHquvkxIrMjRRQsULPhiaKKtnU/XG0MTOk3NEaLLuxc9QnFeA4M5tkRZ7FsOnTURoj444caQ/RYKUUoebvRSRUHfxLNERJuHU3ZKyoW1fg1+L6yHecCxplZn2FdLOvyd15xH1T06fGI9SXRw6Rv5CECDCzpNqPtN9vLQ4X5CAz/Z9WeOij75/AC0HtULIiDC7BWnp2RIzBs9AUTEcNi9YjkgMTeSopJwNQxPltLTkiaGJJYWUfZ3Tc5TV05I3jjSxpJCyr9sLTQT0qG88tvow0vJKMPuSIIS1DMBT62Il87cn9UZrv/JugKKboKkSM7HUjVBZBdTzxtBEWa0ZmiirZ1P1xtDEzpOzBALsdH9Rpm94cwnyU7Pg07IF8tOzceXjU6VuOqejx6G0NJEgxjoptaO2UVZWSGk8UyTYEdByKrULLi+CKgealFD6iKiB4uraBh27rUfs8TFSO9xO3TfBxaXVRdGiKS7q5+UMI3S1RoDodDqKFtJS+pNy9UjKjG6U2uP4T27quhcYmqj7W8LQRD29GZqop7VYiaGJunozNFFXb3uhSYC3C0xp6QB9jqltRKfkISGzAB8vegHXXHENIroPQytfN/QJ86/VXhPcEnllWjgiOGFoouy9zdBEWT2bqjeGJnaenCNCk00LvkdWwnk4u7nCoCvF9a9Mh5uXB0WP3IWiwv311hhJTniSOt6spxokg8huSYW6cqCJMD55bBTVycgiMPMrAZRbUWYsoHSgXfRF38fOk2o+06u3HG4+V35xrpShibq6MzRRT2+GJuppzdBEXa3FagxN1NXcXmgiQIBnYS40M2YARUU1Np9VVIooAidvt/PFZbmlGJxdgp6hfvD3qCUd+fbbYbh6HPKcyiNQHG0wNFH2RBmaKKtnU/XG0MTOk3NEaLLtsx+RGhMvKaN1dcGkN2ZJ/25uARza9nVKuRlfQzlzeo2T1lvqgOPqVt7mWQy50MQMXULCn6MWx/NpZhkiex+mkErHLtpl521YZTpDEyXVtOyLoYlljZS0YGiipJr1+2Joop7WYiWONFFXb4Ym6uptLzQRu/XUmuB27Ag0r7xSY/MFOgMOJufgLYImo7J1uLRAj8HtA2pe5KBBMD31FHINTg4bJcvQRNl7m6GJsno2VW8MTew8OUeEJru/WYfEQzGSMj7BAbh67j3Sv6edexeZ6UsQ3PpRBAZPq6KcuWWw+GFYu3eokOvVVV6XC01yMlfjfNKL8PEdg/y8TdTFxx2RvfbZeUrNazpDE3XPm6GJunozNFFPb4Ym6mnN0ERdrcVqDE3U1VwJaCJ27KsxwPmnH4FVq6pcwKGkHOSVGqRIEwFNhubq0CXYRyoOWzGCggBqOZxPTQr03HJY3RugCa/G0KQJH56CW2doYqeYjghN9q38E3G7j0rKtOrSDqMemiz9e1b6MqSeexMtgm5DSNi8CuWMhmyp042+9JwEUwRUqT7kQpNS3VkqAHsNpeP4wmjMg9Y5AF16bLPzlJrXdIYm6p43QxN19WZoop7eDE3U05qhibpaMzRRX2+loImTkwZ+lHGjefMNYO9e6UIKqYvfwcRslFGh18rQJNDLDd1CLqR3m956CyXh7VDMLYfVvwGa8IoMTZrw4Sm4dYYmdorpiNDk8C9bcXJLeXRH+8E9MWjKVdK/5+X8SSk6j8HH7wqEt/+gQrmk+NnIz90EL5/haBvxWa2KyoUmYvLpE9dRIdl4yY+Lazg6ddtg5yk1r+kMTdQ9b4Ym6urN0EQ9vRmaqKc1QxN1tWZoor7eSkET6bOhsxN8jCXALEofz8iAgYrR747LrAFNWvm4o3Owd/nF3n8/9JdeJkWZOPrg9BxlT5ihibJ6NlVvDE3sPDlHhCbHN+7GsfU7JGW6jx2KHlcPk/69uPAQ4k/dAQ/PXmjfebn0s4zUT5Gesoi6sQTQz34gyNG6VkWtgSYpSa8gO/MHyY+bexdEdF1j5yk1r+kMTdQ9b4Ym6urN0EQ9vRmaqKe1WIlrmqirN6fnqKu3ktBE7NzDVQv3uFhoqD6JGNEp+Ugv0lVEmozM10tRJn6iEOzo0TA98CByQB14mkGzP4Ymyt7bDE2U1bOpemNoYufJOSI0id1+EId+2iwpM+DmKxFxSW/p3/X68zh1/Eo4uwSjc/fNKMjbgsS4mdJr4e0XUgTK5XWqaQ00MUe0SH8Uvfqifadv7Tyl5jWdoYm6583QRF29GZqopzdDE/W0ZmiirtZiNYYm6mquNDQRu/eh+iYuG/8AlpR3a0zMLcF0bydcXWjA3e5u8CKwgnbUlOCDD5CnK3PI9sK1nSJDE2XvbYYmyurZVL0xNLHz5BwRmsTvPYa9y8tTYkY+MAkhkR3+U6kM0YfLAUrn7hsRd/JWGAwZCGo1HS1DpterpDXQpKhwL7U3Li8+K4YlIGPnETrcdIYm6h4pQxN19WZoop7eDE3U01qsxJEm6urN0ERdvRsCmmiohomob+L00SJgyxYY6JJuMJZiqpMWN//XddH04YcobtESJRpndS/4Iq7G0ERZ8RmaKKtnU/XG0MTOk3NEaHL0t+04selfSZmhd49HeO8u0r8bjfkUaTKGWrQVURpOGBV+TaYuN5chvMOHFlWUC02kNaLHooz+t/Jo13EJPL0HWVyHDSilyUULbw8tMvNKWQ4VFGBoooLIlZZgaKKe3gxN1NOaoYm6WovVGJqoq3lDQBNxBc5aDXzdnIA5c1CWkIB3ygwYpXHCJfSP+FlpvwEocPZQ92Iv8moMTZQ9AIYmyurZVL0xNLHz5BwNmhz7YyeO/7GriipXPj4VPiEeOHv6HpQUn6h4TUPFtDpRxImzc6BFFeVCk/zczUiKp8Je1YacaBaLm2gmBgxN1D1ohibq6s3QRD29GZqopzVDE3W1Zmiivt4NBU3ElbhTGo5H2jloZsy4cGHXXouyW29DjqZSy2H1L/uirMjQRFnZGZooq2dT9cbQxM6TczRosvaZRdAX66qoEtazEyLH50nthqsPuREg9kKTgJZT0Sr0aTtPq3lMZ2ii7jkzNFFXb4Ym6unN0EQ9rRmaqKs1QxP19W5IaCL9/lD2jeu+PdC8/TbQowfw6qvILSmDkTrrNLfB0ETZE2dooqyeTdUbQxM7T86RoImAJQKaVB/+YcHofes5ZKUvq/FaaJtX4Rcw0aKKcqGJcBR3cnKViBYnrQ8EnHH3iLS4Dhtweo7a9wBDE3UVZ2iint4MTdTTmqGJulozNFFf74aGJuKK/JwM0P6wAqYJE1Dk7A6dExU8aYaDoYmyh87QRFk9m6o3hiZ2npwjQRMhxcZ3lyEnOa2KKt2vGoqOowIkmFF5CJgR0WW1VN/E0rAGmoi6Jqnn3kBRwV7Jt4gwYWBiSeELr3OkiXytlLBkaKKEivJ9MDSRr5W9lgxN7FXQuvlcCNY6vey15pom9ipo3Xw1oIl4z/LzdKYHb6UoMlKV2GY6GJooe/AMTZTVs6l6Y2hi58k5GjQpzMrD1o9/gPhfMVp2bIPh906Ai4eblJ5jjjYRwCSEYIacKBPhxxpoYueRNPvpDE3UvQUYmqirN0MT9fRmaKKe1mIlhibq6s3QRF291YAm4ooEMNDpy9S9uEa2GkMTZQ+EoYmyejZVbwxN7Dw5R4MmZjnSTyVKoESk5lQeIgpER8Vg3ShVRkvgRO5gaCJXKfvtGJrYr6E1HhiaWKOW/bYMTezXUK4HhiZylVLGjqGJMjrK9cLQRK5SytipBU2U2W3T9sLQRNnzY2iirJ5N1RtDEztPzlGhiZ2y1JjO0ERpRev2x9BEPa3FSgxN1NWboYl6ejM0UU9rsRJDE3X1Zmiirt4MTdTTm6GJslozNFFWz6bqjaGJnSfH0ESegAxN5OmkhBVDEyVUlO+DoYl8rZSwZGiihIryfDA0kaeTUlYMTZRSUp4fhibydFLKiqGJUkpa9sPQxLJG1lgwNLFGLce1ZWhi59kyNJEnIEMTeTopYcXQRAkV5ftgaCJfKyUsGZoooaI8HwxN5OmklBVDE6WUlOeHoYk8nZSyYmiilJKW/TA0sayRNRYMTaxRy3FtGZrYebYMTeQJyNBEnk5KWDE0UUJF+T4YmsjXSglLhiZKqCjPB0MTeTopZcXQRCkl5flhaCJPJ6WsGJoopaRlPwxNLGtkjQVDE2vUclxbhiZ2ni1DPxZmuwAAFgxJREFUE3kCMjSRp5MSVgxNlFBRvg+GJvK1UsKSoYkSKsrzwdBEnk5KWTE0UUpJeX4YmsjTSSkrhiZKKWnZD0MTyxpZY8HQxBq1HNe2yUKT7Ow9KC1NQ6tW46ucjtFYiJTUX5GdvRtubsEIChyDFi2GVNhUf93Xp1cNH5UdinUyMjdVWcPTMwJhoVOknzE0kffLwdBEnk5KWDE0UUJF+T4YmsjXSglLhiZKqCjPB0MTeTopZcXQRCkl5flhaCJPJ6WsGJoopaRlPwxNLGtkjQVDE2vUclzbJgdNiorikJGxmf7ZBH+CIREdZlc5neRzKyRgIn6u06Uh9tRr6NP7CwmgiHHixDOQoEfYFAhfZ+IWEAC5FUFBl9d6ysJfft5RAivXV7zu7OwFH5+eDE2s+L1gaGKFWHaaMjSxU0ArpzM0sVIwO80ZmtgpoBXTGZpYIZYCpgxNFBDRChcMTawQSwFThiYKiCjTBUMTmULJNGNoIlMoBzdrctBEgBABO7JzdktHUx2aHD5yP9q2ua8iuuTs2S9hMBZU2P27dwJ69viAwEkHab6AIjpdag0/5nO39DpHmsj7DWFoIk8nJawYmiihonwfDE3ka6WEJUMTJVSU54OhiTydlLJiaKKUkvL8MDSRp5NSVgxNlFLSsh+GJpY1ssaCoYk1ajmubZODJvXBDAFUBDSpHFlijkqJjJwvTRUQJS//KEIockSk7YhIE/Hv5siR6kdtjlwRNiJapbpdeo7Oce8OBa+spb8bWCsFBa3HlYuLEzzdtMgt0KuzYDNfxdvDGcYyE4p1xmauhDqXH+DritzCUhhZ7gYX3MkJaOHtisy80gZfixcAPOh9W4CqgmIDy6GCAr5eLigpNaJUX6bCarxEkJ8bMvLoM7OJtWhoBVxcNPQ50Jk/ByoktPgOw4MVcChoIiJQoo7NwYD+30Or9ZJOV9QkOZu4WAIpYoiaJtGUouNMrwv72lJ8Kt8WAroIyCJG6X9RLgLAmCNV9Eb+Yyvn18hF6wTWSo5S9ts4QQPxZcdAX+R5NLwC4kuOiaQuE/8fjwZXwJlubgGpxP/xaFgFNPReotVqKFqT/841rNLl3p00pLiGPqfwe7cacsOZ3ruF1PzerYrcEJ8DxXsJv3M3vN7lnwPpvbuM37uVUFvcuzxYAYeCJgKI7D9wWxVoIqBHSuovUkqOGAKqiBomIsrEXNNEAJDqaT513RqiRooYnTvNk/6X03Pk/RJxeo48nZSw4vQcJVSU74PTc+RrpYQlp+cooaI8H5yeI08npaw4PUcpJeX54fQceTopZcXpOUopadkPp+dY1sgaC07PsUYtx7V1KGgijknULKmcnpNKnXREpIiAHOZIlMGDfq440eqRKJaOWvgThWbN6T4MTSwpVv46QxN5OilhxdBECRXl+2BoIl8rJSwZmiihojwfDE3k6aSUFUMTpZSU54ehiTydlLJiaKKUkpb9MDSxrJE1FgxNrFHLcW0dDpqIGiVubq2klsAi8iQ29jXqjDNG6o5jjkQRUSXmbjnCXvzcHDkiIIooMmuOPBH/bW5ZbPbn49uLWw5b+TvB0MRKwewwZ2hih3g2TGVoYoNodkxhaGKHeFZOZWhipWB2mjM0sVNAK6czNLFSMDvNGZrYKaAV0xmaWCGWDFOGJjJEagYmTQ6aiHSb5HPLYTQUUm5koVSctXK3HHObYQE4hI0AJqK9sLnGSX5+FBLOLpZqmphHB4Io5pbEovBrasov6E91UcQQ6TgCnIjXhT+RytO587wKfxxpIu+3hKGJPJ2UsGJoooSK8n0wNJGvlRKWDE2UUFGeD4Ym8nRSyoqhiVJKyvPD0ESeTkpZMTRRSknLfhiaWNbIGguGJtao5bi2TQ6ayD0KAU+cnb0q4Eb1eQKqiGGGKfX5FbbCnwAn1e0Zmsg7EYYm8nRSwoqhiRIqyvfB0ES+VkpYMjRRQkV5PhiayNNJKSuGJkopKc8PQxN5OillxdBEKSUt+2FoYlkjaywYmlijluPaOiw0UevIGJrIU5qhiTydlLBiaKKEivJ9MDSRr5USlgxNlFBRng+GJvJ0UsqKoYlSSsrzw9BEnk5KWTE0UUpJy34YmljWyBoLhibWqOW4tgxN7DxbhibyBGRoIk8nJawYmiihonwfDE3ka6WEJUMTJVSU54OhiTydlLJiaKKUkvL8MDSRp5NSVgxNlFLSsh+GJpY1ssaCoYk1ajmuLUMTO8+WoYk8ARmayNNJCSuGJkqoKN8HQxP5WilhydBECRXl+WBoIk8npawYmiilpDw/DE3k6aSUFUMTpZS07IehiWWNrLFgaGKNWo5ry9DEzrNlaCJPQIYm8nRSwoqhiRIqyvfB0ES+VkpYMjRRQkV5PhiayNNJKSuGJkopKc8PQxN5OillxdBEKSUt+2FoYlkjaywYmlijluPaMjSx82wZmsgTkKGJPJ2UsGJoooSK8n0wNJGvlRKWDE2UUFGeD4Ym8nRSyoqhiVJKyvPD0ESeTkpZMTRRSknLfhiaWNbIGguGJtao5bi2DE3sPFuGJvIEZGgiTyclrBiaKKGifB8MTeRrpYQlQxMlVJTng6GJPJ2UsmJoopSS8vwwNJGnk1JWDE2UUtKyH4YmljWyxoKhiTVqOa4tQxPHPVu+MlaAFWAFWAFWgBVgBVgBVoAVYAVYAVaAFbBDAYYmdojHU1kBVoAVYAVYAVaAFWAFWAFWgBVgBVgBVsBxFWBo4rhny1fGCrACrAArwAqwAqwAK8AKsAKsACvACrACdijA0MQO8XgqK8AKsAKsACvACrACrAArwAqwAqwAK8AKOK4CDE0c92zx0NPvYfueIxVXGNmpLX5c/HKVK77xvudx4tRZ6WfVX5czX8z79JtfsHztJmxds0CWmvWt+cI7S7B63dYafo5tWVqv7/p8iomXTpqNjKzcWq9T1qYtGMnRyhG0tnSd1c+vtnuuueptvu4eo++ukOCReyfhoTuvt+veFpOt9WntGVg6d+Gvsd3ftuht73Vaq2tt9vbuQc58Jd+3j8XE4eYHX6r10u193zY7FX9jPvxqDd585kFcd+VQJWSu8CFHr8Z0b9ujt6Vzr/x3UthaOj9bDqKp6W2+Rlu0sfS5xNJ52KJv9TnNSe/69LT1s6U1Z9BctJZznQ39mduac2FbVkApBRiaKKVkI/Qj3rQqgwzx36OH9cVLT9wj7Va88aVn5lSAFPEHvmWgPz598zHpdUvz123chafnfybZBgX4yYImltYUf9iiTsTVgDv/b+/+dWU3iwCA5xUoUKhAt0CAQLRUiII2BUgU0NJRUFLzAFSIAtGkjmh4hUiRIqVDUIAEEiIViIJXQN8RPjjG6/n8ebx3PftLc3PPtWc9v5n1n1mvzxZvFHOZd/v71778pdc8M0oXWfVs41atHsU6yrP10Hwwt+ypDOue3nxE7+lip2dQMjlFeYzEHKlBVPdoO6P1z+jvEZtoO6M8R2yX6xzdhmj9M6yXObT9+D//9e/NfWyv5TSUb0PvM4YmkVe0ndH6j+IdbcdyX73MO6O3r7rvHrGJ+iaqB+//nYv29GLkOXJuubcG0b4g6olo/SjHte2NXnOkt6PtvMc5997aWJ5AhoChSYbiRWIsDxptx/azn/zw9ZO7tkP+xa8/uDn8uHXQ2XOnSfSaIwe2rZjTQWb+idnaz7JLWNV67eJoa8g1Us+RWlzBu528vPv5z70OLXvyjN4vIzF7Xjdapqp31N9RPSK3kX+/gvUyr3bn029/8/N3vv6VNzdT7rGcH1tazDOGJtk1v8dxcsR7WufW8brV40ff++7rnW97jusjfT2tc4X+HrHp6e9mcC/n6t5Rf9/rXGT+Xqja21v7zLd1zn1kH2RdAr0Chia9UgWWaxPlb3z1zctF2/Qp7PzEdu1n87Tn689/3nvQ73nN5S2U0R0sUcy/ffqPl7th5kOTKM+MUle0XnO51RPTsmfc1RNtR9QTaxdy9+jtdtHX+nn6mljLY+vCsiePvTEzervFuEJ/Z9gczTPD++g23KO3lxcK0V0mPb29PK7ca2hS0bvneD0de3/w3ndezhGifXtGb19lX7LXpqe/o4v8LN9lnCv0917vPf09LRudW2b4V7eejOZ5rg1N7nHOnVEvMQhEAoYmkVCRf58OQtPwYM9BvREs1+85SC3p9r7mdELV/lw+i2WK3ROznWxPJ4JtvbN34FWtl/Xc6onp+6xnPdNkeZHWnoPzyL3dtrc992H+SfmW360+nffuSMyM3dkV+jvD5miez2K9HEL23GUS7bc/+uSP//ecrHsMTY7W/G0cJ3u8e47XU03mg90znmlytX136++9NlF/z98zvR86PdP+ZK93T38v/dqF/ta55VHvq+xLjljfuja49zn30VpZn0CvgKFJr9SFl5seohfdVXJrmLC2fnSQWj6s7tvf+uY7P/3x918uHKPtmMeeT61HY956cN4ZJ4SVradn3bT6RD0x1bDnu8hH3lpX8Z4u4pd3lkwXgm+++IXPPEyz5/0Sxcx+YOatuu+9QGgP9Lx1h83aBcTI+z6yWfOO+ntPnkd6elr3Kr09vwBs7/eXPvnvc7Ha/4/U71fv/+4zDzGfe+55JtCeOlT2Xvb22oPbl0OpaKi7x3Zt2St5b9mM9PfbGJpU9u7p72UPnvk17WeyXjue3/Oc++h+yPoE9ggYmuzRuuCy0d0A0TNNek6c9nxS0vs934m658C2N2bPQwpHSv0M1s2lpyf21G/EOtqOnp7oySOzt9c+KY8+PY/yGInJe/s3sBx9H4/6ztc7ug337u35cCR6lsmUZ9TbS8fovXLE/Rm858O45dDk3gPBK3mP2vT2955jzGiPP4P3Vn+vufWcW454P4t1zzFm8jvrnHukPtYhcETA0OSI3oOvG91+2PNU7Zbira/G7D1IteWj11x7Knf0m26imPMyTQfK3hP73hI/i3WU57J+0fK9vsvlorhRT0Trn9HbbZv+9Je/vz5ouZ1IfPjx7zd/61SUx0jMEfPIK9rOaP1H8Y62M8pzxLZCb0/79vbn/FPfLY+9lmcNTY7WPFr/jN4e8Y62o/m2O9ym+vXsn0b6PfKK+iJaP8pzbZuj1xyxiWKObCfvX4YEWw86Xv6GwujcMnyxxQJRb0Y9Ea0/0jPRa470du92tu0965x7b20sTyBDwNAkQ/EBY9y6Pa5t6vy5Cm3n9+e/fvqSwfz5Ez3rz3/92UQwf3bILZZbr9mWn/9b+/v8JG6LeSvmdKvktH7213J6rJa5XdG6J89l/c54pknPdjyid9umdgLz0Sd/eGnF3gfRbfX2aMw9u6xn8T6a5x7TW8se3Yae9c/Yb/d+XW+Zd9Tb8+XPGJr0eD3ivmTEu6fuzXj6r3f/tKfvr+rdchyx2ervnnrssV1b9pm8I8/Rc8veGjyLdU+eZ59z99bEcgSyBQxNskXFI0CAAAECBAgQIECAAAECBEoIGJqUKKMkCBAgQIAAAQIECBAgQIAAgWwBQ5NsUfEIECBAgAABAgQIECBAgACBEgKGJiXKKAkCBAgQIECAAAECBAgQIEAgW8DQJFtUPAIECBAgQIAAAQIECBAgQKCEgKFJiTJKggABAgQIECBAgAABAgQIEMgWMDTJFhWPAAECBAgQIECAAAECBAgQKCFgaFKijJIgQIAAAQIECBAgQIAAAQIEsgUMTbJFxSNAgAABAgQIECBAgAABAgRKCBialCijJAgQIECAAAECBAgQIECAAIFsAUOTbFHxCBAgQIAAAQIECBAgQIAAgRIChiYlyigJAgQIECBAgAABAgQIECBAIFvA0CRbVDwCBAgQIECAAAECBAgQIECghIChSYkySoIAAQIECBAgQIAAAQIECBDIFjA0yRYVjwABAgQIECBAgAABAgQIECghYGhSooySIECAAAECBAgQIECAAAECBLIFDE2yRcUjQIAAAQIECBAgQIAAAQIESggYmpQooyQIECBAgAABAgQIECBAgACBbAFDk2xR8QgQIECAAAECBAgQIECAAIESAoYmJcooCQIECBAgQIAAAQIECBAgQCBbwNAkW1Q8AgQIECBAgAABAgQIECBAoISAoUmJMkqCAAECBAgQIECAAAECBAgQyBYwNMkWFY8AAQIECBAgQIAAAQIECBAoIWBoUqKMkiBAgAABAgQIECBAgAABAgSyBQxNskXFI0CAAAECBAgQIECAAAECBEoIGJqUKKMkCBAgQIAAAQIECBAgQIAAgWwBQ5NsUfEIECBAgAABAgQIECBAgACBEgKGJiXKKAkCBAgQIECAAAECBAgQIEAgW8DQJFtUPAIECBAgQIAAAQIECBAgQKCEgKFJiTJKggABAgQIECBAgAABAgQIEMgWMDTJFhWPAAECBAgQIECAAAECBAgQKCFgaFKijJIgQIAAAQIECBAgQIAAAQIEsgUMTbJFxSNAgAABAgQIECBAgAABAgRKCBialCijJAgQIECAAAECBAgQIECAAIFsAUOTbFHxCBAgQIAAAQIECBAgQIAAgRIChiYlyigJAgQIECBAgAABAgQIECBAIFvA0CRbVDwCBAgQIECAAAECBAgQIECghIChSYkySoIAAQIECBAgQIAAAQIECBDIFjA0yRYVjwABAgQIECBAgAABAgQIECghYGhSooySIECAAAECBAgQIECAAAECBLIFDE2yRcUjQIAAAQIECBAgQIAAAQIESggYmpQooyQIECBAgAABAgQIECBAgACBbAFDk2xR8QgQIECAAAECBAgQIECAAIESAoYmJcooCQIECBAgQIAAAQIECBAgQCBbwNAkW1Q8AgQIECBAgAABAgQIECBAoISAoUmJMkqCAAECBAgQIECAAAECBAgQyBYwNMkWFY8AAQIECBAgQIAAAQIECBAoIWBoUqKMkiBAgAABAgQIECBAgAABAgSyBQxNskXFI0CAAAECBAgQIECAAAECBEoIGJqUKKMkCBAgQIAAAQIECBAgQIAAgWwBQ5NsUfEIECBAgAABAgQIECBAgACBEgKGJiXKKAkCBAgQIECAAAECBAgQIEAgW8DQJFtUPAIECBAgQIAAAQIECBAgQKCEgKFJiTJKggABAgQIECBAgAABAgQIEMgWMDTJFhWPAAECBAgQIECAAAECBAgQKCFgaFKijJIgQIAAAQIECBAgQIAAAQIEsgUMTbJFxSNAgAABAgQIECBAgAABAgRKCBialCijJAgQIECAAAECBAgQIECAAIFsAUOTbFHxCBAgQIAAAQIECBAgQIAAgRIChiYlyigJAgQIECBAgAABAgQIECBAIFvA0CRbVDwCBAgQIECAAAECBAgQIECghIChSYkySoIAAQIECBAgQIAAAQIECBDIFjA0yRYVjwABAgQIECBAgAABAgQIECghYGhSooySIECAAAECBAgQIECAAAECBLIFDE2yRcUjQIAAAQIECBAgQIAAAQIESggYmpQooyQIECBAgAABAgQIECBAgACBbAFDk2xR8QgQIECAAAECBAgQIECAAIESAv8B0SNT3O5bJdYAAAAASUVORK5CYII="
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import gymnasium as gym\n",
"from gym_mtsim import (\n",
" Timeframe, SymbolInfo,\n",
" MtSimulator, OrderType, Order, SymbolNotFound, OrderNotFound,\n",
" MtEnv,\n",
" FOREX_DATA_PATH, STOCKS_DATA_PATH, CRYPTO_DATA_PATH, MIXED_DATA_PATH,\n",
")\n",
"from stable_baselines3 import A2C\n",
"from stable_baselines3.common.vec_env import DummyVecEnv\n",
"import random\n",
"import numpy as np\n",
"import torch\n",
"\n",
"env_name = 'forex-hedge-v0'\n",
"\n",
"# reproduce training and test\n",
"seed = 2024\n",
"random.seed(seed)\n",
"np.random.seed(seed)\n",
"torch.manual_seed(seed)\n",
"\n",
"env = gym.make(env_name)\n",
"model = A2C('MultiInputPolicy', env, verbose=0)\n",
"model.learn(total_timesteps=1000)\n",
"\n",
"observation, info = env.reset(seed=seed)\n",
"\n",
"while True:\n",
" action, _states = model.predict(observation)\n",
" observation, reward, terminated, truncated, info = env.step(action)\n",
" done = terminated or truncated\n",
"\n",
" if done:\n",
" break\n",
"\n",
"env.unwrapped.render('advanced_figure', time_format='%Y-%m-%d')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## References\n",
"\n",
"* [https://www.mql5.com/en/docs/python_metatrader5](https://www.mql5.com/en/docs/python_metatrader5)\n",
"* [https://www.metatrader5.com/en/terminal/help/trading_advanced/margin_forex](https://www.metatrader5.com/en/terminal/help/trading_advanced/margin_forex)\n",
"* [https://admiralmarkets.com/education/articles/forex-basics/margin-in-forex-trading-margin-level-vs-margin-call](https://admiralmarkets.com/education/articles/forex-basics/margin-in-forex-trading-margin-level-vs-margin-call)\n",
"* [https://www.investopedia.com/articles/forex/12/calculating-profits-and-losses-of-forex-trades.asp](https://www.investopedia.com/articles/forex/12/calculating-profits-and-losses-of-forex-trades.asp)\n"
]
}
],
"metadata": {
"interpreter": {
"hash": "0abee77d591a174194b91b850e12395de882ac6d36de3e6e63e8904e4cff1216"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}