Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/amirjahantab/probability_distribution_python
common Probability Distributions
https://github.com/amirjahantab/probability_distribution_python
mathematics normal-distribution probability probability-distribution
Last synced: about 1 month ago
JSON representation
common Probability Distributions
- Host: GitHub
- URL: https://github.com/amirjahantab/probability_distribution_python
- Owner: amirjahantab
- Created: 2024-06-06T14:23:36.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-06-23T09:27:55.000Z (8 months ago)
- Last Synced: 2024-11-12T18:46:00.432Z (3 months ago)
- Topics: mathematics, normal-distribution, probability, probability-distribution
- Language: Jupyter Notebook
- Homepage:
- Size: 85.9 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Probability Distributions
## Discrete Uniform Distribution
The discrete uniform distribution assigns equal probability to all integers between two specified values $a$ and $b$.
**Formula:**
$\ P(X=x) = \frac{1}{b-a+1} \$
## Bernoulli Distribution
The Bernoulli distribution is a discrete distribution with only two possible outcomes, usually coded as 0 and 1. It is parameterized by $p$, the probability of success (1).
**Formula:**
$\ P(X=x) = \$
$\ p \$
$\ if \$
$\ n = 1 \$
$\ 1-p \$
$\ if \$
$\ n = 0 \$## Binomial Distribution
The binomial distribution represents the number of successes in a fixed number of independent Bernoulli trials.
**Formula:**
$\ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \$
## Poisson Distribution
The Poisson distribution models the number of events occurring within a fixed interval of time or space.
**Formula:**
$\ P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \$
## Geometric Distribution
The geometric distribution models the number of trials until the first success in a sequence of independent Bernoulli trials.
**Formula:**
$\ P(X=k) = (1-p)^{k-1} p \$
## Continuous Uniform Distribution
The continuous uniform distribution assigns equal probability to all points in the interval $[a, b]$.
**Formula:**
$\ f(x) = \frac{1}{b-a} \$
## Normal Distribution
The normal distribution is a continuous distribution characterized by its mean $\mu$ and standard deviation $\sigma$.
**Formula:**
$\ f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \$
## Exponential Distribution
The exponential distribution models the time between events in a Poisson process.
**Formula:**
$\ f(x; \lambda) = \lambda e^{-\lambda x} \$
## Chi-Square (χ²) Distribution
The chi-square distribution is a special case of the gamma distribution, often used in hypothesis testing.
**Formula:**
$\ f(x; k) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{(k/2)-1} e^{-x/2} \$
## Gamma Distribution
The gamma distribution generalizes the exponential distribution with shape parameter $k$ and scale parameter $\theta$.
**Formula:**
$\ f(x; k, \theta) = \frac{x^{k-1} e^{-x/\theta}}{\theta^k \Gamma(k)} \$