Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/amirziai/flatten
Flatten JSON in Python
https://github.com/amirziai/flatten
flattened-objects flattens json pandas python unflatten
Last synced: 3 months ago
JSON representation
Flatten JSON in Python
- Host: GitHub
- URL: https://github.com/amirziai/flatten
- Owner: amirziai
- License: mit
- Created: 2016-04-05T20:16:25.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2023-11-01T03:10:14.000Z (about 1 year ago)
- Last Synced: 2024-09-08T02:06:43.395Z (5 months ago)
- Topics: flattened-objects, flattens, json, pandas, python, unflatten
- Language: Python
- Homepage: https://pypi.python.org/pypi/flatten_json
- Size: 133 KB
- Stars: 539
- Watchers: 10
- Forks: 98
- Open Issues: 41
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![Build Status](https://travis-ci.org/amirziai/flatten.svg?branch=master)](https://travis-ci.org/amirziai/flatten) [![PyPI version](https://badge.fury.io/py/flatten-json.svg)](https://badge.fury.io/py/flatten-json) [![Codacy Badge](https://api.codacy.com/project/badge/Coverage/7ae779ec4e99462f907c5afecfd5de48)](https://www.codacy.com/app/amirziai/flatten?utm_source=github.com&utm_medium=referral&utm_content=amirziai/flatten&utm_campaign=Badge_Coverage)
# flatten_json
Flattens JSON objects in Python. ```flatten_json``` flattens the hierarchy in your object which can be useful if you want to force your objects into a table.## Installation
```bash
pip install flatten_json
```## flatten
### Usage
Let's say you have the following object:
```python
dic = {
"a": 1,
"b": 2,
"c": [{"d": [2, 3, 4], "e": [{"f": 1, "g": 2}]}]
}
```
which you want to flatten. Just apply ```flatten```:
```python
from flatten_json import flatten
flatten(dic)
```Results:
```python
{'a': 1,
'b': 2,
'c_0_d_0': 2,
'c_0_d_1': 3,
'c_0_d_2': 4,
'c_0_e_0_f': 1,
'c_0_e_0_g': 2}
```### Usage with Pandas
For the following object:
```python
dic = [
{"a": 1, "b": 2, "c": {"d": 3, "e": 4}},
{"a": 0.5, "c": {"d": 3.2}},
{"a": 0.8, "b": 1.8},
]
```
We can apply `flatten` to each element in the array and then use pandas to capture the output as a dataframe:
```python
dic_flattened = [flatten(d) for d in dic]
```
which creates an array of flattened objects:
```python
[{'a': 1, 'b': 2, 'c_d': 3, 'c_e': 4},
{'a': 0.5, 'c_d': 3.2},
{'a': 0.8, 'b': 1.8}]
```
Finally you can use ```pd.DataFrame``` to capture the flattened array:
```python
import pandas as pd
df = pd.DataFrame(dic_flattened)
```
The final result as a Pandas dataframe:
```
a b c_d c_e
0 1 2 3 4
1 0.5 NaN 3.2 NaN
2 0.8 1.8 NaN NaN
```### Custom separator
By default `_` is used to separate nested element. You can change this by passing the desired character:
```python
flatten({"a": [1]}, '|')
```
returns:
```python
{'a|0': 1}
```### Ignore root keys
By default `flatten` goes through all the keys in the object. If you are not interested in output from a set of keys you can pass this set as an argument to `root_keys_to_ignore`:
```python
dic = {
'a': {'a': [1, 2, 3]},
'b': {'b': 'foo', 'c': 'bar'},
'c': {'c': [{'foo': 5, 'bar': 6, 'baz': [1, 2, 3]}]}
}
flatten(dic, root_keys_to_ignore={'b', 'c'})
```
returns:
```python
{
'a_a_0': 1,
'a_a_1': 2,
'a_a_2': 3
}
```
This feature can prevent unnecessary processing which is a concern with deeply nested objects.## unflatten
Reverses the flattening process. Example usage:
```python
from flatten_json import unflattendic = {
'a': 1,
'b_a': 2,
'b_b': 3,
'c_a_b': 5
}
unflatten(dic)
```
returns:
```python
{
'a': 1,
'b': {'a': 2, 'b': 3},
'c': {'a': {'b': 5}}
}
```### Unflatten with lists
`flatten` encodes key for list values with integer indices which makes it ambiguous for reversing the process. Consider this flattened dictionary:
```python
a = {'a': 1, 'b_0': 5}
```Both `{'a': 1, 'b': [5]}` and `{'a': 1, 'b': {0: 5}}` are legitimate answers.
Calling `unflatten_list` the dictionary is first unflattened and then in a post-processing step the function looks for a list pattern (zero-indexed consecutive integer keys) and transforms the matched values into a list.
Here's an example:
```python
from flatten_json import unflatten_list
dic = {
'a': 1,
'b_0': 1,
'b_1': 2,
'c_a': 'a',
'c_b_0': 1,
'c_b_1': 2,
'c_b_2': 3
}
unflatten_list(dic)
```
returns:
```python
{
'a': 1,
'b': [1, 2],
'c': {'a': 'a', 'b': [1, 2, 3]}
}
```## Command line invocation
```bash
>>> echo '{"a": {"b": 1}}' | flatten_json
{"a_b": 1}>>> echo '{"a": {"b": 1}}' > test.json
>>> cat test.json | flatten_json
{"a_b": 1}
```