Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/amitness/learning
A log of things I'm learning
https://github.com/amitness/learning
deep-learning generative-ai learning-resources llms machine-learning nlp python
Last synced: 4 days ago
JSON representation
A log of things I'm learning
- Host: GitHub
- URL: https://github.com/amitness/learning
- Owner: amitness
- License: mit
- Created: 2017-11-26T17:37:44.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2024-12-04T15:44:27.000Z (about 1 month ago)
- Last Synced: 2024-12-31T08:04:23.041Z (11 days ago)
- Topics: deep-learning, generative-ai, learning-resources, llms, machine-learning, nlp, python
- Homepage: https://twitter.com/amitness
- Size: 972 KB
- Stars: 6,385
- Watchers: 199
- Forks: 849
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- my-awesome - amitness/learning - learning,generative-ai,learning-resources,llms,machine-learning,nlp,python pushed_at:2025-01 star:6.4k fork:0.8k A log of things I'm learning (Others)
README
# learning
A running log of things I'm learning to build strong core software engineering skills while also expanding my knowledge of [adjacent technologies](http://www.effectiveengineer.com/blog/master-adjacent-disciplines) a little bit [everyday](https://jamesclear.com/continuous-improvement).
**Updated**: Once a month | **Current** **Focus**: Generative AI
## Core Skills
> Generic skills that are transferrable to any sort of software work I do
### Python Programming
|Resource|Progress|
|---|---|
|[Datacamp: Writing Efficient Python Code](https://www.datacamp.com/courses/writing-efficient-python-code)|✅|
|[Datacamp: Writing Functions in Python](https://www.datacamp.com/courses/writing-functions-in-python)|✅|
|[Datacamp: Object-Oriented Programming in Python](https://www.datacamp.com/courses/object-oriented-programming-in-python)|✅|
|[Datacamp: Intermediate Object-Oriented Programming in Python](https://www.datacamp.com/courses/intermediate-object-oriented-programming-in-python)|✅|
|[Datacamp: Importing Data in Python (Part 1)](https://www.datacamp.com/courses/importing-data-in-python-part-1)|✅|
|[Datacamp: Importing Data in Python (Part 2)](https://www.datacamp.com/courses/importing-data-in-python-part-2)|✅|
|[Datacamp: Intermediate Python for Data Science](https://www.datacamp.com/courses/intermediate-python-for-data-science)|✅|
|[Datacamp: Python Data Science Toolbox (Part 1)](https://www.datacamp.com/courses/python-data-science-toolbox-part-1)|✅|
|[Datacamp: Python Data Science Toolbox (Part 2)](https://www.datacamp.com/courses/python-data-science-toolbox-part-2)|✅|
|[Datacamp: Developing Python Packages](https://www.datacamp.com/courses/developing-python-packages)|✅|
|[Datacamp: Conda Essentials](https://www.datacamp.com/courses/conda-essentials)|✅|
|[Youtube: Tutorial: Sebastian Witowski - Modern Python Developer's Toolkit](https://www.youtube.com/watch?v=WkUBx3g2QfQ&feature=youtu.be)|✅|
|[Datacamp: Working with Dates and Times in Python](https://www.datacamp.com/courses/working-with-dates-and-times-in-python)|✅|
|[Datacamp: Command Line Automation in Python](https://www.datacamp.com/courses/command-line-automation-in-python)|⬜|
|[Book: Python 201](https://leanpub.com/python201)|⬜|
|[Book: Writing Idiomatic Python 3](https://www.amazon.com/Writing-Idiomatic-Python-Jeff-Knupp-ebook/dp/B00B5VXMRG)|⬜|
|[Article: Python's many command-line utilities](https://www.pythonmorsels.com/cli-tools/)|⬜|
|[Article: A Programmer’s Introduction to Unicode](https://www.reedbeta.com/blog/programmers-intro-to-unicode/)|⬜|### Testing & Profiling
|Resource|Progress|
|---|---|
|[Datacamp: Unit Testing for Data Science in Python](https://www.datacamp.com/courses/unit-testing-for-data-science-in-python)|✅|
|[Book: Test Driven Development with Python](http://chimera.labs.oreilly.com/books/1234000000754/index.html)|⬜|
|[Article: Introduction to Memory Profiling in Python](https://www.datacamp.com/tutorial/memory-profiling-python)|✅|
|[Article: Profiling Python code with memory_profiler](https://www.wrighters.io/profiling-python-code-with-memory_profiler/)|✅|
|[Article: How to Use "memory_profiler" to Profile Memory Usage by Python Code?](https://coderzcolumn.com/tutorials/python/how-to-profile-memory-usage-in-python-using-memory-profiler)|✅|### Data Structures and Algorithms
|Resource|Progress|
|---|---|
|[Book: Grokking Algorithms](https://www.manning.com/books/grokking-algorithms)|✅|
|[Book: The Tech Resume Inside Out](https://thetechresume.com)|✅|
|[Neetcode: Algorithms and Data Structures for Beginners](https://neetcode.io/courses/dsa-for-beginners/0)|✅|
|[Udacity: Intro to Data Structures and Algorithms](https://www.udacity.com/course/technical-interview--ud513)|✅|### Linux & Command Line
|Resource|Progress|
|---|---|
|[Datacamp: Introduction to Shell for Data Science](https://www.datacamp.com/courses/introduction-to-shell-for-data-science)|✅|
|[Datacamp: Introduction to Bash Scripting](https://www.datacamp.com/courses/introduction-to-bash-scripting)|✅|
|[Datacamp: Data Processing in Shell](https://www.datacamp.com/courses/data-processing-in-shell)|✅|
|[MIT: The Missing Semester](https://www.youtube.com/playlist?list=PLyzOVJj3bHQuloKGG59rS43e29ro7I57J)|✅|
|[Udacity: Linux Command Line Basics](https://www.udacity.com/course/linux-command-line-basics--ud595)|✅|
|[Udacity: Shell Workshop](https://www.udacity.com/course/shell-workshop--ud206)|✅|
|[Udacity: Configuring Linux Web Servers](https://www.udacity.com/course/configuring-linux-web-servers--ud299)|✅|### Version Control
|Resource|Progress|
|---|---|
|[Udacity: Version Control with Git](https://www.udacity.com/course/version-control-with-git--ud123)|✅|
|[Datacamp: Introduction to Git for Data Science](https://www.datacamp.com/courses/introduction-to-git-for-data-science)|✅|
|[Udacity: GitHub & Collaboration](https://www.udacity.com/course/github-collaboration--ud456)|✅|
|[Udacity: How to Use Git and GitHub](https://www.udacity.com/course/how-to-use-git-and-github--ud775)|✅|### Databases
|Resource|Progress|
|---|---|
|[Udacity: Intro to relational database](https://www.udacity.com/course/intro-to-relational-databases--ud197)|✅|
|[Udacity: Database Systems Concepts & Design](https://www.udacity.com/course/database-systems-concepts-design--ud150)|⬜|
|[Datacamp: Database Design](https://www.datacamp.com/courses/database-design)|⬜|
|[Datacamp: Introduction to Databases in Python](https://www.datacamp.com/courses/introduction-to-relational-databases-in-python)|⬜|
|[Datacamp: Intro to SQL for Data Science](https://www.datacamp.com/courses/intro-to-sql-for-data-science)|✅|
|[Datacamp: Intermediate SQL](https://www.datacamp.com/courses/intermediate-sql)|⬜|
|[Datacamp: Joining Data in PostgreSQL](https://www.datacamp.com/courses/joining-data-in-postgresql)|⬜|
|[Udacity: SQL for Data Analysis](https://www.udacity.com/course/sql-for-data-analysis--ud198)|⬜|
|[Datacamp: Exploratory Data Analysis in SQL](https://www.datacamp.com/courses/sql-for-exploratory-data-analysis)|⬜|
|[Datacamp: Applying SQL to Real-World Problems](https://www.datacamp.com/courses/applying-sql-to-real-world-problems)|⬜|
|[Datacamp: Analyzing Business Data in SQL](https://www.datacamp.com/courses/analyzing-business-data-in-sql)|⬜|
|[Datacamp: Reporting in SQL](https://www.datacamp.com/courses/reporting-in-sql)|⬜|
|[Datacamp: Data-Driven Decision Making in SQL](https://www.datacamp.com/courses/data-driven-decision-making-with-sql)|⬜|
|[Datacamp: NoSQL Concepts](https://www.datacamp.com/courses/nosql-concepts)|⬜|
|[Datacamp: Introduction to MongoDB in Python](https://www.datacamp.com/courses/introduction-to-using-mongodb-for-data-science-with-python)|⬜|### Backend Engineering
|Resource|Progress|
|---|---|
|[Udacity: Authentication & Authorization: OAuth](https://www.udacity.com/course/authentication-authorization-oauth--ud330)|⬜|
|[Udacity: HTTP & Web Servers](https://www.udacity.com/course/http-web-servers--ud303)|⬜|
|[Udacity: Client-Server Communication](https://www.udacity.com/course/client-server-communication--ud897)|⬜|
|[Udacity: Designing RESTful APIs](https://www.udacity.com/course/designing-restful-apis--ud388)|⬜|
|[Datacamp: Introduction to APIs in Python](https://www.datacamp.com/courses/introduction-to-apis-in-python)|⬜|
|[Udacity: Networking for Web Developers](https://www.udacity.com/course/networking-for-web-developers--ud256)|⬜|### Production System Design
|Resource|Progress|
|---|---|
|[Book: Designing Machine Learning Systems](https://www.oreilly.com/library/view/designing-machine-learning/9781098107956/)|✅|
|[Neetcode: System Design for Beginners](https://neetcode.io/courses/system-design-for-beginners/0)|✅|
|[Neetcode: System Design Interview](https://neetcode.io/courses/system-design-interview)|✅|
|[Datacamp: Customer Analytics & A/B Testing in Python](https://www.datacamp.com/courses/customer-analytics-ab-testing-in-python)|✅|
|[Datacamp: A/B Testing in Python](https://www.datacamp.com/courses/ab-testing-in-python)|⬜|
|[Udacity: A/B Testing](https://www.udacity.com/course/ab-testing--ud257)|⬜|
|[Datacamp: MLOps Concepts](https://www.datacamp.com/courses/mlops-concepts)|✅|
|[Datacamp: Machine Learning Monitoring Concepts](https://www.datacamp.com/courses/machine-learning-monitoring-concepts)|✅|### Maths
|Resource|Progress|
|---|---|
|[Datacamp: Foundations of Probability in Python](https://www.datacamp.com/courses/foundations-of-probability-in-python)|✅|
|[Datacamp: Introduction to Statistics](https://www.datacamp.com/courses/introduction-to-statistics)|✅|
|[Datacamp: Introduction to Statistics in Python](https://www.datacamp.com/courses/introduction-to-statistics-in-python)|✅|
|[Datacamp: Hypothesis Testing in Python](https://www.datacamp.com/courses/hypothesis-testing-in-python)|✅|
|[Datacamp: Statistical Thinking in Python (Part 1)](https://www.datacamp.com/courses/statistical-thinking-in-python-part-1)|✅|
|[Datacamp: Statistical Thinking in Python (Part 2)](https://www.datacamp.com/courses/statistical-thinking-in-python-part-2)|✅|
|[Datacamp: Experimental Design in Python](https://datacamp.com/courses/experimental-design-in-python)|✅|
|[Datacamp: Practicing Statistics Interview Questions in Python](https://www.datacamp.com/courses/practicing-statistics-interview-questions-in-python)|⬜|
|[edX: Essential Statistics for Data Analysis using Excel](https://www.edx.org/course/essential-statistics-data-analysis-using-microsoft-dat222x-1)|✅|
|[Udacity: Intro to Inferential Statistics](https://www.udacity.com/course/intro-to-inferential-statistics--ud201)|✅|
|[MIT 18.06 Linear Algebra, Spring 2005](https://www.youtube.com/playlist?list=PLE7DDD91010BC51F8)|✅|
|[Udacity: Eigenvectors and Eigenvalues](https://www.udacity.com/course/eigenvectors-and-eigenvalues--ud104)|✅|
|[Udacity: Linear Algebra Refresher](https://www.udacity.com/course/linear-algebra-refresher-course--ud953)|⬜|
|[Youtube: Essence of linear algebra](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)|⬜|## Specialization
### Traditional Machine Learning
|Resource|Progress|
|---|---|
|[Book: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition](https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/)|⬜|
|[Book: A Machine Learning Primer](https://www.confetti.ai/assets/ml-primer/ml_primer.pdf)|✅|
|[Book: Grokking Machine Learning](https://www.manning.com/books/grokking-machine-learning)|✅|
|[Book: The StatQuest Illustrated Guide To Machine Learning](https://www.amazon.com/StatQuest-Illustrated-Guide-Machine-Learning/dp/B0BLM4TLPY)|✅|
|[Datacamp: Ensemble Methods in Python](https://www.datacamp.com/courses/ensemble-methods-in-python)|✅|
|[Datacamp: Extreme Gradient Boosting with XGBoost](https://www.datacamp.com/courses/extreme-gradient-boosting-with-xgboost)|⬜|
|[Datacamp: Clustering Methods with SciPy](https://www.datacamp.com/courses/clustering-methods-with-scipy)|✅|
|[Datacamp: Unsupervised Learning in Python](https://www.datacamp.com/courses/unsupervised-learning-in-python)|✅|
|[Udacity: Segmentation and Clustering](https://www.udacity.com/course/segmentation-and-clustering--ud981)|✅|
|[Datacamp: Intro to Python for Data Science](https://www.datacamp.com/courses/intro-to-python-for-data-science)|✅|
|[edX: Implementing Predictive Analytics with Spark in Azure HDInsight](https://www.edx.org/course/implementing-predictive-analytics-spark-microsoft-dat202-3x-2)|✅|
|[Datacamp: Supervised Learning with scikit-learn](https://www.datacamp.com/courses/supervised-learning-with-scikit-learn)|✅|
|[Datacamp: Machine Learning with Tree-Based Models in Python](https://www.datacamp.com/courses/machine-learning-with-tree-based-models-in-python)|✅|
|[Datacamp: Linear Classifiers in Python](https://www.datacamp.com/courses/linear-classifiers-in-python)|✅|
|[Datacamp: Model Validation in Python](https://www.datacamp.com/courses/model-validation-in-python)|✅|
|[Datacamp: Hyperparameter Tuning in Python](https://www.datacamp.com/courses/hyperparameter-tuning-in-python)|✅|
|[Datacamp: HR Analytics in Python: Predicting Employee Churn](https://www.datacamp.com/courses/hr-analytics-in-python-predicting-employee-churn)|✅|
|[Datacamp: Predicting Customer Churn in Python](https://www.datacamp.com/courses/predicting-customer-churn-in-python)|✅|
|[Datacamp: Dimensionality Reduction in Python](https://www.datacamp.com/courses/dimensionality-reduction-in-python)|✅|
|[Datacamp: Preprocessing for Machine Learning in Python](https://www.datacamp.com/courses/preprocessing-for-machine-learning-in-python)|✅|
|[Datacamp: Data Types for Data Science](https://www.datacamp.com/courses/data-types-for-data-science)|✅|
|[Datacamp: Cleaning Data in Python](https://www.datacamp.com/courses/cleaning-data-in-python)|✅|
|[Datacamp: Feature Engineering for Machine Learning in Python](https://www.datacamp.com/courses/feature-engineering-for-machine-learning-in-python)|✅|
|[Datacamp: Predicting CTR with Machine Learning in Python](https://www.datacamp.com/courses/predicting-ctr-with-machine-learning-in-python)|✅|
|[Datacamp: Intro to Financial Concepts using Python](https://www.datacamp.com/courses/intro-to-financial-concepts-using-python)|✅|
|[Datacamp: Fraud Detection in Python](https://www.datacamp.com/courses/fraud-detection-in-python)|✅|### Deep Learning
|Resource|Progress|
|---|---|
|[Article: An overview of gradient descent optimization algorithms](https://www.ruder.io/optimizing-gradient-descent)|✅|
|[Book: Make Your Own Neural Network](https://www.amazon.com/Make-Your-Own-Neural-Network/dp/1530826608)|✅|
|[Fast.ai: Practical Deep Learning for Coder (Part 1)](https://course.fast.ai/)|✅|
|[Fast.ai: Practical Deep Learning for Coder (Part 2)](https://course.fast.ai/Lessons/part2.html)|⬜|
|[Datacamp: Convolutional Neural Networks for Image Processing](https://www.datacamp.com/courses/convolutional-neural-networks-for-image-processing)|✅|
|[Karpathy: Neural Networks: Zero to Hero](https://github.com/karpathy/nn-zero-to-hero/)|✅|
|[Article: Weight Initialization in Neural Networks: A Journey From the Basics to Kaiming](https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79)|⬜|### Natural Language Processing
|Resource|Progress|
|---|---|
|[Book: Natural Language Processing with Transformers](https://transformersbook.com/)|✅|
|[Stanford CS224U: Natural Language Understanding \| Spring 2019](https://www.youtube.com/playlist?list=PLoROMvodv4rObpMCir6rNNUlFAn56Js20)|✅|
|[Stanford CS224N: Stanford CS224N: NLP with Deep Learning \| Winter 2019](https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z)|✅|
|[CMU: Low-resource NLP Bootcamp 2020](https://www.youtube.com/playlist?list=PL8PYTP1V4I8A1CpCzURXAUa6H4HO7PF2c)|✅|
|[CMU Multilingual NLP 2020](http://demo.clab.cs.cmu.edu/11737fa20/)|✅|
|[Datacamp: Feature Engineering for NLP in Python](https://www.datacamp.com/courses/feature-engineering-for-nlp-in-python)|✅|
|[Datacamp: Natural Language Processing Fundamentals in Python](https://www.datacamp.com/courses/natural-language-processing-fundamentals-in-python)|✅|
|[Datacamp: Regular Expressions in Python](https://www.datacamp.com/courses/regular-expressions-in-python)|✅|
|[Datacamp: RNN for Language Modeling](https://www.datacamp.com/courses/recurrent-neural-networks-for-language-modeling-in-python)|✅|
|[Datacamp: Natural Language Generation in Python](https://www.datacamp.com/courses/natural-language-generation-in-python)|✅|
|[Datacamp: Building Chatbots in Python](https://www.datacamp.com/courses/building-chatbots-in-python)|✅|
|[Datacamp: Sentiment Analysis in Python](https://www.datacamp.com/courses/sentiment-analysis-in-python)|✅|
|[Datacamp: Machine Translation in Python](https://www.datacamp.com/courses/machine-translation-in-python)|✅|
|[Article: The Unreasonable Effectiveness of Collocations](https://opensourceconnections.com/blog/2019/05/16/unreasonable-effectiveness-of-collocations/)|⬜|
|[Article: FuzzyWuzzy: Fuzzy String Matching in Python](https://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/#)|✅|
|[Article: Mamba Explained](https://thegradient.pub/mamba-explained/)|⬜|
|[Article: A Visual Guide to Mamba and State Space Models](https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state)|⬜|
|[Article: Transformers: Origins](https://mark-riedl.medium.com/transformers-origins-1db4bdfcb3d1)|⬜|### Generative AI
#### LLM Theory
|Resource|Progress|
|---|---|
|[Book: Hands-On Large Language Models: Language Understanding and Generation](https://www.amazon.com/Hands-Large-Language-Models-Understanding/dp/1098150961)|✅|
|[Book: AI Engineering: Building Applications with Foundation Models](https://www.amazon.com/AI-Engineering-Building-Applications-Foundation/dp/1098166302)|✅|
|[Book: Designing Large Language Model Applications](https://www.oreilly.com/library/view/designing-large-language/9781098150495/)|⬜|
|[Book: Large Language Models: A Deep Dive: Bridging Theory and Practice](https://www.amazon.com/Large-Language-Models-Bridging-Practice/dp/3031656466)|⬜|
|[Article: From Digits to Decisions: How Tokenization Impacts Arithmetic in LLMs](https://huggingface.co/spaces/huggingface/number-tokenization-blog)|⬜|
|[Article: SolidGoldMagikarp (plus, prompt generation)](https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation)|⬜|
|[DeepLearning.AI: Pretraining LLMs](https://www.deeplearning.ai/short-courses/pretraining-llms)|✅|
|[Karpathy: Intro to Large Language Models](https://www.youtube.com/watch?v=zjkBMFhNj_g) `1hr`|✅|
|[Karpathy: Let's build the GPT Tokenizer](https://www.youtube.com/watch?v=zduSFxRajkE) `2hr13m`|✅|
|[Karpathy: Let's reproduce GPT-2 (124M)](https://www.youtube.com/watch?v=l8pRSuU81PU) `4hr1m`|⬜|
|[Youtube: A Hackers' Guide to Language Models](https://www.youtube.com/watch?v=jkrNMKz9pWU) `1hr30m`|✅|
|[Youtube: 5 Years of GPTs with Finbarr Timbers](https://www.youtube.com/watch?v=YA0pzBYAV2Q&list=PLKlhhkvvU8-YxMP9hjEYJTJDCaGszrJIh&index=8&t=43s) `55m`|⬜|
|[Youtube: Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)](https://www.youtube.com/watch?v=9vM4p9NN0Ts)|⬜|
|[Article: Sampling for Text Generation](https://huyenchip.com/2024/01/16/sampling.html)|⬜|
|[DeepLearning.AI: Reinforcement Learning from Human Feedback](https://www.deeplearning.ai/short-courses/reinforcement-learning-from-human-feedback)|✅|
|[Youtube: LLaMA explained: KV-Cache, Rotary Positional Embedding, RMS Norm, Grouped Query Attention, SwiGLU](https://www.youtube.com/watch?v=Mn_9W1nCFLo) `1h10m`|⬜|
|[Youtube: CMU Advanced NLP Fall 2024 (7): Prompting and Complex Reasoning](https://www.youtube.com/watch?v=1Faf1cTe3T8&list=PL8PYTP1V4I8D4BeyjwWczukWq9d8PNyZp&index=2)|⬜|
|[Youtube: CMU Advanced NLP Fall 2024 (6): Instruction Tuning](https://www.youtube.com/watch?v=iWcGS0gCL1E&list=PL8PYTP1V4I8D4BeyjwWczukWq9d8PNyZp&index=3)|⬜|
|[Youtube: CMU Advanced NLP Fall 2024 (12): Domain Specific Modeling: Code and Math](https://www.youtube.com/watch?v=qHNUVpKO2dc&list=PL8PYTP1V4I8D4BeyjwWczukWq9d8PNyZp&index=4)|⬜|
|[Youtube: CMU Advanced NLP Fall 2024 (15): Tool Use and LLM Agent Basics](https://www.youtube.com/watch?v=a3SjRsqV9ZA&list=PL8PYTP1V4I8D4BeyjwWczukWq9d8PNyZp&index=16)|⬜|
|[Youtube: CMU Advanced NLP Fall 2024 (14): Ensembling and Mixture of Experts](https://www.youtube.com/watch?v=E4Rg4qTw4xw&list=PL8PYTP1V4I8D4BeyjwWczukWq9d8PNyZp&index=15)|⬜|#### Multi-modality
|Resource|Progress|
|---|---|
|[Article: Understanding Multimodal LLMs](https://magazine.sebastianraschka.com/p/understanding-multimodal-llms)|⬜|
|[Article: GPT-4 Vision Alternatives](https://blog.roboflow.com/gpt-4-vision-alternatives/)|⬜|
|[Youtube: AI Visions Live \| Merve Noyan \| Open-source Multimodality](https://www.youtube.com/watch?v=_TlhKHTgWjY) `54m`|✅|
|[DeepLearning.AI: Building Multimodal Search and RAG](https://www.deeplearning.ai/short-courses/building-multimodal-search-and-rag/)|⬜|
|[DeepLearning.AI: Prompt Engineering for Vision Models](https://www.deeplearning.ai/short-courses/prompt-engineering-for-vision-models/)|⬜|
|[DeepLearning.AI: How Diffusion Models Work](https://www.deeplearning.ai/short-courses/how-diffusion-models-work/)|⬜|#### Information Retrieval / RAG
| Resource | Progress |
| ---------------------------------------------------------------------------------------------------------------------------------------------- | -------- |
| [Article: Pretrained Transformer Language Models for Search - part 1](https://blog.vespa.ai/pretrained-transformer-language-models-for-search-part-1/#) | ✅ |
| [Article: Pretrained Transformer Language Models for Search - part 2](https://blog.vespa.ai/pretrained-transformer-language-models-for-search-part-2/) | ✅ |
| [Article: Pretrained Transformer Language Models for Search - part 3](https://blog.vespa.ai/pretrained-transformer-language-models-for-search-part-3) | ✅ |
| [Article: Pretrained Transformer Language Models for Search - part 4](https://blog.vespa.ai/pretrained-transformer-language-models-for-search-part-4) | ✅ |
|[Article: How not to use BERT for Document Ranking](https://bergum.medium.com/how-not-to-use-bert-for-search-ranking-4586716428d9)|✅|
| [Article: Understanding LanceDB's IVF-PQ index](https://lancedb.github.io/lancedb/concepts/index_ivfpq/) | ✅ |
| [Article: A little pooling goes a long way for multi-vector representations](https://www.answer.ai/posts/colbert-pooling.html) | ✅ |
|[Article: Levels of Complexity: RAG Applications](https://jxnl.github.io/blog/writing/2024/02/28/levels-of-complexity-rag-applications/)|✅|
|[Article: Systematically Improving Your RAG](https://jxnl.github.io/blog/writing/2024/05/22/systematically-improving-your-rag/)|✅|
|[Article: Stop using LGTM@Few as a metric (Better RAG)](https://jxnl.github.io/blog/writing/2024/02/05/when-to-lgtm-at-k/)|✅|
|[Article: Low-Hanging Fruit for RAG Search](https://jxnl.github.io/blog/writing/2024/05/11/low-hanging-fruit-for-rag-search/)|✅|
|[Article: What AI Engineers Should Know about Search](https://softwaredoug.com/blog/2024/06/25/what-ai-engineers-need-to-know-search)|✅|
|[Article: Evaluating Chunking Strategies for Retrieval](https://research.trychroma.com/evaluating-chunking)|✅|
|[Article: Sentence Embeddings. Introduction to Sentence Embeddings](https://osanseviero.github.io/hackerllama/blog/posts/sentence_embeddings/)|✅|
|[Article: LambdaMART in Depth](https://softwaredoug.com/blog/2022/01/17/lambdamart-in-depth)|⬜|
|[Article: Guided Generation with Outlines](https://medium.com/canoe-intelligence-technology/guided-generation-with-outlines-c09a0c2ce9eb)|✅|
| [Course: Fullstack Retrieval](https://community.fullstackretrieval.com/) | |
|[DeepLearning.AI: Building and Evaluating Advanced RAG Applications](https://www.deeplearning.ai/short-courses/building-evaluating-advanced-rag/)|✅|
|[DeepLearning.AI: Vector Databases: from Embeddings to Applications](https://www.deeplearning.ai/short-courses/vector-databases-embeddings-applications/)|✅|
|[DeepLearning.AI: Advanced Retrieval for AI with Chroma](https://www.deeplearning.ai/short-courses/advanced-retrieval-for-ai/)|✅|
|[DeepLearning.AI: Prompt Compression and Query Optimization](https://www.deeplearning.ai/short-courses/prompt-compression-and-query-optimization/)|✅|
|[DeepLearning.AI: Large Language Models with Semantic Search](https://www.deeplearning.ai/short-courses/large-language-models-semantic-search) `1hr`|✅|
|[DeepLearning.AI: Building Applications with Vector Databases](https://www.deeplearning.ai/short-courses/building-applications-vector-databases/)|✅|
|[DeepLearning.AI: Knowledge Graphs for RAG](https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/)|⬜|
|[DeepLearning.AI: Preprocessing Unstructured Data for LLM Applications](https://www.deeplearning.ai/short-courses/preprocessing-unstructured-data-for-llm-applications/)|⬜|
|[DeepLearning.AI: Embedding Models: From Architecture to Implementation](https://www.deeplearning.ai/short-courses/embedding-models-from-architecture-to-implementation)|✅|
|[DeepLearning.AI: Retrieval Optimization - From Tokenization to Vector Quantization](https://www.deeplearning.ai/short-courses/retrieval-optimization-from-tokenization-to-vector-quantization/)|✅|
|[Pinecone: Vector Databases in Production for Busy Engineers](https://www.pinecone.io/learn/series/vector-databases-in-production-for-busy-engineers/)|0/6|
|[Pinecone: Retrieval Augmented Generation](https://www.pinecone.io/learn/series/rag/)|0/3|
|[Pinecone: LangChain AI Handbook](https://www.pinecone.io/learn/series/langchain/)|0/11|
|[Pinecone: Embedding Methods for Image Search](https://www.pinecone.io/learn/series/image-search/)|0/8|
|[Pinecone: Faiss: The Missing Manual](https://www.pinecone.io/learn/series/faiss/)|0/7|
|[Pinecone: Vector Search in the Wild](https://www.pinecone.io/learn/series/wild/)|0/4|
|[Pinecone: Natural Language Processing for Semantic Search](https://www.pinecone.io/learn/series/nlp/)|0/13|
|[Youtube: Systematically improving RAG applications](https://youtu.be/RrDBV6odPKo?list=PLgIaq8VgndJvXkDSeReTl2u4rQMShkZ6V)|✅|
|[Youtube: Back to Basics for RAG w/ Jo Bergum](https://www.youtube.com/watch?v=nc0BupOkrhI&list=PLgIaq8VgndJvXkDSeReTl2u4rQMShkZ6V&index=2)|✅|
|[Youtube: Beyond the Basics of Retrieval for Augmenting Generation (w/ Ben Clavié)](https://www.youtube.com/watch?v=0nA5QG3087g&t=1287s)|✅|
|[Youtube: RAG From Scratch](https://www.youtube.com/playlist?list=PLfaIDFEXuae2LXbO1_PKyVJiQ23ZztA0x)|0/14|
|[Youtube: CMU Advanced NLP Fall 2024 (10): Retrieval and RAG](https://www.youtube.com/watch?v=KfQaYk4k9eM&list=PL8PYTP1V4I8D4BeyjwWczukWq9d8PNyZp&index=6) `1h17m`|⬜|
|[Guidance: Token Healing](https://github.com/guidance-ai/guidance/blob/main/notebooks/tutorials/token_healing.ipynb)|⬜|#### Agentic Pattern
|Resource|Progress|
|---|---|
|[Article: Tool Invocation - Demonstrating the Marvel of GPT's Flexibility](https://blog.jnbrymn.com/2024/01/30/the-marvel-of-GPT-generality.html)|⬜|
|[Anthropic: Building effective agents](https://www.anthropic.com/research/building-effective-agents)|⬜|
|[OpenAI: Assistants & Agents Build Hour](https://vimeo.com/showcase/11333741/video/990334325)|✅|
|[OpenAI: Function Calling Build Hour](https://vimeo.com/showcase/11333741/video/952127114)|✅|
|[DeepLearning.AI: Functions, Tools and Agents with LangChain](https://www.deeplearning.ai/short-courses/functions-tools-agents-langchain/)|⬜|
|[DeepLearning.AI: Building Agentic RAG with LlamaIndex](https://www.deeplearning.ai/short-courses/building-agentic-rag-with-llamaindex/)|⬜|
|[DeepLearning.AI: Multi AI Agent Systems with crewAI](https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/)|⬜|
|[DeepLearning.AI: AI Agentic Design Patterns with AutoGen](https://www.deeplearning.ai/short-courses/ai-agentic-design-patterns-with-autogen/)|⬜|
|[DeepLearning.AI: AI Agents in LangGraph](https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph/)|⬜|
|[DeepLearning.AI: Building Your Own Database Agent](https://www.deeplearning.ai/short-courses/building-your-own-database-agent/)|⬜|
|[DeepLearning.AI: Function-Calling and Data Extraction with LLMs](https://www.deeplearning.ai/short-courses/function-calling-and-data-extraction-with-llms/)|⬜|#### Prompt Engineering
|Resource|Progress|
|---|---|
|[Article: OpenAI Prompt Engineering](https://platform.openai.com/docs/guides/prompt-engineering)|⬜|
|[Article: Prompting Fundamentals and How to Apply them Effectively](https://eugeneyan.com/writing/prompting/)|✅|
|[Article: How I came in first on ARC-AGI-Pub using Sonnet 3.5 with Evolutionary Test-time Compute](https://params.com/@jeremy-berman/arc-agi)|✅|
|[Anthropic Courses](https://github.com/anthropics/courses)|⬜|
|[Anthropic: The Claude in Amazon Bedrock Course](https://www.anthropic.com/aws-reinvent-2024/course)|⬜|
|[Article: Prompt Engineering(Liliang Weng)](https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/)|✅|
|[Article: Prompt Engineering 201: Advanced methods and toolkits](https://amatria.in/blog/prompt201)|✅|
|[Article: Optimizing LLMs for accuracy](https://platform.openai.com/docs/guides/optimizing-llm-accuracy)|✅|
|[Article: Primers • Prompt Engineering](https://aman.ai/primers/ai/prompt-engineering/)|⬜|
|[Article: Anyscale Endpoints: JSON Mode and Function calling Features](https://www.anyscale.com/blog/anyscale-endpoints-json-mode-and-function-calling-features)|⬜|
|[Article: Guided text generation with Large Language Models](https://medium.com/productizing-language-models/guided-text-generation-with-large-language-models-d88fc3dcf4c)|⬜|
|[Book: Prompt Engineering for LLMs](https://www.oreilly.com/library/view/prompt-engineering-for/9781098156145/)|⬜|
|[DeepLearning.AI: Reasoning with o1](https://www.deeplearning.ai/short-courses/reasoning-with-o1/)|✅|
|[OpenAI: Reasoning with o1 Build Hour](https://vimeo.com/showcase/11333741/video/1018737829)|✅|
|[DeepLearning.AI: ChatGPT Prompt Engineering for Developers](https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/)|⬜|
|[DeepLearning.AI: Prompt Engineering with Llama 2 & 3](https://www.deeplearning.ai/short-courses/prompt-engineering-with-llama-2/)|⬜|
|[Wandb: LLM Engineering: Structured Outputs](https://www.wandb.courses/courses/steering-language-models)|⬜|
|[Series: Prompt injection](https://simonwillison.net/series/prompt-injection/)|⬜|
|[Youtube: Prompt Engineering Overview](https://www.youtube.com/watch?v=dOxUroR57xs) `1hr4m`|✅|
|[Youtube: Prompt Engineering Workshop](https://youtu.be/htBTho6oEJA) `1h`|✅|#### Quantization
|Resource|Progress|
|---|---|
|[Article: Quantization Fundamentals with Hugging Face](https://www.deeplearning.ai/short-courses/quantization-fundamentals-with-hugging-face/)|✅|
|[DeepLearning.AI: Quantization in Depth](https://www.deeplearning.ai/short-courses/quantization-in-depth/)|⬜|
|[DeepLearning.AI: Introduction to On-Device AI](https://www.deeplearning.ai/short-courses/introduction-to-on-device-ai/)|⬜|
|[Article: A Visual Guide to Quantization](https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization)|⬜|
|[Article: QLoRA and 4-bit Quantization](https://mccormickml.com/2024/09/14/qlora-and-4bit-quantization/)|⬜|
|[Article: Understanding AI/LLM Quantisation Through Interactive Visualisations](https://smcleod.net/2024/07/understanding-ai/llm-quantisation-through-interactive-visualisations/)|⬜|
|[Youtube: CMU Advanced NLP Fall 2024 (11): Distillation, Quantization, and Pruning](https://www.youtube.com/watch?v=DvVGkj4zhVU&list=PL8PYTP1V4I8D4BeyjwWczukWq9d8PNyZp&index=5)|⬜|#### Inference Optimization
|Resource|Progress|
|---|---|
|[Article: How to make LLMs go fast](https://vgel.me/posts/faster-inference/)|⬜|
|[Article: In the Fast Lane! Speculative Decoding - 10x Larger Model, No Extra Cost](https://docs.titanml.co/blog/speculative-decoding-unleashed/)|⬜|
|[Article: Accelerating Generative AI with PyTorch II: GPT, Fast](https://pytorch.org/blog/accelerating-generative-ai-2/)|⬜|
|[Article: Harmonizing Multi-GPUs: Efficient Scaling of LLM Inference](https://docs.titanml.co/blog/multi-gpu/)|⬜|
|[Article: Multi-Query Attention is All You Need](https://fireworks.ai/blog/multi-query-attention-is-all-you-need)|⬜|
|[Article: Transformers Inference Optimization Toolset](https://astralord.github.io/posts/transformer-inference-optimization-toolset/)|⬜|
|[DeepLearning.AI: Efficiently Serving LLMs](https://www.deeplearning.ai/short-courses/efficiently-serving-llms/)|✅|
|[Article: LLM Inference Series: 3. KV caching explained](https://medium.com/@plienhar/llm-inference-series-3-kv-caching-unveiled-048152e461c8)|⬜|
|[Article: LLM Inference Series: 4. KV caching, a deeper look](https://medium.com/@plienhar/llm-inference-series-4-kv-caching-a-deeper-look-4ba9a77746c8)|⬜|
|[Article: LLM Inference Series: 5. Dissecting model performance](https://medium.com/@plienhar/llm-inference-series-5-dissecting-model-performance-6144aa93168f)|⬜|
|[Article: Transformer Inference Arithmetic](https://kipp.ly/transformer-inference-arithmetic/)|⬜|
|[Youtube: SBTB 2023: Charles Frye, Parallel Processors: Past & Future Connections Between LLMs and OS Kernels](https://www.youtube.com/watch?v=VxFtHqlMv8c)|⬜|
|[Youtube: Deploying Fine-Tuned Models](https://youtu.be/GzEcyBykkdo) `2h28m`|✅|#### Evals and Guardrails
|Resource|Progress|
|---|---|
|[Article: Your AI Product Needs Evals](https://hamel.dev/blog/posts/evals)|✅|
|[Article: Task-Specific LLM Evals that Do & Don't Work](https://eugeneyan.com/writing/evals/)|✅|
|[Article: Evaluation & Hallucination Detection for Abstractive Summaries](https://eugeneyan.com/writing/abstractive/)|✅|
|[Article: LLM-as-a-Judge vs Human Evaluation](https://www.galileo.ai/blog/llm-as-a-judge-vs-human-evaluation)|⬜|
|[DeepLearning.AI: Automated Testing for LLMOps](https://www.deeplearning.ai/short-courses/automated-testing-llmops/)|✅|
|[DeepLearning.AI: Red Teaming LLM Applications](https://www.deeplearning.ai/short-courses/red-teaming-llm-applications/)|✅|
|[DeepLearning.AI: Evaluating and Debugging Generative AI Models Using Weights and Biases](https://www.deeplearning.ai/short-courses/evaluating-debugging-generative-ai/)|⬜|
|[DeepLearning.AI: Quality and Safety for LLM Applications](https://www.deeplearning.ai/short-courses/quality-safety-llm-applications/)|⬜|
|[OpenAI: Evals Build Hour](https://vimeo.com/showcase/11333741/video/1023317525)|✅|
|[Youtube: Instrumenting & Evaluating LLMs](https://youtu.be/SnbGD677_u0) `2hr33m`|✅|
|[Youtube: LLM Eval For Text2SQL](https://youtu.be/UGmenkjGXqM?list=PLgIaq8VgndJvt-HKMHPXehyJNNXQsAVHD) `51m`|✅|
|[Youtube: A Deep Dive on LLM Evaluation](https://youtu.be/IsZVCnViwhk?list=PLgIaq8VgndJvt-HKMHPXehyJNNXQsAVHD) `49m`|✅|### Finetuning and Distillation
|Resource|Progress|
|---|---|
|[Article: Tokenization Gotchas](https://hamel.dev/notes/llm/finetuning/tokenizer_gotchas.html)|⬜|
|[Article: Practical Tips for Finetuning LLMs Using LoRA (Low-Rank Adaptation)](https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms)|⬜|
|[OpenAI: GPT-4o mini Fine-Tuning Build Hour](https://vimeo.com/showcase/11333741/video/995989828)|✅|
|[OpenAI: Distillation Build Hour](https://vimeo.com/showcase/11333741/video/1029408095)|✅|
|[Article: How to Generate and Use Synthetic Data for Finetuning](https://eugeneyan.com/writing/synthetic/)|✅|
|[DeepLearning.AI: Finetuning Large Language Models](https://www.deeplearning.ai/short-courses/finetuning-large-language-models/)|✅|
|[Youtube: Fine-Tuning with Axolotl](https://youtu.be/mmsa4wDsiy0?list=PLgIaq8VgndJtZ_G6gxyuhHGLUy9zXV9JC) `2h10m`|✅|
|[Youtube: Creating, Curating, and Cleaning Data for LLMs](https://youtu.be/HEGaei7k0zE?list=PLgIaq8VgndJtZ_G6gxyuhHGLUy9zXV9JC) `54m`|✅|
|[Youtube: Best Practices For Fine Tuning Mistral](https://youtu.be/Z_oWzTuljss?list=PLgIaq8VgndJtZ_G6gxyuhHGLUy9zXV9JC) `23m`|✅|
|[Youtube: Fine Tuning OpenAI Models - Best Practices](https://youtu.be/Q0GSZD0Na1s?list=PLgIaq8VgndJtZ_G6gxyuhHGLUy9zXV9JC)|✅|
|[Youtube: When and Why to Fine Tune an LLM](https://youtu.be/cPn0nHFsvFg) `1h56m`|✅|
|[Youtube: Slaying OOMs with PyTorch FSDP and torchao](https://youtu.be/UvRl4ansfCg) `49m`|✅|
|[Youtube: Napkin Math For Fine Tuning Pt. 1 w/Johno Whitaker](https://youtu.be/-2ebSQROew4)|✅|
|[Youtube: Napkin Math For Fine Tuning Pt. 2 w/Johno Whitaker](https://youtu.be/u2fJ6K8FjS8)|✅|
|[Youtube: Fine Tuning LLMs for Function Calling w/Pawel Garback](https://youtu.be/SEZ7j31u67A) `1h32m`|✅|
|[Youtube: From Prompt to Model: Fine-tuning when you've already deployed LLMs in prod w/Kyle Corbitt](https://youtu.be/4EPZZkVrXC4) `32m`|✅|
|[Youtube: Why Fine Tuning is Dead w/Emmanuel Ameisen](https://youtu.be/h1c_jmk97Ss) `50m`|✅|
|[Benchmarking QLoRA+FSDP](https://github.com/AnswerDotAI/fsdp_qlora/blob/main/benchmarks_03_2024.md)|⬜|#### LLM System Design
|Resource|Progress|
|---|---|
|[Article: What We’ve Learned From A Year of Building with LLMs](https://applied-llms.org/)|⬜|
|[Article: Data Flywheels for LLM Applications](https://www.sh-reya.com/blog/ai-engineering-flywheel/)|⬜|
|[Article: LLM From the Trenches: 10 Lessons Learned Operationalizing Models at GoDaddy](https://www.godaddy.com/resources/news/llm-from-the-trenches-10-lessons-learned-operationalizing-models-at-godaddy#h-3-prompts-aren-t-portable-across-models)|✅|
|[Article: Emerging UX Patterns for Generative AI Apps & Copilots](https://www.tidepool.so/blog/emerging-ux-patterns-for-generative-ai-apps-copilots)|✅|
|[Article: The Novice's LLM Training Guide](https://rentry.co/llm-training)|⬜|
|[Article: Pushing ChatGPT's Structured Data Support To Its Limits](https://minimaxir.com/2023/12/chatgpt-structured-data/)|✅|
|[Article: GPTed: using GPT-3 for semantic prose-checking](https://vgel.me/posts/gpted-launch/)|✅|
|[Article: Don't worry about LLMs](https://vickiboykis.com/2024/05/20/dont-worry-about-llms/)|⬜|
|[DeepLearning.AI: Building Systems with the ChatGPT API](https://www.deeplearning.ai/short-courses/building-systems-with-chatgpt/)|⬜|
|[DeepLearning.AI: LangChain for LLM Application Development](https://www.deeplearning.ai/short-courses/langchain-for-llm-application-development/)|⬜|
|[DeepLearning.AI: LangChain: Chat with Your Data](https://www.deeplearning.ai/short-courses/langchain-chat-with-your-data/)|⬜|
|[DeepLearning.AI: Building Generative AI Applications with Gradio](https://www.deeplearning.ai/short-courses/building-generative-ai-applications-with-gradio/)|✅|
|[DeepLearning.AI: Open Source Models with Hugging Face](https://www.deeplearning.ai/short-courses/open-source-models-hugging-face/)|⬜|
|[DeepLearning.AI: Getting Started with Mistral](https://www.deeplearning.ai/short-courses/getting-started-with-mistral/)|⬜|
|[Datacamp: Developing LLM Applications with LangChain](https://www.datacamp.com/courses/developing-llm-applications-with-langchain)|⬜|
|[LLMOps: Building with LLMs](https://www.comet.com/site/llm-course/)|⬜|
|[LLM Bootcamp - Spring 2023](https://fullstackdeeplearning.com/llm-bootcamp/spring-2023/)|✅|
|[Youtube: A Survey of Techniques for Maximizing LLM Performance](https://www.youtube.com/watch?v=ahnGLM-RC1Y)|✅|
|[Youtube: Building Blocks for LLM Systems & Products: Eugene Yan](https://www.youtube.com/watch?v=LzeC1AQ-U5o)|✅|
|[Youtube: Building LLM Applications](https://www.youtube.com/playlist?list=PLgIaq8VgndJtrxcelEdnXbvh9fXMHeAps)|0/8|
|[Article: Emerging Architectures for LLM Applications](https://a16z.com/emerging-architectures-for-llm-applications/)|✅|
|[Article: Patterns for Building LLM-based Systems & Products](https://eugeneyan.com/writing/llm-patterns/)|✅|
|[DeepLearning.AI: LLMOps](https://www.deeplearning.ai/short-courses/llmops/)|⬜|
|[DeepLearning.AI: Serverless LLM apps with Amazon Bedrock](https://www.deeplearning.ai/short-courses/serverless-llm-apps-amazon-bedrock/)|⬜|
|[Youtube: Getting the Most Out of Your LLM Experiments](https://youtu.be/IfcDvtl6Z1Y) `48m`|⬜|## Technical Skills (Libraries/Frameworks/Tools)
### AWS
|Resource|Progress|
|---|---|
|[Udemy: AWS Certified Developer - Associate 2018](https://www.udemy.com/aws-certified-developer-associate/)|✅|### CSS
|Resource|Progress|
|---|---|
|[Pluralsight: CSS Positioning](https://www.pluralsight.com/courses/css-positioning-1834)|✅|
|[Pluralsight: Introduction to CSS](https://www.pluralsight.com/courses/css-intro)|✅|
|[Pluralsight: CSS: Specificity, the Box Model, and Best Practices](https://app.pluralsight.com/interactive-courses/detail/c580b092-d94a-4ed8-8d2a-2f4d0b76f99f)|✅|
|[Pluralsight: CSS: Using Flexbox for Layout](https://app.pluralsight.com/interactive-courses/detail/a089d0a5-4a4c-4c4e-b883-c1bc64009619)|✅|
|[Code School: Blasting Off with Bootstrap](https://www.pluralsight.com/courses/code-school-blasting-off-with-bootstrap)|✅|
|[Pluralsight: UX Fundamentals](https://www.pluralsight.com/courses/ux-fundamentals-2426)|✅|
|[Codecademy: Learn SASS](https://www.codecademy.com/learn/learn-sass)|✅|
|[CSS for Javascript Developers](https://css-for-js.dev/)|✅|
|[Article: Create an illustration in Figma design](https://help.figma.com/hc/en-us/articles/13543867954711-Create-an-illustration-in-Figma-design)|✅|
|[Book: Refactoring UI](https://refactoringui.com/book/)|⬜|
|[Youtube: How to Make Your Website Not Ugly: Basic UX for Programmers](https://www.youtube.com/watch?v=Jf0cjocP8Wk) `48m`|⬜|### Django
|Resource|Progress|
|---|---|
|[Article: Django, HTMX and Alpine.js: Modern websites, JavaScript optional](https://www.saaspegasus.com/guides/modern-javascript-for-django-developers/htmx-alpine/)|✅|### HTML
|Resource|Progress|
|---|---|
|[Codecademy: Learn HTML](https://www.codecademy.com/learn/learn-html)|✅|
|[Codecademy: Make a website](https://www.codecademy.com/en/courses/make-a-website)|✅|
|[Article: Alternative Text](https://webaim.org/techniques/alttext/)|⬜|### JavaScript
|Resource|Progress|
|---|---|
|[Udacity: ES6 - JavaScript Improved](https://www.udacity.com/course/es6-javascript-improved--ud356)|✅|
|[Udacity: Intro to Javascript](https://www.udacity.com/course/intro-to-javascript--ud803)|✅|
|[Udacity: Object Oriented JS 1](https://www.udacity.com/course/object-oriented-javascript--ud015)|✅|
|[Udacity: Object Oriented JS 2](https://www.udacity.com/course/object-oriented-javascript--ud711)|✅|
|[Udemy: Understanding Typescript](https://www.udemy.com/understanding-typescript/)|✅|
|[Codecademy: Learn JavaScript](https://www.codecademy.com/learn/learn-javascript)|✅|
|[Codecademy: Jquery Track](https://www.codecademy.com/learn/learn-jquery)|✅|
|[Pluralsight: Using The Chrome Developer Tools](https://www.pluralsight.com/courses/chrome-developer-tools)|✅|### Matplotlib
|Resource|Progress|
|---|---|
|[Datacamp: Introduction to Seaborn](https://www.datacamp.com/courses/introduction-to-seaborn)|✅|
|[Datacamp: Introduction to Matplotlib](https://www.datacamp.com/courses/introduction-to-matplotlib)|✅|### MLFlow
|Resource|Progress|
|---|---|
|[Datacamp: Introduction to MLFlow](https://www.datacamp.com/courses/introduction-to-mlflow)|✅|### Nexxt.JS
| Resource | Progress |
| ----------------------------------------------------------------- | -------- |
| [Docs: Start building with Next.js](https://nextjs.org/learn) | |### Pandas
|Resource|Progress|
|---|---|
|[Datacamp: Pandas Foundations](https://www.datacamp.com/courses/pandas-foundations)|✅|
|[Datacamp: Pandas Joins for Spreadsheet Users](https://www.datacamp.com/courses/pandas-joins-for-spreadsheet-users)|✅|
|[Datacamp: Manipulating DataFrames with pandas](https://www.datacamp.com/courses/manipulating-dataframes-with-pandas)|✅|
|[Datacamp: Merging DataFrames with pandas](https://www.datacamp.com/courses/merging-dataframes-with-pandas)|✅|
|[Datacamp: Data Manipulation with pandas](https://www.datacamp.com/courses/data-manipulation-with-pandas)|✅|
|[Datacamp: Optimizing Python Code with pandas](https://www.datacamp.com/courses/optimizing-python-code-with-pandas)|✅|
|[Datacamp: Streamlined Data Ingestion with pandas](https://www.datacamp.com/courses/streamlined-data-ingestion-with-pandas)|✅|
|[Datacamp: Analyzing Marketing Campaigns with pandas](https://www.datacamp.com/courses/analyzing-marketing-campaigns-with-pandas)|✅|
|[Datacamp: Analyzing Police Activity with pandas](https://www.datacamp.com/courses/analyzing-police-activity-with-pandas)|✅|### PyTorch
|Resource|Progress|
|---|---|
|[Article: PyTorch internals](https://blog.ezyang.com/2019/05/pytorch-internals/)|⬜|
|[Article: Taking PyTorch For Granted](https://nrehiew.github.io/blog/pytorch/)|⬜|
|[Datacamp: Introduction to Deep Learning with PyTorch](https://www.datacamp.com/courses/deep-learning-with-pytorch)|✅|
|[Datacamp: Intermediate Deep Learning with PyTorch](https://app.datacamp.com/learn/courses/intermediate-deep-learning-with-pytorch)|⬜|
|[Datacamp: Deep Learning for Text with PyTorch](https://www.datacamp.com/courses/deep-learning-for-text-with-pytorch)|⬜|
|[Datacamp: Deep Learning for Images with PyTorch](https://www.datacamp.com/courses/deep-learning-for-images-with-pytorch)|⬜|
|[Deeplizard: Neural Network Programming - Deep Learning with PyTorch](https://www.youtube.com/playlist?list=PLZbbT5o_s2xrfNyHZsM6ufI0iZENK9xgG)|✅|### ReactJS
|Resource|Progress|
|---|---|
|[Codecademy: Learn ReactJS: Part I](https://www.codecademy.com/learn/react-101)|✅|
|[Codecademy: Learn ReactJS: Part II](https://www.codecademy.com/learn/react-102)|✅|
|[NexxtJS: React Foundations](https://nextjs.org/learn/react-foundations)|⬜|### Spacy
|Resource|Progress|
|---|---|
|[Datacamp: Advanced NLP with spaCy](https://www.datacamp.com/courses/advanced-nlp-with-spacy)|✅|### Tensorflow & Keras
|Resource|Progress|
|---|---|
|[Datacamp: Introduction to TensorFlow in Python](https://www.datacamp.com/courses/introduction-to-tensorflow-in-python)|✅|
|[Datacamp: Deep Learning in Python](https://www.datacamp.com/courses/deep-learning-in-python)|✅|
|[Datacamp: Introduction to Deep Learning with Keras](https://www.datacamp.com/courses/deep-learning-with-keras-in-python)|✅|
|[Datacamp: Advanced Deep Learning with Keras](https://www.datacamp.com/courses/advanced-deep-learning-with-keras-in-python)|✅|
|[Deeplizard: Keras - Python Deep Learning Neural Network API](https://www.youtube.com/playlist?list=PLZbbT5o_s2xrwRnXk_yCPtnqqo4_u2YGL)|✅|
|[Udacity: Intro to TensorFlow for Deep Learning](https://www.udacity.com/course/intro-to-tensorflow-for-deep-learning--ud187)|✅|### VSCode
|Resource|Progress|
|---|---|
|[VSCode Docs: Python Interactive window](https://code.visualstudio.com/docs/python/jupyter-support-py)|⬜|## Misc
|Resource|Progress|
|---|---|
|[Google: Technical Writing Course](https://developers.google.com/tech-writing/overview)|⬜|