Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/amusi/awesome-object-detection
Awesome Object Detection based on handong1587 github: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
https://github.com/amusi/awesome-object-detection
List: awesome-object-detection
computer-vision deep-learning detection object-detection object-localisation
Last synced: 9 days ago
JSON representation
Awesome Object Detection based on handong1587 github: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
- Host: GitHub
- URL: https://github.com/amusi/awesome-object-detection
- Owner: amusi
- Created: 2018-04-06T15:58:50.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2022-12-17T04:28:58.000Z (almost 2 years ago)
- Last Synced: 2024-05-19T08:38:41.411Z (7 months ago)
- Topics: computer-vision, deep-learning, detection, object-detection, object-localisation
- Homepage:
- Size: 77.1 KB
- Stars: 7,270
- Watchers: 445
- Forks: 1,948
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-artificial-intelligence-research - Object Detection
- awesomeai - amusi/Object Detection
- awesome-ai-awesomeness - Object Detection
- awesome-cv - awesome-object-detection
- awesome-ai-awesomeness - amusi/Object Detection
- awesome-of-awesome-ml - awesome-object-detection (by amusi)
- Awesome-Paper-List - Object Detection
- awesome-ai-list-guide - awesome-object-detection
- awesome-machine-learning-resources - **[List - object-detection?style=social) (Table of Contents)
- SecondaryAwesomeCollection - amusi/awesome-object-detection
- awesome-computer-vision - Awesome Object Detection
- awesome-yolo-object-detection - amusi/awesome-object-detection - object-detection?style=social"/> : Awesome Object Detection. (Summary)
- awesome-yolo-object-detection - amusi/awesome-object-detection - object-detection?style=social"/> : Awesome Object Detection. (Summary)
README
# object-detection
[TOC]
This is a list of awesome articles about object detection. If you want to read the paper according to time, you can refer to [Date](Date.md).
- R-CNN
- Fast R-CNN
- Faster R-CNN
- Mask R-CNN
- Light-Head R-CNN
- Cascade R-CNN
- SPP-Net
- YOLO
- YOLOv2
- YOLOv3
- YOLT
- SSD
- DSSD
- FSSD
- ESSD
- MDSSD
- Pelee
- Fire SSD
- R-FCN
- FPN
- DSOD
- RetinaNet
- MegDet
- RefineNet
- DetNet
- SSOD
- CornerNet
- M2Det
- 3D Object Detection
- ZSD(Zero-Shot Object Detection)
- OSD(One-Shot object Detection)
- Weakly Supervised Object Detection
- Softer-NMS
- 2018
- 2019
- OtherBased on handong1587's github: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
# Survey
**Imbalance Problems in Object Detection: A Review**
- intro: under review at TPAMI
- arXiv:**Recent Advances in Deep Learning for Object Detection**
- intro: From 2013 (OverFeat) to 2019 (DetNAS)
- arXiv:**A Survey of Deep Learning-based Object Detection**
- intro:From Fast R-CNN to NAS-FPN
- arXiv:
**Object Detection in 20 Years: A Survey**
- intro:This work has been submitted to the IEEE TPAMI for possible publication
- arXiv:**《Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks》**
- intro: awesome
- arXiv: https://arxiv.org/abs/1809.03193
**《Deep Learning for Generic Object Detection: A Survey》**
- intro: Submitted to IJCV 2018
- arXiv: https://arxiv.org/abs/1809.02165# Papers&Codes
## R-CNN
**Rich feature hierarchies for accurate object detection and semantic segmentation**
- intro: R-CNN
- arxiv:
- supp:
- slides:
- slides:
- github:
- notes:
- caffe-pr("Make R-CNN the Caffe detection example"):## Fast R-CNN
**Fast R-CNN**
- arxiv:
- slides:
- github:
- github(COCO-branch):
- webcam demo:
- notes:
- notes:
- github("Fast R-CNN in MXNet"):
- github:
- github:
- github:**A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection**
- intro: CVPR 2017
- arxiv:
- paper:
- github(Caffe):## Faster R-CNN
**Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks**
- intro: NIPS 2015
- arxiv:
- gitxiv:
- slides:
- github(official, Matlab):
- github(Caffe):
- github(MXNet):
- github(PyTorch--recommend):
- github:
- github(Torch)::
- github(Torch)::
- github(TensorFlow):
- github(TensorFlow):
- github(C++ demo):
- github(Keras):
- github:
- github(C++):**R-CNN minus R**
- intro: BMVC 2015
- arxiv:**Faster R-CNN in MXNet with distributed implementation and data parallelization**
- github:
**Contextual Priming and Feedback for Faster R-CNN**
- intro: ECCV 2016. Carnegie Mellon University
- paper:
- poster:**An Implementation of Faster RCNN with Study for Region Sampling**
- intro: Technical Report, 3 pages. CMU
- arxiv:
- github:
- github: https://github.com/ruotianluo/pytorch-faster-rcnn**Interpretable R-CNN**
- intro: North Carolina State University & Alibaba
- keywords: AND-OR Graph (AOG)
- arxiv:**Domain Adaptive Faster R-CNN for Object Detection in the Wild**
- intro: CVPR 2018. ETH Zurich & ESAT/PSI
- arxiv:## Mask R-CNN
- arxiv:
- github(Keras): https://github.com/matterport/Mask_RCNN
- github(Caffe2): https://github.com/facebookresearch/Detectron
- github(Pytorch):
- github(MXNet): https://github.com/TuSimple/mx-maskrcnn
- github(Chainer): https://github.com/DeNA/Chainer_Mask_R-CNN## Light-Head R-CNN
**Light-Head R-CNN: In Defense of Two-Stage Object Detector**
- intro: Tsinghua University & Megvii Inc
- arxiv:
- github(offical): https://github.com/zengarden/light_head_rcnn
- github:## Cascade R-CNN
**Cascade R-CNN: Delving into High Quality Object Detection**
- arxiv:
- github:## SPP-Net
**Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition**
- intro: ECCV 2014 / TPAMI 2015
- arxiv:
- github:
- notes:**DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection**
- intro: PAMI 2016
- intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
- project page:
- arxiv:**Object Detectors Emerge in Deep Scene CNNs**
- intro: ICLR 2015
- arxiv:
- paper:
- paper:
- slides:**segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection**
- intro: CVPR 2015
- project(code+data):
- arxiv:
- github:**Object Detection Networks on Convolutional Feature Maps**
- intro: TPAMI 2015
- keywords: NoC
- arxiv:**Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction**
- arxiv:
- slides:
- github:**DeepBox: Learning Objectness with Convolutional Networks**
- keywords: DeepBox
- arxiv:
- github:## YOLO
**You Only Look Once: Unified, Real-Time Object Detection**
[![img](https://camo.githubusercontent.com/e69d4118b20a42de4e23b9549f9a6ec6dbbb0814/687474703a2f2f706a7265646469652e636f6d2f6d656469612f66696c65732f6461726b6e65742d626c61636b2d736d616c6c2e706e67)](https://camo.githubusercontent.com/e69d4118b20a42de4e23b9549f9a6ec6dbbb0814/687474703a2f2f706a7265646469652e636f6d2f6d656469612f66696c65732f6461726b6e65742d626c61636b2d736d616c6c2e706e67)
- arxiv:
- code:
- github:
- blog:
- slides:
- reddit:
- github:
- github:
- github:
- github:
- github:
- github:
- github:
- github:**darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++**
- blog:
- github:**Start Training YOLO with Our Own Data**
[![img](https://camo.githubusercontent.com/2f99b692dd7ce47d7832385f3e8a6654e680d92a/687474703a2f2f6775616e6768616e2e696e666f2f626c6f672f656e2f77702d636f6e74656e742f75706c6f6164732f323031352f31322f696d616765732d34302e6a7067)](https://camo.githubusercontent.com/2f99b692dd7ce47d7832385f3e8a6654e680d92a/687474703a2f2f6775616e6768616e2e696e666f2f626c6f672f656e2f77702d636f6e74656e742f75706c6f6164732f323031352f31322f696d616765732d34302e6a7067)
- intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
- blog:
- github:**YOLO: Core ML versus MPSNNGraph**
- intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.
- blog:
- github:**TensorFlow YOLO object detection on Android**
- intro: Real-time object detection on Android using the YOLO network with TensorFlow
- github:**Computer Vision in iOS – Object Detection**
- blog:
- github:## YOLOv2
**YOLO9000: Better, Faster, Stronger**
- arxiv:
- code: https://pjreddie.com/darknet/yolov2/
- github(Chainer):
- github(Keras):
- github(PyTorch):
- github(Tensorflow):
- github(Windows):
- github:
- github:
- github(TensorFlow):
- github(Keras):
- github(Keras):
- github(TensorFlow):**darknet_scripts**
- intro: Auxilary scripts to work with (YOLO) darknet deep learning famework. AKA -> How to generate YOLO anchors?
- github:**Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2**
- github:
**LightNet: Bringing pjreddie's DarkNet out of the shadows**
**YOLO v2 Bounding Box Tool**
- intro: Bounding box labeler tool to generate the training data in the format YOLO v2 requires.
- github:**Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors**
- intro: **LRM** is the first hard example mining strategy which could fit YOLOv2 perfectly and make it better applied in series of real scenarios where both real-time rates and accurate detection are strongly demanded.
- arxiv: https://arxiv.org/abs/1804.04606**Object detection at 200 Frames Per Second**
- intro: faster than Tiny-Yolo-v2
- arxiv: https://arxiv.org/abs/1805.06361**Event-based Convolutional Networks for Object Detection in Neuromorphic Cameras**
- intro: YOLE--Object Detection in Neuromorphic Cameras
- arxiv:https://arxiv.org/abs/1805.07931**OmniDetector: With Neural Networks to Bounding Boxes**
- intro: a person detector on n fish-eye images of indoor scenes(NIPS 2018)
- arxiv:https://arxiv.org/abs/1805.08503
- datasets:https://gitlab.com/omnidetector/omnidetector## YOLOv3
**YOLOv3: An Incremental Improvement**
- arxiv:https://arxiv.org/abs/1804.02767
- paper:https://pjreddie.com/media/files/papers/YOLOv3.pdf
- code:
- github(Official):https://github.com/pjreddie/darknet
- github:https://github.com/mystic123/tensorflow-yolo-v3
- github:https://github.com/experiencor/keras-yolo3
- github:https://github.com/qqwweee/keras-yolo3
- github:https://github.com/marvis/pytorch-yolo3
- github:https://github.com/ayooshkathuria/pytorch-yolo-v3
- github:https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch
- github:https://github.com/eriklindernoren/PyTorch-YOLOv3
- github:https://github.com/ultralytics/yolov3
- github:https://github.com/BobLiu20/YOLOv3_PyTorch
- github:https://github.com/andy-yun/pytorch-0.4-yolov3
- github:https://github.com/DeNA/PyTorch_YOLOv3## YOLT
**You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery**
- intro: Small Object Detection
- arxiv:https://arxiv.org/abs/1805.09512
- github:https://github.com/avanetten/yolt## SSD
**SSD: Single Shot MultiBox Detector**
[![img](https://camo.githubusercontent.com/ad9b147ed3a5f48ffb7c3540711c15aa04ce49c6/687474703a2f2f7777772e63732e756e632e6564752f7e776c69752f7061706572732f7373642e706e67)](https://camo.githubusercontent.com/ad9b147ed3a5f48ffb7c3540711c15aa04ce49c6/687474703a2f2f7777772e63732e756e632e6564752f7e776c69752f7061706572732f7373642e706e67)
- intro: ECCV 2016 Oral
- arxiv:
- paper:
- slides: [http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf](http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf)
- github(Official):
- video:
- github:
- github:
- github:
- github:
- github:
- github(Caffe):**What's the diffience in performance between this new code you pushed and the previous code? #327**
## DSSD
**DSSD : Deconvolutional Single Shot Detector**
- intro: UNC Chapel Hill & Amazon Inc
- arxiv:
- github:
- github:
- demo:**Enhancement of SSD by concatenating feature maps for object detection**
- intro: rainbow SSD (R-SSD)
- arxiv:**Context-aware Single-Shot Detector**
- keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)
- arxiv:**Feature-Fused SSD: Fast Detection for Small Objects**
## FSSD
**FSSD: Feature Fusion Single Shot Multibox Detector**
**Weaving Multi-scale Context for Single Shot Detector**
- intro: WeaveNet
- keywords: fuse multi-scale information
- arxiv:## ESSD
**Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network**
**Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection**
## MDSSD
**MDSSD: Multi-scale Deconvolutional Single Shot Detector for small objects**
- arxiv: https://arxiv.org/abs/1805.07009
## Pelee
**Pelee: A Real-Time Object Detection System on Mobile Devices**
https://github.com/Robert-JunWang/Pelee
- intro: (ICLR 2018 workshop track)
- arxiv: https://arxiv.org/abs/1804.06882
- github: https://github.com/Robert-JunWang/Pelee## Fire SSD
**Fire SSD: Wide Fire Modules based Single Shot Detector on Edge Device**
- intro:low cost, fast speed and high mAP on factor edge computing devices
- arxiv:https://arxiv.org/abs/1806.05363
## R-FCN
**R-FCN: Object Detection via Region-based Fully Convolutional Networks**
- arxiv:
- github:
- github(MXNet):
- github:
- github:
- github:
- github:**R-FCN-3000 at 30fps: Decoupling Detection and Classification**
**Recycle deep features for better object detection**
- arxiv:
## FPN
**Feature Pyramid Networks for Object Detection**
- intro: Facebook AI Research
- arxiv:**Action-Driven Object Detection with Top-Down Visual Attentions**
- arxiv:
**Beyond Skip Connections: Top-Down Modulation for Object Detection**
- intro: CMU & UC Berkeley & Google Research
- arxiv:**Wide-Residual-Inception Networks for Real-time Object Detection**
- intro: Inha University
- arxiv:**Attentional Network for Visual Object Detection**
- intro: University of Maryland & Mitsubishi Electric Research Laboratories
- arxiv:**Learning Chained Deep Features and Classifiers for Cascade in Object Detection**
- keykwords: CC-Net
- intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
- arxiv:**DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling**
- intro: ICCV 2017 (poster)
- arxiv:**Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries**
- intro: CVPR 2017
- arxiv:**Spatial Memory for Context Reasoning in Object Detection**
- arxiv:
**Accurate Single Stage Detector Using Recurrent Rolling Convolution**
- intro: CVPR 2017. SenseTime
- keywords: Recurrent Rolling Convolution (RRC)
- arxiv:
- github:**Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection**
**LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems**
- intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc
- arxiv:**Point Linking Network for Object Detection**
- intro: Point Linking Network (PLN)
- arxiv:**Perceptual Generative Adversarial Networks for Small Object Detection**
**Few-shot Object Detection**
**Yes-Net: An effective Detector Based on Global Information**
**SMC Faster R-CNN: Toward a scene-specialized multi-object detector**
**Towards lightweight convolutional neural networks for object detection**
**RON: Reverse Connection with Objectness Prior Networks for Object Detection**
- intro: CVPR 2017
- arxiv:
- github:**Mimicking Very Efficient Network for Object Detection**
- intro: CVPR 2017. SenseTime & Beihang University
- paper:**Residual Features and Unified Prediction Network for Single Stage Detection**
**Deformable Part-based Fully Convolutional Network for Object Detection**
- intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC
- arxiv:**Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors**
- intro: ICCV 2017
- arxiv:**Recurrent Scale Approximation for Object Detection in CNN**
- intro: ICCV 2017
- keywords: Recurrent Scale Approximation (RSA)
- arxiv:
- github:## DSOD
**DSOD: Learning Deeply Supervised Object Detectors from Scratch**
![img](https://user-images.githubusercontent.com/3794909/28934967-718c9302-78b5-11e7-89ee-8b514e53e23c.png)
- intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China
- arxiv:
- github:
- github:https://github.com/Windaway/DSOD-Tensorflow
- github:https://github.com/chenyuntc/dsod.pytorch**Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids**
- arxiv:https://arxiv.org/abs/1712.00886
- github:https://github.com/szq0214/GRP-DSOD**Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages**
- intro: BMVC 2018
- arXiv: https://arxiv.org/abs/1807.11013**Object Detection from Scratch with Deep Supervision**
- intro: This is an extended version of DSOD
- arXiv: https://arxiv.org/abs/1809.09294## RetinaNet
**Focal Loss for Dense Object Detection**
- intro: ICCV 2017 Best student paper award. Facebook AI Research
- keywords: RetinaNet
- arxiv:**CoupleNet: Coupling Global Structure with Local Parts for Object Detection**
- intro: ICCV 2017
- arxiv:**Incremental Learning of Object Detectors without Catastrophic Forgetting**
- intro: ICCV 2017. Inria
- arxiv:**Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection**
**StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection**
**Dynamic Zoom-in Network for Fast Object Detection in Large Images**
**Zero-Annotation Object Detection with Web Knowledge Transfer**
- intro: NTU, Singapore & Amazon
- keywords: multi-instance multi-label domain adaption learning framework
- arxiv:## MegDet
**MegDet: A Large Mini-Batch Object Detector**
- intro: Peking University & Tsinghua University & Megvii Inc
- arxiv:**Receptive Field Block Net for Accurate and Fast Object Detection**
- intro: RFBNet
- arxiv:
- github:**An Analysis of Scale Invariance in Object Detection - SNIP**
- arxiv:
- github:**Feature Selective Networks for Object Detection**
**Learning a Rotation Invariant Detector with Rotatable Bounding Box**
- arxiv:
- github:**Scalable Object Detection for Stylized Objects**
- intro: Microsoft AI & Research Munich
- arxiv:**Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids**
- arxiv:
- github:**Deep Regionlets for Object Detection**
- keywords: region selection network, gating network
- arxiv:**Training and Testing Object Detectors with Virtual Images**
- intro: IEEE/CAA Journal of Automatica Sinica
- arxiv:**Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video**
- keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
- arxiv:**Spot the Difference by Object Detection**
- intro: Tsinghua University & JD Group
- arxiv:**Localization-Aware Active Learning for Object Detection**
- arxiv:
**Object Detection with Mask-based Feature Encoding**
- arxiv:
**LSTD: A Low-Shot Transfer Detector for Object Detection**
- intro: AAAI 2018
- arxiv:**Pseudo Mask Augmented Object Detection**
**Revisiting RCNN: On Awakening the Classification Power of Faster RCNN**
**Learning Region Features for Object Detection**
- intro: Peking University & MSRA
- arxiv:**Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection**
- intro: Singapore Management University & Zhejiang University
- arxiv:**Object Detection for Comics using Manga109 Annotations**
- intro: University of Tokyo & National Institute of Informatics, Japan
- arxiv:**Task-Driven Super Resolution: Object Detection in Low-resolution Images**
- arxiv:
**Transferring Common-Sense Knowledge for Object Detection**
- arxiv:
**Multi-scale Location-aware Kernel Representation for Object Detection**
- intro: CVPR 2018
- arxiv:
- github:**Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors**
- intro: National University of Defense Technology
- arxiv: https://arxiv.org/abs/1804.04606**Robust Physical Adversarial Attack on Faster R-CNN Object Detector**
- arxiv: https://arxiv.org/abs/1804.05810
## RefineNet
**Single-Shot Refinement Neural Network for Object Detection**
- intro: CVPR 2018
- arxiv:
- github:
- github: https://github.com/lzx1413/PytorchSSD
- github: https://github.com/ddlee96/RefineDet_mxnet
- github: https://github.com/MTCloudVision/RefineDet-Mxnet## DetNet
**DetNet: A Backbone network for Object Detection**
- intro: Tsinghua University & Face++
- arxiv: https://arxiv.org/abs/1804.06215## SSOD
**Self-supervisory Signals for Object Discovery and Detection**
- Google Brain
- arxiv:https://arxiv.org/abs/1806.03370## CornerNet
**CornerNet: Detecting Objects as Paired Keypoints**
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1808.01244
- github:## M2Det
**M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network**
- intro: AAAI 2019
- arXiv: https://arxiv.org/abs/1811.04533
- github: https://github.com/qijiezhao/M2Det## 3D Object Detection
**3D Backbone Network for 3D Object Detection**
- arXiv: https://arxiv.org/abs/1901.08373
**LMNet: Real-time Multiclass Object Detection on CPU using 3D LiDARs**
- arxiv: https://arxiv.org/abs/1805.04902
- github: https://github.com/CPFL/Autoware/tree/feature/cnn_lidar_detection## ZSD(Zero-Shot Object Detection)
**Zero-Shot Detection**
- intro: Australian National University
- keywords: YOLO
- arxiv:**Zero-Shot Object Detection**
- arxiv: https://arxiv.org/abs/1804.04340
**Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts**
- arxiv: https://arxiv.org/abs/1803.06049
**Zero-Shot Object Detection by Hybrid Region Embedding**
- arxiv: https://arxiv.org/abs/1805.06157
## OSD(One-Shot Object Detection)
**Comparison Network for One-Shot Conditional Object Detection**
- arXiv: https://arxiv.org/abs/1904.02317
**One-Shot Object Detection**
RepMet: Representative-based metric learning for classification and one-shot object detection
- intro: IBM Research AI
- arxiv:https://arxiv.org/abs/1806.04728
- github: TODO## Weakly Supervised Object Detection
**Weakly Supervised Object Detection in Artworks**
- intro: ECCV 2018 Workshop Computer Vision for Art Analysis
- arXiv: https://arxiv.org/abs/1810.02569
- Datasets: https://wsoda.telecom-paristech.fr/downloads/dataset/IconArt_v1.zip**Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation**
- intro: CVPR 2018
- arXiv: https://arxiv.org/abs/1803.11365
- homepage: https://naoto0804.github.io/cross_domain_detection/
- paper: http://openaccess.thecvf.com/content_cvpr_2018/html/Inoue_Cross-Domain_Weakly-Supervised_Object_CVPR_2018_paper.html
- github: https://github.com/naoto0804/cross-domain-detection## Softer-NMS
**《Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection》**
- intro: CMU & Face++
- arXiv: https://arxiv.org/abs/1809.08545
- github: https://github.com/yihui-he/softer-NMS## 2019
**Feature Selective Anchor-Free Module for Single-Shot Object Detection**
- intro: CVPR 2019
- arXiv: https://arxiv.org/abs/1903.00621
**Object Detection based on Region Decomposition and Assembly**
- intro: AAAI 2019
- arXiv: https://arxiv.org/abs/1901.08225
**Bottom-up Object Detection by Grouping Extreme and Center Points**
- intro: one stage 43.2% on COCO test-dev
- arXiv: https://arxiv.org/abs/1901.08043
- github: https://github.com/xingyizhou/ExtremeNet**ORSIm Detector: A Novel Object Detection Framework in Optical Remote Sensing Imagery Using Spatial-Frequency Channel Features**
- intro: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
- arXiv: https://arxiv.org/abs/1901.07925
**Consistent Optimization for Single-Shot Object Detection**
- intro: improves RetinaNet from 39.1 AP to 40.1 AP on COCO datase
- arXiv: https://arxiv.org/abs/1901.06563
**Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes**
- arXiv: https://arxiv.org/abs/1901.03796
**RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free**
- arXiv: https://arxiv.org/abs/1901.03353
- github: https://github.com/chengyangfu/retinamask**Region Proposal by Guided Anchoring**
- intro: CUHK - SenseTime Joint Lab
- arXiv: https://arxiv.org/abs/1901.03278**Scale-Aware Trident Networks for Object Detection**
- intro: mAP of **48.4** on the COCO dataset
- arXiv: https://arxiv.org/abs/1901.01892## 2018
**Large-Scale Object Detection of Images from Network Cameras in Variable Ambient Lighting Conditions**
- arXiv: https://arxiv.org/abs/1812.11901
**Strong-Weak Distribution Alignment for Adaptive Object Detection**
- arXiv: https://arxiv.org/abs/1812.04798
**AutoFocus: Efficient Multi-Scale Inference**
- intro: AutoFocus obtains an **mAP of 47.9%** (68.3% at 50% overlap) on the **COCO test-dev** set while processing **6.4 images per second on a Titan X (Pascal) GPU**
- arXiv: https://arxiv.org/abs/1812.01600**NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection**
- intro: Google Could
- arXiv: https://arxiv.org/abs/1812.00124**SPLAT: Semantic Pixel-Level Adaptation Transforms for Detection**
- intro: UC Berkeley
- arXiv: https://arxiv.org/abs/1812.00929**Grid R-CNN**
- intro: SenseTime
- arXiv: https://arxiv.org/abs/1811.12030**Deformable ConvNets v2: More Deformable, Better Results**
- intro: Microsoft Research Asia
- arXiv: https://arxiv.org/abs/1811.11168
**Anchor Box Optimization for Object Detection**
- intro: Microsoft Research
- arXiv: https://arxiv.org/abs/1812.00469**Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects**
- intro: https://arxiv.org/abs/1811.12152
**NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection**
- arXiv: https://arxiv.org/abs/1812.00124
**Learning RoI Transformer for Detecting Oriented Objects in Aerial Images**
- arXiv: https://arxiv.org/abs/1812.00155
**Integrated Object Detection and Tracking with Tracklet-Conditioned Detection**
- intro: Microsoft Research Asia
- arXiv: https://arxiv.org/abs/1811.11167**Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection**
- arXiv: https://arxiv.org/abs/1811.11318
**Gradient Harmonized Single-stage Detector**
- intro: AAAI 2019
- arXiv: https://arxiv.org/abs/1811.05181**CFENet: Object Detection with Comprehensive Feature Enhancement Module**
- intro: ACCV 2018
- github: https://github.com/qijiezhao/CFENet**DeRPN: Taking a further step toward more general object detection**
- intro: AAAI 2019
- arXiv: https://arxiv.org/abs/1811.06700
- github: https://github.com/HCIILAB/DeRPN**Hybrid Knowledge Routed Modules for Large-scale Object Detection**
- intro: Sun Yat-Sen University & Huawei Noah’s Ark Lab
- arXiv: https://arxiv.org/abs/1810.12681
- github: https://github.com/chanyn/HKRM**《Receptive Field Block Net for Accurate and Fast Object Detection》**
- intro: ECCV 2018
- arXiv: [https://arxiv.org/abs/1711.07767](https://arxiv.org/abs/1711.07767)
- github: [https://github.com/ruinmessi/RFBNet](https://github.com/ruinmessi/RFBNet)**Deep Feature Pyramid Reconfiguration for Object Detection**
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1808.07993**Unsupervised Hard Example Mining from Videos for Improved Object Detection**
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1808.04285**Acquisition of Localization Confidence for Accurate Object Detection**
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1807.11590
- github: https://github.com/vacancy/PreciseRoIPooling**Toward Scale-Invariance and Position-Sensitive Region Proposal Networks**
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1807.09528**MetaAnchor: Learning to Detect Objects with Customized Anchors**
- arxiv: https://arxiv.org/abs/1807.00980
**Relation Network for Object Detection**
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1711.11575
- github:https://github.com/msracver/Relation-Networks-for-Object-Detection**Quantization Mimic: Towards Very Tiny CNN for Object Detection**
- Tsinghua University1 & The Chinese University of Hong Kong2 &SenseTime3
- arxiv: https://arxiv.org/abs/1805.02152**Learning Rich Features for Image Manipulation Detection**
- intro: CVPR 2018 Camera Ready
- arxiv: https://arxiv.org/abs/1805.04953**SNIPER: Efficient Multi-Scale Training**
- arxiv:https://arxiv.org/abs/1805.09300
- github:https://github.com/mahyarnajibi/SNIPER**Soft Sampling for Robust Object Detection**
- intro: the robustness of object detection under the presence of missing annotations
- arxiv:https://arxiv.org/abs/1806.06986**Cost-effective Object Detection: Active Sample Mining with Switchable Selection Criteria**
- intro: TNNLS 2018
- arxiv:https://arxiv.org/abs/1807.00147
- code: http://kezewang.com/codes/ASM_ver1.zip## Other
**R3-Net: A Deep Network for Multi-oriented Vehicle Detection in Aerial Images and Videos**
- arxiv: https://arxiv.org/abs/1808.05560
- youtube: https://youtu.be/xCYD-tYudN0# Detection Toolbox
- [Detectron(FAIR)](https://github.com/facebookresearch/Detectron): Detectron is Facebook AI Research's software system that implements state-of-the-art object detection algorithms, including [Mask R-CNN](https://arxiv.org/abs/1703.06870). It is written in Python and powered by the [Caffe2](https://github.com/caffe2/caffe2) deep learning framework.
- [Detectron2](https://github.com/facebookresearch/detectron2): Detectron2 is FAIR's next-generation research platform for object detection and segmentation.
- [maskrcnn-benchmark(FAIR)](https://github.com/facebookresearch/maskrcnn-benchmark): Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.
- [mmdetection(SenseTime&CUHK)](https://github.com/open-mmlab/mmdetection): mmdetection is an open source object detection toolbox based on PyTorch. It is a part of the open-mmlab project developed by [Multimedia Laboratory, CUHK](http://mmlab.ie.cuhk.edu.hk/).