https://github.com/ana06/ode
Numerical analysis: solutions of ordinary differential equations with Matlab
https://github.com/ana06/ode
matlab ordinary-differential-equations ucm
Last synced: about 1 month ago
JSON representation
Numerical analysis: solutions of ordinary differential equations with Matlab
- Host: GitHub
- URL: https://github.com/ana06/ode
- Owner: Ana06
- License: mit
- Created: 2016-03-03T22:21:12.000Z (about 9 years ago)
- Default Branch: master
- Last Pushed: 2016-08-13T23:39:39.000Z (almost 9 years ago)
- Last Synced: 2025-04-07T10:03:59.238Z (about 2 months ago)
- Topics: matlab, ordinary-differential-equations, ucm
- Language: Matlab
- Homepage:
- Size: 20.5 KB
- Stars: 5
- Watchers: 1
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ODE
Numerical analysis: solutions of ordinary differential equations with Matlab. This project was developed during a university course (Numerical methods) in 2015-2016. Comments are in Spanish, except in [**mispracticas.m**](https://github.com/Ana06/ode/blob/master/mispracticas.m), where the comments are in English.
##Functions
**funccorazon.m** - Cardioid
**funcvanderpol.m** - Van der Pol oscillator
**funcpendulo.m** - Pendulum
**funcpendulolin.m** - Lineal pendulum
##Auxiliar modules
**mispracticas.m** - in every line has an equation and its input values
**misgraficas.m** - to paint the solution
##Initial value problems
###One-step methods
**mieuler.m** - Euler method
**mirk4.m** - fourth-order Runge-Kutta
**mitrap.m** - Trapezoidal method
**jacrigida** - Jacobian matrix of the equation x'(t) = -50(x(t)-cos(t)) to be used in mitrap.m
**jacvanderpol** - Jacobian matrix of the Van der Pol oscillator equation to be used in mitrap.m
###Multistep methods
**miab4.m** - 4-step Adams-Bashforth method
**mimilne.m** - 4-step Milne method
###Predictor–corrector methods
**mieulertr.m** - Predictor: Euler method, Corrector: Trapezium method
**miab4am3.m** - Predictor: 4-step Adams-Bashforth method, Corrector: 3-step Adams-Moulton method
**mimilsimp.m** - Predictor: 4-step Milne method, Corrector: 2-step Simpson method
###Adaptive algorithms
**mimetadap.m** - Using a one-step method
**mirkf45.m** - Runge-Kutta-Fehlberg method
##Boundary value problems
###Linear boundary value problem
**midisplin.m** - linear boundary value problems for several types of boundary conditions
**fundisplin1.m** - ordinary differential equation used in midisplin.m
**fundisplin2.m** - ordinary differential equation used in midisplin.m
###Nonlinear boundary value problem
**midispnolin.m** - nonlinear boundary value problems for several types of boundary conditions: Dirichlet and Neumann
**midispnolingen.m** - generalization of midispnolin.m which can be use for more types of boundary conditions: Robin
**funcdispnolin.m** - used in midispnolin.m and **midispnolingen.m**
##Tests
All of them use the input values and function from mispracticas.m, use a method to solve the problem and misgraficas.m to paint the solution
**testmiode45.m** - Use Matlab function `ode45`
**testmieuler.m** - Use mieuler.m
**testmirk4.m** - Use mirk4.m
**testmitrap.m** - Use mitrap.m
**testmiab4.m** - Use miab4.m
**testmimilne.m** - Use mimilne.m
**testmieulertr.m** - Use mieulertr.m
**testmiab4am3.m** - Use miab4am3.m
**testmimilsimp.m** - Use mimilsimp.m
**testmimetadap.m** - Use mimetadap.m
**testmirkf45.m** - Use mirkf45.m
**testmidisplin.m** - Use midisplin.m
**testmidispnolin.m** - Use midispnolin.m
## Authors
This project was developed by Ana María Martínez Gómez.
## Licence
Code published under MIT License (see [LICENSE](LICENSE)).