An open API service indexing awesome lists of open source software.

https://github.com/analiaburgosdev/java_backtracking_magic-board

The objective of this exercise is to develop an algorithm to place n*n distinct natural numbers, ranging from 1 to a value k (where k > n*n), on an n x n board. The constraint is that the sum of the numbers in each row and each column must be equal to a specific value S.
https://github.com/analiaburgosdev/java_backtracking_magic-board

backtracking-algorithm board java

Last synced: 3 months ago
JSON representation

The objective of this exercise is to develop an algorithm to place n*n distinct natural numbers, ranging from 1 to a value k (where k > n*n), on an n x n board. The constraint is that the sum of the numbers in each row and each column must be equal to a specific value S.

Awesome Lists containing this project

README

          

## Descripción del Problema
El objetivo de este ejercicio es desarrollar un algoritmo para ubicar n*n números naturales distintos, entre 1 y un valor k (donde k > n*n), en un tablero de tamaño n x n. La restricción es que la suma de los números en cada fila y cada columna debe ser igual a un valor específico S.

## Enfoque
- **Búsqueda Combinatoria**: El algoritmo explora posibles distribuciones de números utilizando técnicas de backtracking y satisfacción de restricciones.
- **Equilibrio en la Matriz**: La solución garantiza que las sumas de filas y columnas se mantengan mientras se ubican los números únicos en la cuadrícula.

## Aplicaciones
Este ejercicio es útil en problemas de asignación de recursos en cuadrículas, diseño de juegos estratégicos y optimización combinatoria en planificación y programación de sistemas.

-----------------------------------------------------------

## Problem Description
The objective of this exercise is to develop an algorithm to place n*n distinct natural numbers, ranging from 1 to a value k (where k > n*n), on an n x n board. The constraint is that the sum of the numbers in each row and each column must be equal to a specific value S.

## Approach
- **Combinatorial Search**: The algorithm explores possible distributions of numbers using backtracking and constraint satisfaction techniques.
- **Matrix Balancing**: The solution ensures that row and column sums are maintained while placing unique numbers in the grid.

## Applications
This exercise is relevant in problems involving grid-based resource allocation, strategic game design, and combinatorial optimization in scheduling and planning systems.