https://github.com/analiaburgosdev/java_backtracking_setpartition
The objective of this exercise is to determine if it is possible to divide a set of n integers into two disjoint subsets such that the sum of the elements in both subsets is equal.
https://github.com/analiaburgosdev/java_backtracking_setpartition
backtracking-algorithm java
Last synced: 6 months ago
JSON representation
The objective of this exercise is to determine if it is possible to divide a set of n integers into two disjoint subsets such that the sum of the elements in both subsets is equal.
- Host: GitHub
- URL: https://github.com/analiaburgosdev/java_backtracking_setpartition
- Owner: analiaBurgosDev
- Created: 2025-03-26T00:42:35.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2025-03-26T00:45:11.000Z (9 months ago)
- Last Synced: 2025-06-11T23:41:36.876Z (7 months ago)
- Topics: backtracking-algorithm, java
- Language: Java
- Homepage:
- Size: 2.93 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Ejercicio 4: Partición de Conjunto
## Descripción del Problema
El objetivo de este ejercicio es determinar si es posible dividir un conjunto de n enteros en dos subconjuntos disjuntos, de manera que la suma de los elementos en ambos subconjuntos sea igual.
## Enfoque
- **Programación Dinámica**: El algoritmo utiliza técnicas de programación dinámica para buscar de manera eficiente soluciones al problema de partición.
- **Optimización**: Se optimiza la búsqueda de soluciones reduciendo la complejidad mediante programación dinámica.
## Aplicaciones
Este ejercicio es relevante en problemas de balanceo de cargas, distribución equitativa de recursos y otras aplicaciones en optimización y análisis combinatorio.
-------------------------------------------------------------------------------------------------------
# Exercise 4: Set Partition
## Problem Description
The objective of this exercise is to determine if it is possible to divide a set of n integers into two disjoint subsets such that the sum of the elements in both subsets is equal.
## Approach
- **Dynamic Programming**: The algorithm applies dynamic programming techniques to efficiently search for solutions to the partition problem.
- **Optimization**: Focus is given to optimizing the solution search by reducing the complexity through dynamic programming.
## Applications
This exercise is applicable to load balancing, fair resource distribution, and other optimization and combinatorial analysis problems.