Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/anar-bastanov/cosine-wave-polynomials
A console application that outputs multiple-angle formulas and trigonometric identities given the multiplier and a specific format.
https://github.com/anar-bastanov/cosine-wave-polynomials
c-sharp chebyshev-polynomial chebyshev-polynomials csharp formula-generation formula-generator math pascal-triangle polynomials python trigonometric-formulas trigonometry
Last synced: 26 days ago
JSON representation
A console application that outputs multiple-angle formulas and trigonometric identities given the multiplier and a specific format.
- Host: GitHub
- URL: https://github.com/anar-bastanov/cosine-wave-polynomials
- Owner: anar-bastanov
- License: mit
- Created: 2024-08-10T19:23:43.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2024-08-16T18:04:41.000Z (3 months ago)
- Last Synced: 2024-09-30T12:21:21.025Z (about 1 month ago)
- Topics: c-sharp, chebyshev-polynomial, chebyshev-polynomials, csharp, formula-generation, formula-generator, math, pascal-triangle, polynomials, python, trigonometric-formulas, trigonometry
- Language: C#
- Homepage:
- Size: 13.7 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
README
# Cosine Wave Polynomials
A console application that outputs multiple-angle formulas and trigonometric identities given the multiplier and a specific format. This repository contains two functionally the same applications, one written in C# and the other in Python.The algorithm generating desired polynomials uses one of two approaches to compute coefficients, famous Pascal's triangle and Chebyshev polynomials of the first kind.
## Examples
| Multiplier | Format | Output Formula |
|:----------:|:------:|:---------------|
| 2 | Cosine Only | $`cos(2 * x) = - 1 + 2 cos(x)^2`$ |
| 2 | Sine And Cosine | $`cos(2 * x) = - sin(x)^2 + cos(x)^2`$ |
| 3 | Cosine Only | $`cos(3 * x) = - 3 cos(x) + 4 cos(x)^3`$ |
| 3 | Sine And Cosine | $`cos(3 * x) = - 3 sin(x)^2 cos(x) + cos(x)^3`$ |
| 5 | Cosine Only | $`cos(5 * x) = 5 cos(x) - 20 cos(x)^3 + 16 cos(x)^5`$ |
| 5 | Sine And Cosine | $`cos(5 * x) = 5 sin(x)^4 cos(x) - 10 sin(x)^2 cos(x)^3 + cos(x)^5`$ |
| 9 | Cosine Only | $`cos(9 * x) = 9 cos(x) - 120 cos(x)^3 + 432 cos(x)^5 - 576 cos(x)^7 + 256 cos(x)^9`$ |
| 9 | Sine And Cosine | $`cos(9 * x) = 9 sin(x)^8 cos(x) - 84 sin(x)^6 cos(x)^3 + 126 sin(x)^4 cos(x)^5 - 36 sin(x)^2 cos(x)^7 + cos(x)^9`$ |
| ... |The input multiplier has no theoretical limit; however, these formulas can become extremely lengthy due to their rapidly growing coefficients.
## References
* https://mathworld.wolfram.com/Multiple-AngleFormulas.html
* https://www.anirdesh.com/math/trig/cosine-identities.php
* https://en.wikipedia.org/wiki/Pascal%27s_triangle
* https://en.wikipedia.org/wiki/Chebyshev_polynomials## License
Copyright © 2024 Anar Bastanov
Distributed under the [MIT License](http://www.opensource.org/licenses/mit-license.php).