Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/andosa/treeinterpreter


https://github.com/andosa/treeinterpreter

Last synced: 3 months ago
JSON representation

Awesome Lists containing this project

README

        

===============================
TreeInterpreter
===============================

Package for interpreting scikit-learn's decision tree and random forest predictions.
Allows decomposing each prediction into bias and feature contribution components as described in http://blog.datadive.net/interpreting-random-forests/. For a dataset with ``n`` features, each prediction on the dataset is decomposed as ``prediction = bias + feature_1_contribution + ... + feature_n_contribution``.

It works on scikit-learn's

* DecisionTreeRegressor
* DecisionTreeClassifier
* ExtraTreeRegressor
* ExtraTreeClassifier
* RandomForestRegressor
* RandomForestClassifier
* ExtraTreesRegressor
* ExtraTreesClassifier

Free software: BSD license

Dependencies
------------

- scikit-learn 0.17+

Installation
------------
The easiest way to install the package is via ``pip``::

$ pip install treeinterpreter

Usage
-----
::

from treeinterpreter import treeinterpreter as ti
# fit a scikit-learn's regressor model
rf = RandomForestRegressor()
rf.fit(trainX, trainY)

prediction, bias, contributions = ti.predict(rf, testX)

Prediction is the sum of bias and feature contributions::

assert(numpy.allclose(prediction, bias + np.sum(contributions, axis=1)))
assert(numpy.allclose(rf.predict(testX), bias + np.sum(contributions, axis=1)))

More usage examples at http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/.