Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/andrefcruz/semeval2019-hyperpartisan-news

Our submission to the SemEval2019 shared task on Hyperpartisan News Detection.
https://github.com/andrefcruz/semeval2019-hyperpartisan-news

bias-detection semeval semeval-2019

Last synced: 14 days ago
JSON representation

Our submission to the SemEval2019 shared task on Hyperpartisan News Detection.

Awesome Lists containing this project

README

        

# SemEval2019 Task 4 - Hyperpartisan News Detection

* Team's name: Fearnando-Pessa.
* Task overview: [https://pan.webis.de/semeval19/semeval19-web/index.html](https://pan.webis.de/semeval19/semeval19-web/index.html)
* Leaderboard: [https://pan.webis.de/semeval19/semeval19-web/leaderboard.html](https://pan.webis.de/semeval19/semeval19-web/leaderboard.html)

## Task
Given a news article text, decide whether it follows a hyperpartisan argumentation, i.e., whether it exhibits blind, prejudiced, or unreasoning allegiance to one party, faction, cause, or person.

## System's Performance
| **_Model_** | Accuracy | Precision | Recall | F1 |
|---------------------------------|:--------:|:---------:|:------:|:----:|
| Random Forest (_Official_) | 71.7 | 80.6 | 57.0 | 66.8 |
| Gradient Boosted Trees (_Best_) | 72.9 | 78.1 | 63.7 | 70.2 |
| Baseline | 46.2 | 46.0 | 44.3 | 45.1 |

## Team Members
* André Cruz
* Gil Rocha
* Rui Sousa-Silva
* Henrique Lopes Cardoso

## Citation
```
@inproceedings{cruz-etal-2019-team,
title = "Team Fernando-Pessa at {S}em{E}val-2019 Task 4: Back to Basics in Hyperpartisan News Detection",
author = "Cruz, Andr{\'e} and
Rocha, Gil and
Sousa-Silva, Rui and
Lopes Cardoso, Henrique",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/S19-2173",
doi = "10.18653/v1/S19-2173",
pages = "999--1003",
}
```