Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/andrew2077/airbnb-model

Airbnb-model
https://github.com/andrew2077/airbnb-model

Last synced: about 5 hours ago
JSON representation

Airbnb-model

Awesome Lists containing this project

README

        

# Airbnb New User Bookings

- Where will anew guest book their first travel experience?

- The Kaggle [Airbnb New User Bookings](https://www.kaggle.com/competitions/airbnb-recruiting-new-user-bookings/overview) dataset contains information about users who have signed up for Airbnb and is focused on predicting where a new user will book their first travel experience. more info in the link
- check out the decumentation with streamlit [here](https://andrew2077-airbnb-model--airbnb-cpucud.streamlit.app)
___
## **Description**
With the use of travel destination predictions and personalized booking recommendations, this project aims to streamline the booking process for new users of the Airbnb site.

___
## **Requirements**
- [**Sklearn**](https://scikit-learn.org/stable/install.html) (scikit-learn (sklearn) is a popular Python library for machine learning that provides a wide range of tools)
- **numpy**/**pandas**
- **[streamlit](https://docs.streamlit.io/)** (Streamlit is a Python library that allows you to create interactive web-based applications for machine learning and data science.)
- **[matplotlib](https://matplotlib.org/stable/contents.html)** (Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy.)
- **[plotly](https://plotly.com/python/)** (is a data visualization library that allows you to create interactive plots and graphs.)
- **[skforecast](https://joaquinamatrodrigo.github.io/skforecast/0.4.3/index.html)** ( is a *python* library that eases using scikit-learn regressors as multi-step forecasters.)

___
## **Table Of Contents**
- [Airbnb New User Bookings](#airbnb-new-user-bookings)
- [**Description**](#description)
- [**Requirements**](#requirements)
- [**Table Of Contents**](#table-of-contents)
- [**Pre-Processing**](#pre-processing)
- [**Guideline**](#guideline)
- [**Results**](#results)
- [**Future Work**](#future-work)
- [**Contributing**](#contributing)

___

## **Pre-Processing**
* Handling categorical data
* handling time series data
* handling missing data
* feature engineering

more about it [here](https://andrew2077-airbnb-model--airbnb-cpucud.streamlit.app)

___
## **Guideline**

1. just visit our deployed model with the documentation [here](https://andrew2077-airbnb-model--airbnb-cpucud.streamlit.app)

1. otherwise if you wish to run it locally just run '✈️_Airbnb.py' with the instruction below in terminal
>streamlit run ✈️_Airbnb.py

___

## **Results**

- used 3 Algorithm
- Decision Tree
- Random Forest
- XGBoost
- used differnt filling values techniques that altered model accuracy slightly
- playalong with the model [here](https://andrew2077-airbnb-model--airbnb-cpucud.streamlit.app/Visualizor)
- just Enable the model Aaccuracy checkbosx
___

## **Future Work**

- [ ] add more models
- [ ] use more filling values techniques
- [ ] add more visualizations

---
## **Contributing**
Any kind of enhancement or contribution is welcomed.

Suggestions are also welcomed.