Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/andrewjmack/webscrape-challenge
Analytics module 11: web scraping and analysis of Mars data
https://github.com/andrewjmack/webscrape-challenge
Last synced: about 7 hours ago
JSON representation
Analytics module 11: web scraping and analysis of Mars data
- Host: GitHub
- URL: https://github.com/andrewjmack/webscrape-challenge
- Owner: andrewjmack
- Created: 2024-05-03T14:58:26.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-05-06T19:20:05.000Z (6 months ago)
- Last Synced: 2024-05-06T20:30:57.749Z (6 months ago)
- Language: Jupyter Notebook
- Size: 431 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# webscrape-challenge
### Andrew Mack | DU Data Analytics | May 2024## Summary
This respository contains the files to meet the requirements of the webscraping module 11 homework challenge.The challenge consists of two parts:
- Webscraping of Mars news article content
- Webscraping and analysis of Mars temperature table dataIn addition to the Jupyter Notebooks used for webscraping and analysis, an Output folder contains a CSV file with the cleaned temperature data and .PNG charts to support the analysis.
## Repo Contents
- README
- part_1_mars_news.ipynb
- part_2_mars_news.ipynb
- Output
- mars_data.csv
- avg_pressure.png
- avg_temp.png
- avg_temp_cold_to_hot.png
- martian_year.png## Resources
- Initial Jupyter Notebooks with instructions provided
- URL for Mars news content for webscraping:
- https://static.bc-edx.com/data/web/mars_news/index.html
- URL for Mars temperature data for webscraping:
- https://static.bc-edx.com/data/web/mars_facts/temperature.html
- Class instruction and module activities
- Tutor assistance with embedded for loop to extract temperature table data
- Reference for writing dataframe to CSV:
- https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html- Resetting the index creates a column of the previous index, used when plotting the count of terrestrial days:
- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reset_index.html