Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/angeladai/3DMV
[ECCV'18] 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation
https://github.com/angeladai/3DMV
computer-graphics computer-vision deep-learning scene-understanding
Last synced: 2 months ago
JSON representation
[ECCV'18] 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation
- Host: GitHub
- URL: https://github.com/angeladai/3DMV
- Owner: angeladai
- License: other
- Created: 2018-07-21T19:51:40.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2022-02-22T14:59:16.000Z (almost 3 years ago)
- Last Synced: 2024-08-02T20:45:12.339Z (6 months ago)
- Topics: computer-graphics, computer-vision, deep-learning, scene-understanding
- Language: Python
- Size: 771 KB
- Stars: 208
- Watchers: 13
- Forks: 40
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# 3DMV
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 paper, [
3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation](https://arxiv.org/pdf/1803.10409.pdf).[](https://arxiv.org/abs/1803.10409)
## Code
### Installation:
Training is implemented with [PyTorch](https://pytorch.org/). This code was developed under PyTorch 0.2 and recently upgraded to PyTorch 0.4.### Training:
* See `python train.py --help` for all train options.
Example train call:
```
python train.py --gpu 0 --train_data_list [path to list of train files] --data_path_2d [path to 2d image data] --class_weight_file [path to txt file of train histogram] --num_nearest_images 5 --model2d_path [path to pretrained 2d model]
```
* Trained models: [models.zip](http://kaldir.vc.in.tum.de/adai/3DMV/models.zip)### Testing
* See `python test.py --help` for all test options.
Example test call:
```
python test.py --gpu 0 --scene_list test_scenes.txt --model_path models/scannetv2/scannet5_model.pth --data_path_2d [path to 2d image data] --data_path_3d [path to test scene data] --num_nearest_images 5 --model2d_orig_path models/scannetv2/scannet5_model2d.pth
```### Data:
This data has been precomputed from the [ScanNet](http://www.scan-net.org/) (v2) dataset.
* Train data for ScanNet v2: [3dmv_scannet_v2_train.zip](http://kaldir.vc.in.tum.de/adai/3DMV/data/3dmv_scannet_v2_train.zip) (6.2G)
* 2D train images can be processed from the ScanNet dataset using the 2d data preparation script in [prepare_data](prepare_data)
* Expected file structure for 2D data:
```
scene0000_00/
|--color/
|--[framenum].jpg
⋮
|--depth/
|--[framenum].png (16-bit pngs)
⋮
|--pose/
|--[framenum].txt (4x4 rigid transform as txt file)
⋮
|--label/ (if applicable)
|--[framenum].png (8-bit pngs)
⋮
scene0000_01/
⋮
```
* Test scenes for ScanNet v2: [3dmv_scannet_v2_test_scenes.zip](http://kaldir.vc.in.tum.de/adai/3DMV/data/3dmv_scannet_v2_test_scenes.zip) (110M)## Citation:
If you find our work useful in your research, please consider citing:
```
@inproceedings{dai20183dmv,
author = {Dai, Angela and Nie{\ss}ner, Matthias},
booktitle = {Proceedings of the European Conference on Computer Vision ({ECCV})},
title = {3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation},
year = {2018}
}
```## Contact:
If you have any questions, please email Angela Dai at [email protected].