Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/angelmtenor/RL-ROBOT
Reinforcement Learning framework for Robotics
https://github.com/angelmtenor/RL-ROBOT
cognitive-robotics decision-making reinforcement-learning robotics ros v-rep
Last synced: 3 months ago
JSON representation
Reinforcement Learning framework for Robotics
- Host: GitHub
- URL: https://github.com/angelmtenor/RL-ROBOT
- Owner: angelmtenor
- License: other
- Created: 2016-11-14T20:21:42.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2022-06-19T16:20:34.000Z (over 2 years ago)
- Last Synced: 2024-05-02T18:08:12.782Z (6 months ago)
- Topics: cognitive-robotics, decision-making, reinforcement-learning, robotics, ros, v-rep
- Language: Python
- Homepage:
- Size: 6.51 MB
- Stars: 84
- Watchers: 6
- Forks: 29
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-Robot-Operating-Syetem - Reinforcement Learning framework for Robotics
README
# RL-ROBOT
Ángel Martínez-Tenor - 2016
This repository provides a Reinforcement Learning framework in Python from the Machine Perception and Intelligent Robotics research group [(MAPIR)](http://mapir.isa.uma.es).
Reference: *Towards a common implementation of reinforcement learning for multiple robotics tasks*. [Arxiv preprint](https://arxiv.org/abs/1702.06329)
[ScienceDirect](http://www.sciencedirect.com/science/article/pii/S0957417417307613)## Getting Started
**Setup**
- Create a python environment and install the requirements. e.g. using conda:```
conda create -n rlrobot python=3.10
conda activate rlrobot
pip install -r requirements.txt
# tkinter: sudo apt install python-tk
```
**Run**
- Execute ```python run_custom_exp.py``` (content below)~~~
import exp
import rlrobotexp.ENVIRONMENT_TYPE = "MODEL" # "VREP" for V-REP simulation
exp.TASK_ID = "wander_1k"
exp.FILE_MODEL = exp.TASK_ID + "_model"exp.ALGORITHM = "TOSL"
exp.ACTION_STRATEGY = "QBIASSR"
exp.N_REPETITIONS = 1
exp.N_EPISODES = 1
exp.N_STEPS = 60 * 60exp.DISPLAY_STEP = 500
rlrobot.run()
~~~
- Full set of parameters available in `exp.py`- Tested on Ubuntu 14,16 ,18, 20 (64 bits)
## V-REP settings:
Tested: V-REP PRO EDU V3.3.2 / V3.5.0![Scenarios](images/scenarios.jpg)
1. Use default values of `remoteApiConnections.txt`
~~~
portIndex1_port = 19997
portIndex1_debug = false
portIndex1_syncSimTrigger = true
~~~2. Activate threaded rendering (recommended):
`system/usrset.txt -> threadedRenderingDuringSimulation = 1`Recommended simulation settings for V-REP scenes:
* Simulation step time: 50 ms (default)
* Real-Time Simulation: Enabled
* Multiplication factor: 3.00 (required CPU >= i3 3110m)**Execute V-REP**
(`./vrep.sh on linux`). `File -> Open Scene -> /vrep_scenes`