An open API service indexing awesome lists of open source software.

https://github.com/angrybayblade/image_search

πŸ” Image Search engine based on mnist dataset.
https://github.com/angrybayblade/image_search

autoencoder autoencoder-mnist convolutional-autoencoder image-search neural-network

Last synced: 3 months ago
JSON representation

πŸ” Image Search engine based on mnist dataset.

Awesome Lists containing this project

README

        

### Image Search Using Autoencoders In MNIST Dataset πŸ”

**example**
___

![](doc/search.gif)

___

Run Using

```bash
python3 app.py
```
Then open http://localhost:8080 on your browser.

> Search engine architecture uses a auto encoder to encode images into a 128-D vectors and clusters them using KMeans.

> When querying an image image is fed into the autoencoder which returns a 128-D vector, the vector is used to find which cluster the image belongs to and then some of the images from the cluster are fetched as result.

### Auto-Encoders Used In Search Engine

1. **Dense Autoencoder**

![](doc/dense_out.png)

2. **Convolutional Autoencoder**

![](doc/conv_out.png)

3. **Convolutional Autoencoder With Perceptual Loss**

![](doc/conv_per_out.png)

### Using different auto encoders for search

> Just open the app.py and find below code.

```python
search = DenseAutoEncoderSearch()
```

> and replace it with one of the following.

```python
search = ConvolutionalAutoEncoderSearch()
#or
search = ConvolutionalAutoEncoderWithPerceptLossSearch()
```

* UI is build in node using ReactJSβš›οΈ