https://github.com/angrybayblade/image_search
π Image Search engine based on mnist dataset.
https://github.com/angrybayblade/image_search
autoencoder autoencoder-mnist convolutional-autoencoder image-search neural-network
Last synced: 3 months ago
JSON representation
π Image Search engine based on mnist dataset.
- Host: GitHub
- URL: https://github.com/angrybayblade/image_search
- Owner: angrybayblade
- Created: 2020-05-03T12:26:43.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-05-24T11:18:36.000Z (about 5 years ago)
- Last Synced: 2025-02-08T23:28:15.999Z (5 months ago)
- Topics: autoencoder, autoencoder-mnist, convolutional-autoencoder, image-search, neural-network
- Language: Jupyter Notebook
- Homepage:
- Size: 1.12 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
### Image Search Using Autoencoders In MNIST Dataset π
**example**
___
___
Run Using
```bash
python3 app.py
```
Then open http://localhost:8080 on your browser.> Search engine architecture uses a auto encoder to encode images into a 128-D vectors and clusters them using KMeans.
> When querying an image image is fed into the autoencoder which returns a 128-D vector, the vector is used to find which cluster the image belongs to and then some of the images from the cluster are fetched as result.
### Auto-Encoders Used In Search Engine
1. **Dense Autoencoder**

2. **Convolutional Autoencoder**

3. **Convolutional Autoencoder With Perceptual Loss**

### Using different auto encoders for search
> Just open the app.py and find below code.
```python
search = DenseAutoEncoderSearch()
```> and replace it with one of the following.
```python
search = ConvolutionalAutoEncoderSearch()
#or
search = ConvolutionalAutoEncoderWithPerceptLossSearch()
```* UI is build in node using ReactJSβοΈ