Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/anidipta/dose-of-data
https://github.com/anidipta/dose-of-data
Last synced: 7 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/anidipta/dose-of-data
- Owner: Anidipta
- License: apache-2.0
- Created: 2024-06-08T14:31:23.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-08-19T16:54:42.000Z (5 months ago)
- Last Synced: 2024-08-19T20:01:15.772Z (5 months ago)
- Language: Jupyter Notebook
- Size: 1.19 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# **🔍 Pokémon Data Analysis**
![Pokemon](https://media.licdn.com/dms/image/D5612AQHcM0VMFJgApQ/article-cover_image-shrink_720_1280/0/1693159389529?e=1723075200&v=beta&t=Zyzi7Gmq52ZgIBws46Fb-1D9rAJLLw1HjktPqWuoRj0)
## **📚 Overview**
The **Pokémon** dataset encompasses a variety of attributes for each Pokémon, including names, types, base stats, abilities, and more. In this analysis, our objectives are:
- **🔍 Conduct Comprehensive Exploratory Data Analysis (EDA)**: Visualize the distributions of Pokémon attributes, uncover patterns, and identify correlations within the data.
- **🧠 Develop Predictive Models**: Use classification algorithms to accurately categorize Pokémon as legendary or non-legendary based on their attributes.
- **📊 Present Insights Effectively**: Showcase the findings with detailed visualizations, insightful descriptions, and thorough documentation.## **📊 Dataset**
The **Pokémon dataset** contains detailed information about various Pokémon species, including their attributes, abilities, and classifications.
📥 Dataset --> [Data](pokemon.csv)📜 Attributes
| Field Name | Description |
|-----------------------|----------------------------------------------------------------------------|
| **💡 abilities**| A list of abilities possessed by each Pokémon.|
| **⚔️ against_**| Attributes representing the effectiveness of each Pokémon type against other types (e.g., against_bug, against_dark).|
| **⚔️ attack**| Base attack stat of the Pokémon.|
| **🛡️ defense**| Base defense stat of the Pokémon.|
| **🔮 sp_attack**| Base special attack stat of the Pokémon.|
| **🔮 sp_defense**| Base special defense stat of the Pokémon.|
| **🏃 speed**| Base speed stat of the Pokémon.|
| **⚖️ weight_kg**|Weight of the Pokémon in kilograms.|
| **📏 height_m**| Height of the Pokémon in meters.|
| **🏆 base_total**| The total base stats of the Pokémon.|
| **🎯 capture_rate**| Capture rate of the Pokémon.|
| **🏅 classification**| Classification of the Pokémon.|
| **🔄 experience_growth**| Experience growth rate of the Pokémon.|
| **📆 generation**| Generation in which the Pokémon was introduced.|
| **⭐ is_legendary**| Binary attribute indicating whether the Pokémon is legendary (1) or not (0).|
| **🇯🇵 japanese_name**| Japanese name of the Pokémon.|
| **🔠 name**| English name of the Pokémon.|
| **♂️ percentage_male**| Percentage of male Pokémon in the species.|
| **🔢 pokedex_number**| Pokédex number of the Pokémon.|
| **🔥 type1**| Primary type of the Pokémon.|
| **💧 type2**| Secondary type of the Pokémon.|## 🎯 Objectives
1. **📈 Explore the Dataset**: Analyze Pokémon attributes, types, and generations.
2. **🔍 Perform EDA**: Visualize distributions and identify correlations.
3. **🧠 Build Models**: Develop algorithms to classify Pokémon as legendary or non-legendary.
4. **🔎 Analyze Patterns**: Uncover trends and insights in Pokémon data.
5. **📊 Present Findings**: Provide clear visualizations and comprehensive documentation.## **📂 Contents**
- Dataset - [Data](pokemon.csv)
- Jupyter Notebook - [.ipynb file](pokemon_anidipta.ipynb)
- Dependencies List - [List](requirements.txt)
- Documentation - [File](README.md)## 🛠️ Methodology
1. **📥 Data Loading**: Load the Pokémon dataset.
2. **🧹 Data Cleaning and Wrangling**: Handle missing values, correct data types, and remove duplicates to ensure data integrity and accuracy.
3. **📊 Exploratory Data Analysis (EDA)**: Visualize distributions, correlations, and patterns in the data using Python libraries like Matplotlib, Squarify, and Seaborn.
4. **🛠️ Data Preprocessing**: Normalize features, encode categorical variables, and split the dataset into training and testing sets for model training.
5. **🧠 Predictive Modeling**: Build and evaluate machine learning models using Scikit-learn to classify Pokémon as legendary or non-legendary.## **▶️ How to run**
To run the analysis notebook locally, follow these steps:
1. 📂 Clone this repository to your local machine.
2. 📦 Install Dependencies --> run `pip install -r requirements.txt`.
3. 📝 Open the Jupyter Notebook (`pokemon_anidipta.ipynb`).
4. 🏃 Execute the Code.## 🏁 Conclusion
The **Pokémon Dataset Analysis** project provides deep insights into Pokémon characteristics and classifications. These findings are valuable for enthusiasts, researchers, and anyone interested in data analysis and machine learning.