Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aniketmaurya/ai-ml-resources
Machine Learning & Deep Learning Resource links- Paper, blog, code, videos
https://github.com/aniketmaurya/ai-ml-resources
cyclegan deep-learning gan machine-learning object-detection paper pytorch tensroflow
Last synced: 6 days ago
JSON representation
Machine Learning & Deep Learning Resource links- Paper, blog, code, videos
- Host: GitHub
- URL: https://github.com/aniketmaurya/ai-ml-resources
- Owner: aniketmaurya
- License: mit
- Created: 2020-07-12T14:49:24.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-01-16T15:04:39.000Z (10 months ago)
- Last Synced: 2024-05-02T03:16:40.895Z (7 months ago)
- Topics: cyclegan, deep-learning, gan, machine-learning, object-detection, paper, pytorch, tensroflow
- Homepage: http://aniketmaurya.com/ml-resources
- Size: 19.9 MB
- Stars: 2
- Watchers: 2
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Resources for AI/ML and LLMs
## LLMs & RAGs
### RAGs
* [NVIDIA Generative AI Examples](https://github.com/NVIDIA/GenerativeAIExamples/tree/main/RetrievalAugmentedGeneration?nvid=nv-int-tblg-996848)### LLM Agents
* [Introduction to LLM Agents](https://developer.nvidia.com/blog/introduction-to-llm-agents/)
* [Building Your First LLM Agent Application](https://developer.nvidia.com/blog/building-your-first-llm-agent-application/)## ML System Design
* [CS 329S: Machine Learning Systems Design](https://stanford-cs329s.github.io/syllabus.html)## MLOps
* [Machine Learning Engineering for Production (MLOps) Specialization](https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops)
* [Introducing MLOps](https://www.oreilly.com/library/view/introducing-mlops/9781492083283/)
* [Awesome MLOps](https://github.com/visenger/awesome-mlops)## Object detection
### Single Stage Detectors
#### SSD: Single Shot MultiBox Detector
* [Paper](https://arxiv.org/abs/1512.02325)
* [Code](https://github.com/aniketmaurya/ssd-tf2-tfds)### Anchor-less Object Detection Models
Source: https://github.com/xingyizhou/CenterNet#### CenterNet: Keypoint Triplets for Object Detection
* [Paper](https://arxiv.org/abs/1904.08189)
* [Code](https://github.com/xingyizhou/CenterNet)#### CornerNet: Detecting Objects as Paired Keypoints
* [Paper](https://arxiv.org/abs/1808.01244)
* [Code](https://github.com/princeton-vl/CornerNet)
* [Blog](https://opencv.org/latest-trends-of-object-detection-from-cornernet-to-centernet-explained-part-i-cornernet/)
## GAN
Source: https://github.com/junyanz/CycleGAN/### DCGAN: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Source: from paper* [Paper](https://arxiv.org/abs/1511.06434)
* [Code](https://github.com/aniketmaurya/GANs-PyTorch-models/blob/main/DCGAN/dcgan.ipynb)
* [Blog](https://hardikbansal.github.io/CycleGANBlog/) - Understanding and Implementing CycleGAN in TensorFlow### CycleGAN
* [Paper](https://arxiv.org/pdf/1703.10593.pdf)
* [Code](https://github.com/junyanz/CycleGAN)
* [Blog](https://hardikbansal.github.io/CycleGANBlog/) - Understanding and Implementing CycleGAN in TensorFlow### GradCAM
* [Article](https://fairyonice.github.io/Grad-CAM-with-keras-vis.html)### Interpretable Machine Learning (A Guide for Making Black Box Models Explainable Book)
* [Online Free version](https://christophm.github.io/interpretable-ml-book/)
* [Ebook](https://leanpub.com/interpretable-machine-learning)
* [Print version](https://www.lulu.com/shop/christoph-molnar/interpretable-machine-learning/paperback/product-24036234.html)