Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ankane/dbx
A fast, easy-to-use database library for R
https://github.com/ankane/dbx
Last synced: 23 days ago
JSON representation
A fast, easy-to-use database library for R
- Host: GitHub
- URL: https://github.com/ankane/dbx
- Owner: ankane
- License: other
- Created: 2018-06-08T05:18:01.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-06-03T05:00:35.000Z (5 months ago)
- Last Synced: 2024-10-04T10:40:19.185Z (about 1 month ago)
- Language: R
- Homepage:
- Size: 364 KB
- Stars: 186
- Watchers: 9
- Forks: 15
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- jimsghstars - ankane/dbx - A fast, easy-to-use database library for R (R)
README
# dbx
:fire: A fast, easy-to-use database library for R
- Intuitive functions
- High performance batch operations
- Safe inserts, updates, and deletes without writing SQL
- Upserts!!
- Great date and time support
- Works well with auto-incrementing primary keys
- Built on top of [DBI](https://cran.r-project.org/package=DBI)Designed for both research and production environments
Supports Postgres, MySQL, MariaDB, SQLite, SQL Server, and more
[![Build Status](https://github.com/ankane/dbx/actions/workflows/build.yml/badge.svg)](https://github.com/ankane/dbx/actions) [![CRAN status](https://www.r-pkg.org/badges/version/dbx)](https://cran.r-project.org/package=dbx)
## Installation
Install dbx
```r
install.packages("dbx")
```And follow the instructions for your database
- [Postgres](#postgres)
- [MySQL & MariaDB](#mysql--mariadb)
- [SQLite](#sqlite)
- [SQL Server](#sql-server)
- [Redshift](#redshift)
- [Others](#others)To install with [Jetpack](https://github.com/ankane/jetpack), use:
```r
jetpack::add("dbx")
```### Postgres
Install the R package
```r
install.packages("RPostgres")
```And use:
```r
library(dbx)db <- dbxConnect(adapter="postgres", dbname="mydb")
```You can also pass `user`, `password`, `host`, `port`, and `url`.
> Works with RPostgreSQL as well
### MySQL & MariaDB
Install the R package
```r
install.packages("RMySQL")
```And use:
```r
library(dbx)db <- dbxConnect(adapter="mysql", dbname="mydb")
```You can also pass `user`, `password`, `host`, `port`, and `url`.
> Works with RMariaDB as well
### SQLite
Install the R package
```r
install.packages("RSQLite")
```And use:
```r
library(dbx)db <- dbxConnect(adapter="sqlite", dbname=":memory:")
```### SQL Server
Install the R package
```r
install.packages("odbc")
```And use:
```r
library(dbx)db <- dbxConnect(adapter=odbc::odbc(), database="mydb")
```You can also pass `uid`, `pwd`, `server`, and `port`.
### Redshift
For Redshift, follow the [Postgres instructions](#postgres).
### Others
Install the appropriate R package and use:
```r
db <- dbxConnect(adapter=odbc::odbc(), database="mydb")
```## Operations
### Select
Create a data frame of records from a SQL query
```r
records <- dbxSelect(db, "SELECT * FROM forecasts")
```Pass parameters
```r
dbxSelect(db, "SELECT * FROM forecasts WHERE period = ? AND temperature > ?", params=list("hour", 27))
```Parameters can also be vectors
```r
dbxSelect(db, "SELECT * FROM forecasts WHERE id IN (?)", params=list(1:3))
```### Insert
Insert records
```r
table <- "forecasts"
records <- data.frame(temperature=c(32, 25))
dbxInsert(db, table, records)
```If you use auto-incrementing ids in Postgres, you can get the ids of newly inserted rows by passing the column name:
```r
dbxInsert(db, table, records, returning=c("id"))
```### Update
Update records
```r
records <- data.frame(id=c(1, 2), temperature=c(16, 13))
dbxUpdate(db, table, records, where_cols=c("id"))
```Use `where_cols` to specify the columns used for lookup. Other columns are written to the table.
> Updates are batched when possible, but often need to be run as multiple queries. We recommend upsert when possible for better performance, as it can always be run as a single query. Turn on logging to see the difference.
### Upsert
*Available for PostgreSQL 9.5+, MySQL 5.5+, SQLite 3.24+, and SQL Server 2008+*
*Atomically* insert if they don’t exist, otherwise update them
```r
records <- data.frame(id=c(2, 3), temperature=c(20, 25))
dbxUpsert(db, table, records, where_cols=c("id"))
```Use `where_cols` to specify the columns used for lookup. There must be a unique index on them, or an error will be thrown.
To skip existing rows instead of updating them, use:
```r
dbxUpsert(db, table, records, where_cols=c("id"), skip_existing=TRUE)
```If you use auto-incrementing ids in Postgres, you can get the ids of newly upserted rows by passing the column name:
```r
dbxUpsert(db, table, records, where_cols=c("id"), returning=c("id"))
```### Delete
Delete specific records
```r
bad_records <- data.frame(id=c(1, 2))
dbxDelete(db, table, where=bad_records)
```Delete all records (uses `TRUNCATE` when possible for performance)
```r
dbxDelete(db, table)
```### Execute
Execute a statement
```r
dbxExecute(db, "UPDATE forecasts SET temperature = temperature + 1")
```Pass parameters
```r
dbxExecute(db, "UPDATE forecasts SET temperature = ? WHERE id IN (?)", params=list(27, 1:3))
```## Logging
Log all SQL queries with:
```r
options(dbx_logging=TRUE)
```Customize logging by passing a function
```r
logQuery <- function(sql) {
# your logging code
}options(dbx_logging=logQuery)
```## Database Credentials
Environment variables are a convenient way to store database credentials. This keeps them outside your source control. It’s also how platforms like [Heroku](https://www.heroku.com) store them.
Create an `.Renviron` file in your home directory with:
```
DATABASE_URL=postgres://user:pass@host/dbname
```Install [urltools](https://cran.r-project.org/package=urltools):
```r
install.packages("urltools")
```And use:
```r
db <- dbxConnect()
```If you have multiple databases, use a different variable name, and:
```r
db <- dbxConnect(url=Sys.getenv("OTHER_DATABASE_URL"))
```You can also use a package like [keyring](https://cran.r-project.org/package=keyring).
## Batching
By default, operations are performed in a single statement or transaction. This is better for performance and prevents partial writes on failures. However, when working with large data frames on production systems, it can be better to break writes into batches. Use the `batch_size` option to do this.
```r
dbxInsert(db, table, records, batch_size=1000)
dbxUpdate(db, table, records, where_cols, batch_size=1000)
dbxUpsert(db, table, records, where_cols, batch_size=1000)
dbxDelete(db, table, records, where, batch_size=1000)
```## Query Comments
Add comments to queries to make it easier to see where time-consuming queries are coming from.
```r
options(dbx_comment=TRUE)
```The comment will be appended to queries, like:
```sql
SELECT * FROM users /*script:forecast.R*/
```Set a custom comment with:
```r
options(dbx_comment="hi")
```## Transactions
To perform multiple operations in a single transaction, use:
```r
DBI::dbWithTransaction(db, {
dbxInsert(db, ...)
dbxDelete(db, ...)
})
```For updates inside a transaction, use:
```r
dbxUpdate(db, transaction=FALSE)
```## Schemas
To specify a schema, use:
```r
table <- DBI::Id(schema="schema", table="table")
```## Data Type Notes
### Dates & Times
Dates are returned as `Date` objects and times as `POSIXct` objects. Times are stored in the database in UTC and converted to your local time zone when retrieved.
Times without dates are returned as `character` vectors since R has no built-in support for this type. If you use [hms](https://cran.r-project.org/package=hms), you can convert columns with:
```r
records$column <- hms::as_hms(records$column)
```SQLite does not have support for `TIME` columns, so we recommend storing as `VARCHAR`.
### JSON
JSON and JSONB columns are returned as `character` vectors. You can use [jsonlite](https://cran.r-project.org/package=jsonlite) to parse them with:
```r
records$column <- lapply(records$column, jsonlite::fromJSON)
```SQLite does not have support for `JSON` columns, so we recommend storing as `TEXT`.
### Binary Data
BLOB and BYTEA columns are returned as `raw` vectors.
## Data Type Limitations
### Dates & Times
RSQLite does not currently provide enough info to automatically typecast dates and times. You can manually typecast date columns with:
```r
records$column <- as.Date(records$column)
```And time columns with:
```r
records$column <- as.POSIXct(records$column, tz="Etc/UTC")
attr(records$column, "tzone") <- Sys.timezone()
```### Booleans
RMariaDB and RSQLite do not currently provide enough info to automatically typecast booleans. You can manually typecast with:
```r
records$column <- records$column != 0
```### JSON
RMariaDB does [not currently support JSON](https://github.com/r-dbi/DBI/issues/203).
### Binary Data
RMySQL can write BLOB columns, but [can’t retrieve them directly](https://github.com/r-dbi/RMySQL/issues/123). To workaround this, use:
```r
records <- dbxSelect(db, "SELECT HEX(column) AS column FROM table")hexToRaw <- function(x) {
y <- strsplit(x, "")[[1]]
z <- paste0(y[c(TRUE, FALSE)], y[c(FALSE, TRUE)])
as.raw(as.hexmode(z))
}records$column <- lapply(records$column, hexToRaw)
```### Bigint
BIGINT columns are returned as `numeric` vectors. The `numeric` type in R loses precision above 253. Some libraries (RPostgres, RMariaDB, RSQLite, ODBC) support returning `bit64::integer64` vectors instead.
```r
dbxConnect(bigint="integer64")
```## Connection Pooling
Install the [pool](https://cran.r-project.org/package=pool) package
```r
install.packages("pool")
```Create a pool
```r
library(pool)factory <- function() {
dbxConnect(adapter="postgres", ...)
}pool <- poolCreate(factory, maxSize=5)
```Run queries
```ruby
conn <- poolCheckout(pool)tryCatch({
dbxSelect(conn, "SELECT * FROM forecasts")
}, finally={
poolReturn(conn)
})
```In the future, dbx commands may work directly with pools.
## Security
When connecting to a database over a network you don’t fully trust, make sure your [connection is secure](https://ankane.org/postgres-sslmode-explained).
With Postgres, use:
```r
db <- dbxConnect(adapter="postgres", sslmode="verify-full", sslrootcert="ca.pem")
```With RMariaDB, use:
```r
db <- dbxConnect(adapter="mysql", ssl.ca="ca.pem")
```Please [let us know](https://github.com/ankane/dbx/issues/new) if you have a way that works with RMySQL.
## Variables
Set session variables with:
```r
db <- dbxConnect(variables=list(search_path="archive"))
```## Timeouts
Set a statement timeout with:
```r
# Postgres
db <- dbxConnect(variables=list(statement_timeout=1000)) # ms# MySQL 5.7.8+
db <- dbxConnect(variables=list(max_execution_time=1000)) # ms# MariaDB 10.1.1+
db <- dbxConnect(variables=list(max_statement_time=1)) # sec
```With Postgres, set a connect timeout with:
```r
db <- dbxConnect(connect_timeout=3) # sec
```## Compatibility
All connections are simply [DBI](https://cran.r-project.org/package=DBI) connections, so you can use them anywhere you use DBI.
```r
dbCreateTable(db, ...)
```Install [dbplyr](https://cran.r-project.org/package=dbplyr) to use data with [dplyr](https://cran.r-project.org/package=dplyr).
```r
forecasts <- tbl(db, "forecasts")
```## Reference
To close a connection, use:
```r
dbxDisconnect(db)
```## History
View the [changelog](https://github.com/ankane/dbx/blob/master/NEWS.md)
## Contributing
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- [Report bugs](https://github.com/ankane/dbx/issues)
- Fix bugs and [submit pull requests](https://github.com/ankane/dbx/pulls)
- Write, clarify, or fix documentation
- Suggest or add new featuresTo get started with development:
```sh
git clone https://github.com/ankane/dbx.git
cd dbx# create Postgres database
createdb dbx_test# create MySQL database
mysqladmin create dbx_test
```In R, do:
```r
install.packages("devtools")
devtools::install_deps(dependencies=TRUE)
devtools::test()
```To test a single file, use:
```r
devtools::install() # to use latest updates
devtools::test_active_file("tests/testthat/test-postgres.R")
```