Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ankane/xlearn

High performance factorization machines for Ruby
https://github.com/ankane/xlearn

Last synced: 3 months ago
JSON representation

High performance factorization machines for Ruby

Awesome Lists containing this project

README

        

# xLearn Ruby

[xLearn](https://github.com/aksnzhy/xlearn) - the high performance machine learning library - for Ruby

Supports:

- Linear models
- Factorization machines
- Field-aware factorization machines

[![Build Status](https://github.com/ankane/xlearn-ruby/workflows/build/badge.svg?branch=master)](https://github.com/ankane/xlearn-ruby/actions)

## Installation

Add this line to your application’s Gemfile:

```ruby
gem "xlearn"
```

## Getting Started

Prep your data

```ruby
x = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [1, 2, 3, 4]
```

Train a model

```ruby
model = XLearn::Linear.new(task: "reg")
model.fit(x, y)
```

Use `XLearn::FM` for factorization machines and `XLearn::FFM` for field-aware factorization machines

Make predictions

```ruby
model.predict(x)
```

Save the model to a file

```ruby
model.save_model("model.bin")
```

Load the model from a file

```ruby
model.load_model("model.bin")
```

Save a text version of the model

```ruby
model.save_txt("model.txt")
```

Pass a validation set

```ruby
model.fit(x_train, y_train, eval_set: [x_val, y_val])
```

Train online

```ruby
model.partial_fit(x_train, y_train)
```

Get the bias term, linear term, and latent factors

```ruby
model.bias_term
model.linear_term
model.latent_factors # fm and ffm only
```

## Parameters

Pass parameters - default values below

```ruby
XLearn::FM.new(
task: "binary", # binary (classification), reg (regression)
metric: nil, # acc, prec, recall, f1, auc, mae, mape, rmse, rmsd
lr: 0.2, # learning rate
lambda: 0.00002, # lambda for l2 regularization
k: 4, # latent factors for fm and ffm
alpha: 0.3, # hyper parameter for ftrl
beta: 1.0, # hyper parameter for ftrl
lambda_1: 0.00001, # hyper parameter for ftrl
lambda_2: 0.00002, # hyper parameter for ftrl
epoch: 10, # number of epochs
fold: 3, # number of folds
opt: "adagrad", # sgd, adagrad, ftrl
block_size: 500, # block size for on-disk training in MB
early_stop: true, # use early stopping
stop_window: 2, # size of stop window for early stopping
sign: false, # convert predition output to 0 and 1
sigmoid: false, # convert predition output using sigmoid
seed: 1 # random seed to shuffle data set
)
```

## Cross-Validation

Cross-validation

```ruby
model.cv(x, y)
```

Specify the number of folds

```ruby
model.cv(x, y, folds: 5)
```

## Data

Data can be an array of arrays

```ruby
[[1, 2, 3], [4, 5, 6]]
```

Or a Numo array

```ruby
Numo::NArray.cast([[1, 2, 3], [4, 5, 6]])
```

Or a Rover data frame

```ruby
Rover.read_csv("houses.csv")
```

Or a Daru data frame

```ruby
Daru::DataFrame.from_csv("houses.csv")
```

## Performance

For large datasets, read data directly from files

```ruby
model.fit("train.txt", eval_set: "validate.txt")
model.predict("test.txt")
model.cv("train.txt")
```

For linear models and factorization machines, use CSV:

```txt
label,value_1,value_2,...,value_n
```

Or the `libsvm` format (better for sparse data):

```txt
label index_1:value_1 index_2:value_2 ... index_n:value_n
```

> You can also use commas instead of spaces for separators

For field-aware factorization machines, use the `libffm` format:

```txt
label field_1:index_1:value_1 field_2:index_2:value_2 ...
```

> You can also use commas instead of spaces for separators

You can also write predictions directly to a file

```ruby
model.predict("test.txt", out_path: "predictions.txt")
```

## Credits

This library is modeled after xLearn’s [Scikit-learn API](https://xlearn-doc.readthedocs.io/en/latest/python_api/index.html).

## History

View the [changelog](https://github.com/ankane/xlearn-ruby/blob/master/CHANGELOG.md)

## Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

- [Report bugs](https://github.com/ankane/xlearn-ruby/issues)
- Fix bugs and [submit pull requests](https://github.com/ankane/xlearn-ruby/pulls)
- Write, clarify, or fix documentation
- Suggest or add new features

To get started with development:

```sh
git clone https://github.com/ankane/xlearn-ruby.git
cd xlearn-ruby
bundle install
bundle exec rake vendor:all
bundle exec rake test
```