Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ankitbko/vision-on-edge
https://github.com/ankitbko/vision-on-edge
Last synced: 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/ankitbko/vision-on-edge
- Owner: ankitbko
- License: mit
- Created: 2022-06-22T07:14:28.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-06-24T04:55:06.000Z (over 2 years ago)
- Last Synced: 2023-08-12T14:46:20.951Z (over 1 year ago)
- Language: Python
- Size: 32.5 MB
- Stars: 3
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Object detection Sample Application
The sample provided is an implementation of the above design discussed in blog posts. [TODO: Link to blog posts](http://LINK).
## Running the sample
### Prerequisite
To execute the sample, the developer machine must have either -
* [Visual Studio Code](https://code.visualstudio.com/)
* [Docker](https://docs.docker.com/engine/install/)OR
* [Python 3.9](https://www.python.org/downloads/release/python-390/)
### Steps
1. Clone the repository.
1. Prepare environment.
1. If using Docker and Visual Studio Code, open the repository in [Visual Studio Code Remote - Containers](https://code.visualstudio.com/docs/remote/containers) following this [guide](https://code.visualstudio.com/docs/remote/containers#_reopen-folder-in-container)
1. Or in case of using Python, install the [required packages](../code/requirements.txt) using [pip](https://pip.pypa.io/en/stable/)
1. Run command `python main.py` from *multiprocessing* to start the sample.
1. The video feed will be shown in User Interface, via ULR [http://localhost:7001/](http://localhost:7001/).
1. The time taken by the ML model to process the frame will be shown in the Console.