Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/annennenne/pcadsc
An R package for performing Principal Component Analysis-based Data Structure Comparisons (PCADSC)
https://github.com/annennenne/pcadsc
data-structures exploratory-data-visualizations principal-component-analysis r
Last synced: about 2 months ago
JSON representation
An R package for performing Principal Component Analysis-based Data Structure Comparisons (PCADSC)
- Host: GitHub
- URL: https://github.com/annennenne/pcadsc
- Owner: annennenne
- Created: 2016-11-25T13:12:53.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2022-04-30T14:55:16.000Z (almost 3 years ago)
- Last Synced: 2024-10-16T04:20:26.822Z (4 months ago)
- Topics: data-structures, exploratory-data-visualizations, principal-component-analysis, r
- Language: TeX
- Homepage:
- Size: 15.2 MB
- Stars: 1
- Watchers: 4
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# PCADSC
[![CRAN\_Release\_Badge](http://www.r-pkg.org/badges/version-ago/PCADSC)](https://CRAN.R-project.org/package=PCADSC)
![Download counter](http://cranlogs.r-pkg.org/badges/grand-total/PCADSC)Development version of the R package PCADSC. The last stable version of the package can
be installed from CRAN using:```{r}
install.packages('PCADSC')
```
To install the development version of PCADSC, run the following commands
from within R:
```{r}
library(devtools)
install_github('annennenne/PCADSC')
```
The PCADSC methods are described in our [article manuscript](https://github.com/AnnePetersen1/PCADSC/blob/master/article/PCADSC_manuscript_withFigures.pdf).The basic functionality of the package can be inspected using the following lines of code:
```{r}
library(PCADSC)#Load iris data
data(iris)#Define grouping variable, grouping the observations by whether their species is
#Setosa or not
iris$group <- "setosa"
iris$group[iris$Species != "setosa"] <- "non-setosa"#Make a PCADSC object, splitting the data by "group"
irisPCADSC <-PCADSC(iris, "group", var=setdiff(names(iris), c("group", "Species")),
doCE = TRUE, doAngle = TRUE, doChroma = TRUE)
#Make a cumulative eigenvalue (CE) plot
CEPlot(irisPCADSC)#Make an angle plot
anglePlot(irisPCADSC)#Make a chroma plot
chromaPlot(irisPCADSC)
```Our current to-do list for the package is posted below. If you have any further suggestions for added functionality, or have a bug to report, please open an issue and let us know.
**To do**
- Make `print()` methods for `pcaRes`, `CEInfo`, `angleInfo`, `chromaInfo` and `PCASDC` objects
- Make `summary()` methods for `pcaRes`, `CEInfo`, `angleInfo`, `chromaInfo` and `PCASDC` object