https://github.com/anowacki/geographiclib.jl
Compute geodesics on an ellipsoid, in Julia
https://github.com/anowacki/geographiclib.jl
geodesic geodesy geographiclib julia
Last synced: 2 months ago
JSON representation
Compute geodesics on an ellipsoid, in Julia
- Host: GitHub
- URL: https://github.com/anowacki/geographiclib.jl
- Owner: anowacki
- License: other
- Created: 2019-07-22T15:17:29.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2024-04-19T14:00:52.000Z (over 1 year ago)
- Last Synced: 2024-04-19T15:08:10.380Z (over 1 year ago)
- Topics: geodesic, geodesy, geographiclib, julia
- Language: Julia
- Homepage:
- Size: 317 KB
- Stars: 13
- Watchers: 2
- Forks: 3
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
# GeographicLib.jl
Julia port of Charles F. F. Karney's [GeographicLib](https://geographiclib.sourceforge.io).
[](https://github.com/anowacki/GeographicLib.jl/actions)
[](https://codecov.io/gh/anowacki/GeographicLib.jl)### Documentation
[](https://anowacki.github.io/GeographicLib.jl/stable)
[](https://anowacki.github.io/GeographicLib.jl/dev)## About
GeographicLib allows you to accurately compute properties of
[geodesics](https://en.wikipedia.org/wiki/Geodesic) on a flattened sphere (e.g., Earth).## Documentation
For full details of using the package, see the
[latest documentation](https://anowacki.github.io/GeographicLib.jl/dev).## Testing
To perform some of its tests, the package relies on the Python port of GeographicLib.
Hence if you do `pkg> test`, PyCall will attempt to import `geographiclib` and
install it if possible.You may also run `julia script/test_GeodTest.jl` which compares the output of this
package and the routines in `libproj` to a set of test results computed with
high precision. For this purpose, you need to have
[Proj installed](https://proj.org/install.html) and will need to edit the script
to point to the location of the `libproj` library.Neither of these tests are necessary to use GeographicLib.jl normally.
## References
- C. F. F. Karney, Transverse Mercator with an accuracy of a few nanometers,
J. Geodesy 85(8), 475–485 (Aug. 2011).
doi:[10.1007/s00190-011-0445-3](https://doi.org/10.1007/s00190-011-0445-3)
- C. F. F. Karney, Algorithms for geodesics, J. Geodesy 87(1), 43–55 (Jan. 2013).
doi:[10.1007/s00190-012-0578-z](https://doi.org/10.1007/s00190-012-0578-z)