An open API service indexing awesome lists of open source software.

https://github.com/answerdotai/fastsql


https://github.com/answerdotai/fastsql

Last synced: 28 days ago
JSON representation

Awesome Lists containing this project

README

          

# fastsql

## Install

pip install fastsql

## Overview

``` python
from fastcore.utils import *
from fastcore.net import urlsave
from fastsql import *
from fastsql.core import NotFoundError
```

We demonstrate `fastsql`‘s features here using the ’chinook’ sample
database.

``` python
url = 'https://github.com/lerocha/chinook-database/raw/master/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite'
path = Path('chinook.sqlite')
if not path.exists(): urlsave(url, path)
```

``` python
db = database("chinook.sqlite"); db
```

Database(sqlite:///chinook.sqlite)

Databases have a `t` property that lists all tables:

``` python
dt = db.t
dt
```

Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track

You can use this to grab a single table…:

``` python
# artist = dt.artists
# artist
```

``` python
artist = dt.Artist
artist
```

…or multiple tables at once:

``` python
dt['Artist','Album','Track','Genre','MediaType']
```

[,
,
,
,
]

It also provides auto-complete in Jupyter, IPython, and nearly any other
interactive Python environment:

You can check if a table is in the database already:

``` python
'Artist' in dt
```

True

Column work in a similar way to tables, using the `c` property:

``` python
ac = artist.c
ac
```

ArtistId, Name

Auto-complete works for columns too:

Columns, tables, and view stringify in a format suitable for including
in SQL statements. That means you can use auto-complete in f-strings.

``` python
qry = f"select * from {artist} where {ac.Name} like 'AC/%'"
print(qry)
```

select * from "Artist" where "Artist"."Name" like 'AC/%'

You can view the results of a select query using `q`:

``` python
db.q(qry)
```

[{'ArtistId': 1, 'Name': 'AC/DC'}]

Views can be accessed through the `v` property:

``` python
album = dt.Album

acca_sql = f"""select {album}.*
from {album} join {artist} using (ArtistId)
where {ac.Name} like 'AC/%'"""

db.create_view("AccaDaccaAlbums", acca_sql, replace=True)
acca_dacca = db.q(f"select * from {db.v.AccaDaccaAlbums}")
acca_dacca
```

[{'AlbumId': 1,
'Title': 'For Those About To Rock We Salute You',
'ArtistId': 1},
{'AlbumId': 4, 'Title': 'Let There Be Rock', 'ArtistId': 1}]

## Dataclass support

A `dataclass` type with the names, types, and defaults of the tables is
created using `dataclass()`:

``` python
album_dc = album.dataclass()
```

``` python
album_dc
```

fastsql.core.Album

Let’s try it:

``` python
album_obj = album_dc(**acca_dacca[0])
album_obj
```

Album(AlbumId=1, Title='For Those About To Rock We Salute You', ArtistId=1)

You can get the definition of the dataclass using fastcore’s
`dataclass_src` – everything is treated as nullable, in order to handle
auto-generated database values:

``` python
src = dataclass_src(album_dc)
hl_md(src, 'python')
```

``` python
@dataclass
class Album:
AlbumId: int | None = UNSET
Title: str | None = UNSET
ArtistId: int | None = UNSET
```

Because `dataclass()` is dynamic, you won’t get auto-complete in editors
like vscode – it’ll only work in dynamic environments like Jupyter and
IPython. For editor support, you can export the full set of dataclasses
to a module, which you can then import from:

``` python
create_mod(db, 'db_dc')
```

``` python
import sys
sys.path.insert(0, '.')
from db_dc import Track
Track()
```

Track(TrackId=UNSET, Name=UNSET, AlbumId=UNSET, MediaTypeId=UNSET, GenreId=UNSET, Composer=UNSET, Milliseconds=UNSET, Bytes=UNSET, UnitPrice=UNSET)

Indexing into a table does a query on primary key:

``` python
dt.Track[1]
```

Track(TrackId=1, Name='For Those About To Rock (We Salute You)', AlbumId=1, MediaTypeId=1, GenreId=1, Composer='Angus Young, Malcolm Young, Brian Johnson', Milliseconds=343719, Bytes=11170334, UnitPrice=Decimal('0.99'))

There’s a shortcut to select from a table – just call it as a function.
If you’ve previously called `dataclass()`, returned iterms will be
constructed using that class by default. There’s lots of params you can
check out, such as `limit`:

``` python
album(limit=2)
```

[Album(AlbumId=1, Title='For Those About To Rock We Salute You', ArtistId=1),
Album(AlbumId=2, Title='Balls to the Wall', ArtistId=2)]

Pass a truthy value as `with_pk` and you’ll get tuples of primary keys
and records:

``` python
album(with_pk=1, limit=2)
```

[(1,
Album(AlbumId=1, Title='For Those About To Rock We Salute You', ArtistId=1)),
(2, Album(AlbumId=2, Title='Balls to the Wall', ArtistId=2))]

Indexing also uses the dataclass by default:

``` python
album[5]
```

Album(AlbumId=5, Title='Big Ones', ArtistId=3)

If you set `xtra` fields, then indexing is also filtered by those. As a
result, for instance in this case, nothing is returned since album 5 is
not created by artist 1:

``` python
album.xtra(ArtistId=1)

try: album[5]
except NotFoundError: print("Not found")
```

Not found

The same filtering is done when using the table as a callable:

``` python
album()
```

[Album(AlbumId=1, Title='For Those About To Rock We Salute You', ArtistId=1),
Album(AlbumId=4, Title='Let There Be Rock', ArtistId=1)]

## Core design

The following methods accept `**kwargs`, passing them along to the first
`dict` param:

- `create`
- `transform`
- `transform_sql`
- `update`
- `insert`
- `upsert`
- `lookup`

We can access a table that doesn’t actually exist yet:

``` python
dt
```

Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track

``` python
cats = dt.Cats
cats
```

We can use keyword arguments to now create that table:

``` python
cats.create(id=int, name=str, weight=float, uid=int, pk='id')
hl_md(cats.schema, 'sql')
```

``` sql
CREATE TABLE "Cats" (
id INTEGER,
name VARCHAR,
weight FLOAT,
uid INTEGER,
PRIMARY KEY (id)
)
```

It we set `xtra` then the additional fields are used for `insert`,
`update`, and `delete`:

``` python
cats.xtra(uid=2)
cat = cats.insert(name='meow', weight=6)
```

The inserted row is returned, including the xtra ‘uid’ field.

``` python
cat
```

{'id': 1, 'name': 'meow', 'weight': 6.0, 'uid': 2}

Using `**` in `update` here doesn’t actually achieve anything, since we
can just pass a `dict` directly – it’s just to show that it works:

``` python
cat['name'] = "moo"
cat['uid'] = 1
cats.update(**cat)
cats()
```

[{'id': 1, 'name': 'moo', 'weight': 6.0, 'uid': 2}]

Attempts to update or insert with xtra fields are ignored.

An error is raised if there’s an attempt to update a record not matching
`xtra` fields:

``` python
cats.xtra(uid=1)
try: cats.update(**cat)
except NotFoundError: print("Not found")
```

Not found

This all also works with dataclasses:

``` python
cats.xtra(uid=2)
cats.dataclass()
cat = cats[1]
cat
```

Cats(id=1, name='moo', weight=6.0, uid=2)

``` python
cats.drop()
cats
```

Alternatively, you can create a table from a class. If it’s not already
a dataclass, it will be converted into one. In either case, the
dataclass will be created (or modified) so that `None` can be passed to
any field (this is needed to support fields such as automatic row ids).

``` python
class Cat: id:int; name:str; weight:float; uid:int
```

``` python
cats = db.create(Cat)
```

``` python
hl_md(cats.schema, 'sql')
```

``` sql
CREATE TABLE cat (
id INTEGER,
name VARCHAR,
weight FLOAT,
uid INTEGER,
PRIMARY KEY (id)
)
```

``` python
cat = Cat(name='咪咪', weight=9)
cats.insert(cat)
```

Cat(id=1, name='咪咪', weight=9.0, uid=None)

## Manipulating data

We try to make the following methods as flexible as possible. Wherever
possible, they support Python dictionaries, dataclasses, and classes.

### .insert()

Creates a record. Returns an instance of the updated record.

Insert using a dictionary.

``` python
cats.insert({'name': 'Rex', 'weight': 12.2})
```

Cat(id=2, name='Rex', weight=12.2, uid=None)

Insert using a dataclass.

``` python
CatDC = cats.dataclass()
cats.insert(CatDC(name='Tom', weight=10.2))
```

Cat(id=3, name='Tom', weight=10.2, uid=None)

Insert using a standard Python class

``` python
cat = cats.insert(Cat(name='Jerry', weight=5.2))
```

### .update()

Updates a record using a Python dict, dataclass, or object, and returns
an instance of the updated record.

Updating from a Python dict:

``` python
cats.update(dict(id=cat.id, name='Jerry', weight=6.2))
```

Cat(id=4, name='Jerry', weight=6.2, uid=None)

Updating from a dataclass:

``` python
cats.update(CatDC(id=cat.id, name='Jerry', weight=6.3))
```

Cat(id=4, name='Jerry', weight=6.3, uid=None)

Updating using a class:

``` python
cats.update(Cat(id=cat.id, name='Jerry', weight=5.7))
```

Cat(id=4, name='Jerry', weight=5.7, uid=None)

### .delete()

Removing data is done by providing the primary key value of the record.

``` python
# Farewell Jerry!
cats.delete(cat.id)
```

Cat(id=4, name='Jerry', weight=5.7, uid=None)

### Multi-field primary keys

Pass a collection of strings to create a multi-field pk:

``` python
class PetFood: catid:int; food:str; qty:int
petfoods = db.create(PetFood, pk=['catid','food'])
print(petfoods.schema)
```

CREATE TABLE pet_food (
catid INTEGER,
food VARCHAR,
qty INTEGER,
PRIMARY KEY (catid, food)
)

You can index into these using multiple values:

``` python
pf = petfoods.insert(PetFood(1, 'tuna', 2))
petfoods[1,'tuna']
```

PetFood(catid=1, food='tuna', qty=2)

Updates work in the usual way:

``` python
pf.qty=3
petfoods.update(pf)
```

PetFood(catid=1, food='tuna', qty=3)

You can also use `upsert` to update if the key exists, or insert
otherwise:

``` python
pf.qty=1
petfoods.upsert(pf)
petfoods()
```

[PetFood(catid=1, food='tuna', qty=1)]

``` python
pf.food='salmon'
petfoods.upsert(pf)
petfoods()
```

[PetFood(catid=1, food='tuna', qty=1), PetFood(catid=1, food='salmon', qty=1)]

`delete` takes a tuple of keys:

``` python
petfoods.delete((1, 'tuna'))
petfoods()
```

[PetFood(catid=1, food='salmon', qty=1)]

## Migrations

FastSQL supports schema migrations to evolve your database over time.
Migrations are SQL or Python files stored in a migrations directory,
numbered sequentially.

The database tracks the current schema version in a `_meta` table. When
you run migrations, only unapplied migrations are executed.

Let’s create a migration to add a priority field to our cats table:

``` python
# Create migrations directory
mig_dir = Path('cat_migrations')
mig_dir.mkdir(exist_ok=True)

# Create a migration to add priority column
migration_sql = 'alter table cat add column color text default "unknown";'
(mig_dir / '1-add_color_to_cat.sql').write_text(migration_sql)
```

56

Check the current schema version (will be 0 initially):

``` python
print(f"Current version: {db.version}")
```

Current version: 0

Run the migration:

``` python
db.migrate('cat_migrations')
```

Applied migration 1: 1-add_color_to_cat.sql

The database version is now updated, and the table structure reflects
the change:

``` python
print(f"New version: {db.version}")
print(f"\nUpdated schema:")
cats = dt.cat
hl_md(cats.schema, 'sql')
```

New version: 1

Updated schema:

``` sql
CREATE TABLE cat (
id INTEGER,
name VARCHAR,
weight FLOAT,
uid INTEGER,
color TEXT DEFAULT "unknown",
PRIMARY KEY (id)
)
```

Existing records now have the priority field with the default value, and
new records can use it too:

``` python
cats.insert({'name': 'Mr. Snuggles', 'weight': 8.5, 'color': 'tuxedo'})
cats()
```

[Cat(id=1, name='咪咪', weight=9.0, uid=None, color='unknown'),
Cat(id=2, name='Rex', weight=12.2, uid=None, color='unknown'),
Cat(id=3, name='Tom', weight=10.2, uid=None, color='unknown'),
Cat(id=4, name='Mr. Snuggles', weight=8.5, uid=None, color='tuxedo')]

If you run `migrate()` again, it won’t reapply migrations that have
already been applied:

``` python
db.migrate('cat_migrations') # No output - migration already applied
```

Migrations can also be Python scripts. Create a file like
`2-update_data.py` that accepts the database connection string as a
command line argument to perform more complex data transformations.
Python migration scripts must handle their own commits:

``` python
# migrations/2-update_data.py
import sys
from fastsql import database

conn_str = sys.argv[1]
db = database(conn_str)

# Perform complex data transformations
for cat in db.t.cat():
if cat.weight > 10:
db.t.cat.update({'id': cat.id, 'priority': 1})

# Python migrations must commit their own changes
db.conn.commit()
```