Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/antoniostipic/cordova-ml-kit

Implements Firebase ML Kit as Cordova plugin on iOS and Android.
https://github.com/antoniostipic/cordova-ml-kit

cordova cordova-plugin firebase image-labeling ionic ionic-framework ml-kit ml-kit-for-firebase text-recognition

Last synced: about 2 months ago
JSON representation

Implements Firebase ML Kit as Cordova plugin on iOS and Android.

Awesome Lists containing this project

README

        

# Cordova ML Kit

Implements ML Kit as Cordova plugin on iOS and Android.

## Installation

Run:

```
npm i cordova-ml-kit
```

## Features

At the moment only Text Recognition and Labeling Images on Android is supported! This plugin requires ``cordova-plugin-firebase``!

| Feature | Android | Android (Cloud) | iOS | iOS (Cloud) |
|------------------------|---------|-----------------|-----|-------------|
| Text recognition | [x] | [x] | [ ] | [ ] |
| Face detection | [ ] | | [ ] | |
| Barcode scanning | [ ] | | [ ] | |
| Image labeling | [x] | [x] | [ ] | [ ] |
| Landmark recognition | | [ ] | | [ ] |
| Custom model inference | [ ] | | [ ] | |

Some features of ML Kit are only available on device others only on cloud. Please see https://firebase.google.com/docs/ml-kit/ for more information!

## API Methods
### Text recognition

##### **`getText(img, options, success, error): void`**
Text recognition on device

##### **`getTextCloud(img, options, success, error): void`**
Text recognition on Cloud - Much better results, but you need an active paid plan (Blaze Plan) and activate it on Google Cloud. Parameter are the same like getText

### Image labeling

##### **`getLabel(img, options, success, error): void`**
Image Labeling on device

##### **`getLabelCloud(img, options, success, error): void`**
Image Labeling on Cloud

### Face detection

### Barcode scanning

### Landmark recognition

### Custom model inference

## Usage

```javascript
window["MlKitPlugin"].getText(fileBuffer, {},
(success) => {
console.log("getText success", success);
},
(error) => {
console.log("getText error", error);
});
```