Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/antononcube/Raku-Data-Reshapers

Raku package with data reshaping functions for different data structures (full arrays, Red tables, Text::CSV tables.)
https://github.com/antononcube/Raku-Data-Reshapers

data data-transformation data-wrangling rakulang

Last synced: 2 months ago
JSON representation

Raku package with data reshaping functions for different data structures (full arrays, Red tables, Text::CSV tables.)

Awesome Lists containing this project

README

        

# Raku Data::Reshapers

[![MacOS](https://github.com/antononcube/Raku-Data-Reshapers/actions/workflows/macos.yml/badge.svg)](https://github.com/antononcube/Raku-Data-Reshapers/actions/workflows/macos.yml)
[![Linux](https://github.com/antononcube/Raku-Data-Reshapers/actions/workflows/linux.yml/badge.svg)](https://github.com/antononcube/Raku-Data-Reshapers/actions/workflows/linux.yml)
[![Win64](https://github.com/antononcube/Raku-Data-Reshapers/actions/workflows/windows.yml/badge.svg)](https://github.com/antononcube/Raku-Data-Reshapers/actions/workflows/windows.yml)
[![https://raku.land/zef:antononcube/Data::Reshapers](https://raku.land/zef:antononcube/Data::Reshapers/badges/version)](https://raku.land/zef:antononcube/Data::Reshapers)
[![License: Artistic-2.0](https://img.shields.io/badge/License-Artistic%202.0-0298c3.svg)](https://opensource.org/licenses/Artistic-2.0)

This Raku package has data reshaping functions for different data structures that are
coercible to full arrays.

The supported data structures are:
- Positional-of-hashes
- Positional-of-arrays

The most important data reshaping provided by the package over those data structures are:

- Cross tabulation, `cross-tabulate`
- Long format conversion, `to-long-format`
- Wide format conversion, `to-wide-format`
- Join across (aka `SQL JOIN`), `join-across`
- Transpose, `transpose`

The first four operations are fundamental in data wrangling and data analysis;
see [AA1, Wk1, Wk2, AAv1-AAv2].

(Transposing of tabular data is, of course, also fundamental, but it also can be seen as a
basic functional programming operation.)

There are other reshaping functions for:

- Flattening and tallying,
- Simple and stratified (dataset) splitting
- Taking, renaming, and deleting of table columns,
- Table column separation

An overview is given in (some part of) the presentation
["TRC 2022 Implementation of ML algorithms in Raku"](https://youtu.be/efRHfjYebs4?si=-KHucA8exZ8Cxx-w&t=1335),
[AAv4].

More detailed explanations of the data wrangling methodology and workflows is given in the article
["Introduction to data wrangling with Raku"](https://rakuforprediction.wordpress.com/2021/12/31/introduction-to-data-wrangling-with-raku/), [AA2].
(And its Bulgarian version [AA3].)

This package is one of the translation targets of the interpreter(s) provided by the package
["DSL::English::DataQueryWorkflows"](https://github.com/antononcube/Raku-DSL-English-DataQueryWorkflows), [AAp2].

------

## Usage examples

### Cross tabulation

Making contingency tables -- or cross tabulation -- is a fundamental statistics and data analysis operation,
[Wk1, AA1].

Here is an example using the
[Titanic](https://en.wikipedia.org/wiki/Titanic)
dataset (that is provided by this package through the function `get-titanic-dataset`):

```perl6
use Data::Reshapers;

my @tbl = get-titanic-dataset();
my $res = cross-tabulate( @tbl, 'passengerSex', 'passengerClass');
say $res;
```

```perl6
to-pretty-table($res);
```

### Long format

Conversion to long format allows column names to be treated as data.

(More precisely, when converting to long format specified column names of a tabular dataset become values
in a dedicated column, e.g. "Variable" in the long format.)

```perl6
my @tbl1 = @tbl.roll(3);
.say for @tbl1;
```

```perl6
.say for to-long-format( @tbl1 );
```

```perl6
my @lfRes1 = to-long-format( @tbl1, 'id', [], variablesTo => "VAR", valuesTo => "VAL2" );
.say for @lfRes1;
```

### Wide format

Here we transform the long format result `@lfRes1` above into wide format --
the result has the same records as the `@tbl1`:

```perl6
to-pretty-table( to-wide-format( @lfRes1, 'id', 'VAR', 'VAL2' ) );
```

### Transpose

Using cross tabulation result above:

```perl6
my $tres = transpose( $res );

to-pretty-table($res, title => "Original");
```

```perl6
to-pretty-table($tres, title => "Transposed");
```

------

## Type system

Earlier versions of the package implemented a type "deduction" system.
Currently, the type system is provided by the package [
"Data::TypeSystem"](https://resources.wolframcloud.com/FunctionRepository), [AAp1].

The type system conventions follow those of Mathematica's
[`Dataset`](https://reference.wolfram.com/language/ref/Dataset.html)
-- see the presentation
["Dataset improvements"](https://www.wolfram.com/broadcast/video.php?c=488&p=4&disp=list&v=3264).

Here we get the Titanic dataset, change the "passengerAge" column values to be numeric,
and show dataset's dimensions:

```perl6
my @dsTitanic = get-titanic-dataset(headers => 'auto');
@dsTitanic = @dsTitanic.map({$_ = $_.Numeric; $_}).Array;
dimensions(@dsTitanic)
```

Here is a sample of dataset's records:

```perl6
to-pretty-table(@dsTitanic.pick(5).List, field-names => )
```

Here is the type of a single record:

```perl6
use Data::TypeSystem;
deduce-type(@dsTitanic[12])
```

Here is the type of single record's values:

```perl6
deduce-type(@dsTitanic[12].values.List)
```

Here is the type of the whole dataset:

```perl6
deduce-type(@dsTitanic)
```

Here is the type of "values only" records:

```perl6
my @valArr = @dsTitanic>>.values>>.Array;
deduce-type(@valArr)
```

Here is the type of the string values only records:

```perl6
my @valArr = delete-columns(@dsTitanic, 'passengerAge')>>.values>>.Array;
deduce-type(@valArr)
```

------

## TODO

1. [X] DONE Simpler more convenient interface.

- ~~Currently, a user have to specify four different namespaces
in order to be able to use all package functions.~~

2. [ ] TODO More extensive long format tests.

3. [ ] TODO More extensive wide format tests.

4. [X] DONE Implement verifications for:

- See the type system implementation -- it has all of functionalities listed here.

- [X] DONE Positional-of-hashes

- [X] DONE Positional-of-arrays

- [X] DONE Positional-of-key-to-array-pairs

- [X] DONE Positional-of-hashes, each record of which has:

- [X] Same keys
- [X] Same type of values of corresponding keys

- [X] DONE Positional-of-arrays, each record of which has:

- [X] Same length
- [X] Same type of values of corresponding elements

5. [X] DONE Implement "nice tabular visualization" using
[Pretty::Table](https://gitlab.com/uzluisf/raku-pretty-table)
and/or
[Text::Table::Simple](https://github.com/ugexe/Perl6-Text--Table--Simple).

6. [X] DONE Document examples using pretty tables.

7. [X] DONE Implement transposing operation for:
- [X] hash of hashes
- [X] hash of arrays
- [X] array of hashes
- [X] array of arrays
- [X] array of key-to-array pairs

8. [X] DONE Implement to-pretty-table for:
- [X] hash of hashes
- [X] hash of arrays
- [X] array of hashes
- [X] array of arrays
- [X] array of key-to-array pairs

9. [ ] DONE Implement join-across:
- [X] DONE inner, left, right, outer
- [X] DONE single key-to-key pair
- [X] DONE multiple key-to-key pairs
- [X] DONE optional fill-in of missing values
- [ ] TODO handling collisions

10. [X] DONE Implement semi- and anti-join

11. [ ] TODO Implement to long format conversion for:
- [ ] TODO hash of hashes
- [ ] TODO hash of arrays

12. [ ] TODO Speed/performance profiling.
- [ ] TODO Come up with profiling tests
- [ ] TODO Comparison with R
- [ ] TODO Comparison with Python

13. [ ] TODO Type system.
- [X] DONE Base type (Int, Str, Numeric)
- [X] DONE Homogenous list detection
- [X] DONE Association detection
- [X] DONE Struct discovery
- [ ] TODO Enumeration detection
- [X] DONE Dataset detection
- [X] List of hashes
- [X] Hash of hashes
- [X] List of lists
-
14. [X] DONE Refactor the type system into a separate package.

15. [X] DONE "Simple" or fundamental functions
- [X] `flatten`
- [X] `take-drop`
- [X] `tally`
- Currently in "Data::Summarizers".
- Can be easily, on the spot, "implemented" with `.BagHash.Hash`.

------

## References

### Articles

[AA1] Anton Antonov,
["Contingency tables creation examples"](https://mathematicaforprediction.wordpress.com/2016/10/04/contingency-tables-creation-examples/),
(2016),
[MathematicaForPrediction at WordPress](https://mathematicaforprediction.wordpress.com).

[AA2] Anton Antonov,
["Introduction to data wrangling with Raku"](https://rakuforprediction.wordpress.com/2021/12/31/introduction-to-data-wrangling-with-raku/),
(2021),
[RakuForPrediction at WordPress](https://rakuforprediction.wordpress.com).

[AA3] Anton Antonov,
["Увод в обработката на данни с Raku"](https://rakuforprediction.wordpress.com/2022/05/24/увод-в-обработката-на-данни-с-raku/),
(2022),
[RakuForPrediction at WordPress](https://rakuforprediction.wordpress.com).

[Wk1] Wikipedia entry, [Contingency table](https://en.wikipedia.org/wiki/Contingency_table).

[Wk2] Wikipedia entry, [Wide and narrow data](https://en.wikipedia.org/wiki/Wide_and_narrow_data).

### Functions, repositories

[AAf1] Anton Antonov,
[CrossTabulate](https://resources.wolframcloud.com/FunctionRepository/resources/CrossTabulate),
(2019),
[Wolfram Function Repository](https://resources.wolframcloud.com/FunctionRepository).

[AAf2] Anton Antonov,
[LongFormDataset](https://resources.wolframcloud.com/FunctionRepository/resources/LongFormDataset),
(2020),
[Wolfram Function Repository](https://resources.wolframcloud.com/FunctionRepository).

[AAf3] Anton Antonov,
[WideFormDataset](https://resources.wolframcloud.com/FunctionRepository/resources/WideFormDataset),
(2021),
[Wolfram Function Repository](https://resources.wolframcloud.com/FunctionRepository).

[AAf4] Anton Antonov,
[RecordsSummary](https://resources.wolframcloud.com/FunctionRepository/resources/RecordsSummary),
(2019),
[Wolfram Function Repository](https://resources.wolframcloud.com/FunctionRepository).

[AAp1] Anton Antonov,
[Data::TypeSystem Raku package](https://github.com/antononcube/Raku-Data-TypeSystem),
(2023),
[GitHub/antononcube](https://github.com/antononcube).

[AAp2] Anton Antonov,
[DSL::English::DataQueryWorkflows Raku package](https://github.com/antononcube/Raku-DSL-English-DataQueryWorkflows),
(2022-2024),
[GitHub/antononcube](https://github.com/antononcube).

### Videos

[AAv1] Anton Antonov,
["Multi-language Data-Wrangling Conversational Agent"](https://www.youtube.com/watch?v=pQk5jwoMSxs),
(2020),
[YouTube channel of Wolfram Research, Inc.](https://www.youtube.com/channel/UCJekgf6k62CQHdENWf2NgAQ).
(Wolfram Technology Conference 2020 presentation.)

[AAv2] Anton Antonov,
["Data Transformation Workflows with Anton Antonov, Session #1"](https://www.youtube.com/watch?v=iXrXMQdXOsM),
(2020),
[YouTube channel of Wolfram Research, Inc.](https://www.youtube.com/channel/UCJekgf6k62CQHdENWf2NgAQ).

[AAv3] Anton Antonov,
["Data Transformation Workflows with Anton Antonov, Session #2"](https://www.youtube.com/watch?v=DWGgFsaEOsU),
(2020),
[YouTube channel of Wolfram Research, Inc.](https://www.youtube.com/channel/UCJekgf6k62CQHdENWf2NgAQ).

[AAv4] Anton Antonov,
["TRC 2022 Implementation of ML algorithms in Raku](https://youtu.be/efRHfjYebs4?si=-KHucA8exZ8Cxx-w),
(2022),
[YouTube/@AAA4Prediction](https://www.youtube.com/@AAA4prediction).