Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/apache/datafusion-ray

Apache DataFusion Ray
https://github.com/apache/datafusion-ray

Last synced: about 12 hours ago
JSON representation

Apache DataFusion Ray

Awesome Lists containing this project

README

        

# DataFusion on Ray

> This was originally a research project donated from [ray-sql] to evaluate performing distributed SQL queries from
> Python, using [Ray] and [Apache DataFusion]

[ray-sql]: https://github.com/datafusion-contrib/ray-sql

DataFusion Ray is a distributed Python DataFrame and SQL query engine powered by the Rust implementation
of [Apache Arrow], [Apache DataFusion], and [Ray].

[Ray]: https://www.ray.io/
[Apache Arrow]: https://arrow.apache.org/
[Apache DataFusion]: https://datafusion.apache.org/

## Comparison to other DataFusion projects

### Comparison to DataFusion Ballista

- Unlike [DataFusion Ballista], DataFusion Ray does not provide its own distributed scheduler and instead relies on
Ray for this functionality. As a result of this design choice, DataFusion Ray is a much smaller and simpler project.
- DataFusion Ray is Python-first, and DataFusion Ballista is Rust-first

[DataFusion Ballista]: https://github.com/apache/datafusion-ballista

### Comparison to DataFusion Python

- [DataFusion Python] provides a Python DataFrame and SQL API for in-process execution. DataFusion Ray extends
DataFusion Python to provide scalability across multiple nodes.

[DataFusion Python]: https://github.com/apache/datafusion-python

## Example

Run the following example live in your browser using a Google Colab [notebook](https://colab.research.google.com/drive/1tmSX0Lu6UFh58_-DBUVoyYx6BoXHOszP?usp=sharing).

```python
import os
import ray

from datafusion_ray import DatafusionRayContext

SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__))

# Start a local cluster
ray.init(resources={"worker": 1})

# Create a context and register a table
ctx = DatafusionRayContext(2)
# Register either a CSV or Parquet file
# ctx.register_csv("tips", f"{SCRIPT_DIR}/tips.csv", True)
ctx.register_parquet("tips", f"{SCRIPT_DIR}/tips.parquet")

result_set = ctx.sql(
"select sex, smoker, avg(tip/total_bill) as tip_pct from tips group by sex, smoker"
)
for record_batch in result_set:
print(record_batch.to_pandas())
```

## Status

- DataFusion Ray can run all queries in the TPC-H benchmark

## Features

- Mature SQL support (CTEs, joins, subqueries, etc) thanks to DataFusion
- Support for CSV and Parquet files

## Building

```bash
# prepare development environment (used to build wheel / install in development)
python3 -m venv venv
# activate the venv
source venv/bin/activate
# update pip itself if necessary
python -m pip install -U pip
# install dependencies (for Python 3.8+)
python -m pip install -r requirements-in.txt
```

Whenever rust code changes (your changes or via `git pull`):

```bash
# make sure you activate the venv using "source venv/bin/activate" first
maturin develop; python -m pytest
```

## Testing

Running local Rust tests require generating the tpch-data. This can be done
by running the following commands:

```bash
export TPCH_TEST_PARTITIONS=1
export TPCH_SCALING_FACTOR=1
./scripts/gen-test-data.sh
```

This will generate data into a top-level `data` directory.

Tests can be run with:

```shell
export TPCH_DATA_PATH=`pwd`/data
cargo test
```

## Benchmarking

Create a release build when running benchmarks, then use pip to install the wheel.

```bash
maturin develop --release
```

## How to update dependencies

To change test dependencies, change the `requirements.in` and run

```bash
# install pip-tools (this can be done only once), also consider running in venv
python -m pip install pip-tools
python -m piptools compile --generate-hashes -o requirements-310.txt
```

To update dependencies, run with `-U`

```bash
python -m piptools compile -U --generate-hashes -o requirements-310.txt
```

More details [here](https://github.com/jazzband/pip-tools)