Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/apache/echarts
Apache ECharts is a powerful, interactive charting and data visualization library for browser
https://github.com/apache/echarts
apache canvas charting-library charts data-visualization data-viz echarts svg visualization
Last synced: 5 days ago
JSON representation
Apache ECharts is a powerful, interactive charting and data visualization library for browser
- Host: GitHub
- URL: https://github.com/apache/echarts
- Owner: apache
- License: apache-2.0
- Created: 2013-04-03T03:18:59.000Z (almost 12 years ago)
- Default Branch: master
- Last Pushed: 2024-10-29T08:09:18.000Z (2 months ago)
- Last Synced: 2024-10-29T09:26:03.308Z (2 months ago)
- Topics: apache, canvas, charting-library, charts, data-visualization, data-viz, echarts, svg, visualization
- Language: TypeScript
- Homepage: https://echarts.apache.org
- Size: 229 MB
- Stars: 60,494
- Watchers: 1,971
- Forks: 19,615
- Open Issues: 2,168
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- awesome-frontend - ECharts - A powerful charts library from Baidu. ![](https://img.shields.io/github/stars/apache/echarts.svg?style=social&label=Star) (Repository / Data Visualization)
- awesome-canvas - echarts - Apache ECharts is a powerful, interactive charting and data visualization library for browser. ![](https://img.shields.io/github/stars/apache/echarts?style=social) ![](https://img.shields.io/github/forks/apache/echarts?style=social) (Libraries / Charts Libraries)
- awesomeLibrary - echarts
- awesome-time-series - echarts
- awesome-github-star - echarts
- awesome-starred - apache/echarts - Apache ECharts is a powerful, interactive charting and data visualization library for browser (data-visualization)
- awesome-starts - apache/echarts - Apache ECharts is a powerful, interactive charting and data visualization library for browser (TypeScript)
- awesome - apache/echarts - Apache ECharts is a powerful, interactive charting and data visualization library for browser (TypeScript)
- awesome-list - Apache ECharts - A powerful, interactive charting and data visualization library for browser. (Data Visualization / Data Management)
- best-of-react - GitHub - 12% open · ⏱️ 21.05.2024): (Data Visualization)
- StarryDivineSky - apache/echarts
- awesome-javascript - echarts - Enterprise Charts. (Data Visualization / Runner)
- awesome-echarts - Apache ECharts
- awesome-production-machine-learning - Apache ECharts - Apache ECharts is a powerful, interactive charting and data visualization library for browser. (Industry Strength Visualisation)
- jimsghstars - apache/echarts - Apache ECharts is a powerful, interactive charting and data visualization library for browser (TypeScript)
- Awesome-GitHub-Repo - echarts - ECharts 是国内应用最广泛的前端可视化生成工具,像素级的渲染效果使得绘制的图像几近完美。[<img src="https://tva1.sinaimg.cn/large/008i3skNly1gxlhtmg11mj305k05k746.jpg" alt="微信" width="18px" height="18px" />](https://mp.weixin.qq.com/s?__biz=MzUxNjg4NDEzNA%3D%3D&chksm=f9a22929ced5a03ffded2c41fd257d3eb96be02195de3ca66a083177bf5f73e2f418728f7f06&idx=1&mid=2247498464&scene=21&sn=4f85123d6ca67578ca7bad8f7dc71453#wechat_redirect) (大厂开源 / 百度开源)
- awesome - apache/echarts - Apache ECharts is a powerful, interactive charting and data visualization library for browser (TypeScript)
README
# Apache ECharts
Apache ECharts is a free, powerful charting and visualization library offering easy ways to add intuitive, interactive, and highly customizable charts to your commercial products. It is written in pure JavaScript and based on zrender, which is a whole new lightweight canvas library.
**[中文官网](https://echarts.apache.org/zh/index.html)** | **[ENGLISH HOMEPAGE](https://echarts.apache.org/en/index.html)**
[![License](https://img.shields.io/npm/l/echarts?color=5470c6)](https://github.com/apache/echarts/blob/master/LICENSE) [![Latest npm release](https://img.shields.io/npm/v/echarts?color=91cc75)](https://www.npmjs.com/package/echarts) [![NPM downloads](https://img.shields.io/npm/dm/echarts.svg?label=npm%20downloads&style=flat&color=fac858)](https://www.npmjs.com/package/echarts) [![Contributors](https://img.shields.io/github/contributors/apache/echarts?color=3ba272)](https://github.com/apache/echarts/graphs/contributors)
[![Build Status](https://github.com/apache/echarts/actions/workflows/ci.yml/badge.svg)](https://github.com/apache/echarts/actions/workflows/ci.yml)
## Get Apache ECharts
You may choose one of the following methods:
+ Download from the [official website](https://echarts.apache.org/download.html)
+ `npm install echarts --save`
+ CDN: [jsDelivr CDN](https://www.jsdelivr.com/package/npm/echarts?path=dist)## Docs
+ [Get Started](https://echarts.apache.org/handbook)
+ [API](https://echarts.apache.org/api.html)
+ [Option Manual](https://echarts.apache.org/option.html)
+ [Examples](https://echarts.apache.org/examples)## Get Help
+ [GitHub Issues](https://github.com/apache/echarts/issues) for bug report and feature requests
+ Email [[email protected]](mailto:[email protected]) for general questions
+ Subscribe to the [mailing list](https://echarts.apache.org/maillist.html) to get updated with the project## Build
Build echarts source code:
Execute the instructions in the root directory of the echarts:
([Node.js](https://nodejs.org) is required)```shell
# Install the dependencies from NPM:
npm install# Rebuild source code immediately in watch mode when changing the source code.
# It opens the `./test` directory, and you may open `-cases.html` to get the list
# of all test cases.
# If you wish to create a test case, run `npm run mktest:help` to learn more.
npm run dev# Check the correctness of TypeScript code.
npm run checktype# If intending to build and get all types of the "production" files:
npm run release
```Then the "production" files are generated in the `dist` directory.
## Contribution
Please refer to the [contributing](https://github.com/apache/echarts/blob/master/CONTRIBUTING.md) document if you wish to debug locally or make pull requests.
## Resources
### Awesome ECharts
[https://github.com/ecomfe/awesome-echarts](https://github.com/ecomfe/awesome-echarts)
### Extensions
+ [ECharts GL](https://github.com/ecomfe/echarts-gl) An extension pack of ECharts, which provides 3D plots, globe visualization, and WebGL acceleration.
+ [Liquidfill 水球图](https://github.com/ecomfe/echarts-liquidfill)
+ [Wordcloud 字符云](https://github.com/ecomfe/echarts-wordcloud)
+ [Extension for Baidu Map 百度地图扩展](https://github.com/apache/echarts/tree/master/extension-src/bmap) An extension provides a wrapper of Baidu Map Service SDK.
+ [vue-echarts](https://github.com/ecomfe/vue-echarts) ECharts component for Vue.js
+ [echarts-stat](https://github.com/ecomfe/echarts-stat) Statistics tool for ECharts
## License
ECharts is available under the Apache License V2.
## Code of Conduct
Please refer to [Apache Code of Conduct](https://www.apache.org/foundation/policies/conduct.html).
## Paper
Deqing Li, Honghui Mei, Yi Shen, Shuang Su, Wenli Zhang, Junting Wang, Ming Zu, Wei Chen.
[ECharts: A Declarative Framework for Rapid Construction of Web-based Visualization](https://www.sciencedirect.com/science/article/pii/S2468502X18300068).
Visual Informatics, 2018.