Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/aplbrain/grand-cypher

Implementation of the Cypher language for searching NetworkX graphs
https://github.com/aplbrain/grand-cypher

cypher grand graph graph-database neo4j networks networkx python

Last synced: 7 days ago
JSON representation

Implementation of the Cypher language for searching NetworkX graphs

Awesome Lists containing this project

README

        

GrandCypher



GitHub Workflow Status (branch)

```shell
pip install grand-cypher
# Note: You will want a version of grandiso>=2.2.0 for best performance!
# pip install -U 'grandiso>=2.2.0'
```

GrandCypher is a partial (and growing!) implementation of the Cypher graph query language written in Python, for Python data structures.

You likely already know Cypher from the Neo4j Graph Database. Use it with your favorite graph libraries in Python!

## Usage

### Example Usage with NetworkX:

```python
from grandcypher import GrandCypher
import networkx as nx

GrandCypher(nx.karate_club_graph()).run("""
MATCH (A)-[]->(B)
MATCH (B)-[]->(C)
WHERE A.club == "Mr. Hi"
RETURN A.club, B.club
""")
```

See [examples.md](docs/examples.md) for more!

### Example Usage with SQL

Create your own "Sqlite for Neo4j"! This example uses [grand-graph](https://github.com/aplbrain/grand) to run queries in SQL:

```python
import grand
from grandcypher import GrandCypher

G = grand.Graph(
backend=grand.backends.SQLBackend(
db_url="my_persisted_graph.db",
directed=True
)
)

# use the networkx-style API for the Grand library:
G.nx.add_node("A", foo="bar")
G.nx.add_edge("A", "B")
G.nx.add_edge("B", "C")
G.nx.add_edge("C", "A")

GrandCypher(G.nx).run("""
MATCH (A)-[]->(B)-[]->(C)
MATCH (C)-[]->(A)
WHERE
A.foo == "bar"
RETURN
A, B, C
""")
```

# Feature Parity

| Feature | Support |
| ----------------------------------------------------------- | --------------------- |
| Multiple `MATCH` clauses | ✅ |
| `WHERE`-clause filtering on nodes | ✅ |
| Anonymous `-[]-` edges | ✅ |
| `LIMIT` | ✅ |
| `SKIP` | ✅ |
| Node/edge attributes with `{}` syntax | ✅ |
| `WHERE`-clause filtering on edges | ✅ |
| Named `-[]-` edges | ✅ |
| Chained `()-[]->()-[]->()` edges | ✅ Thanks @khoale88! |
| Backwards `()<-[]-()` edges | ✅ Thanks @khoale88! |
| Anonymous `()` nodes | ✅ Thanks @khoale88! |
| Undirected `()-[]-()` edges | ✅ Thanks @khoale88! |
| Boolean Arithmetic (`AND`/`OR`) | ✅ Thanks @khoale88! |
| `(:Type)` node-labels | ✅ Thanks @khoale88! |
| `[:Type]` edge-labels | ✅ Thanks @khoale88! |
| `DISTINCT` | ✅ Thanks @jackboyla! |
| `ORDER BY` | ✅ Thanks @jackboyla! |
| Aggregation functions (`COUNT`, `SUM`, `MIN`, `MAX`, `AVG`) | ✅ Thanks @jackboyla! |
| Aliasing of returned entities (`return X as Y`) | ✅ Thanks @jackboyla! |
| Negated edges (`where not (a)-->(b)`) | 🥺 |
| `OPTIONAL MATCH` | 🥺 |
| Graph mutations (e.g. `DELETE`, `SET`,...) | 🥺 |

| | | | |
| -------------- | -------------- | ----------------- | ---------------- |
| ✅ = Supported | 🛣 = On Roadmap | 🥺 = Help Welcome | 🔴 = Not Planned |

## Citing

If this tool is helpful to your research, please consider citing it with:

```bibtex
# https://doi.org/10.1038/s41598-021-91025-5
@article{Matelsky_Motifs_2021,
title={{DotMotif: an open-source tool for connectome subgraph isomorphism search and graph queries}},
volume={11},
ISSN={2045-2322},
url={http://dx.doi.org/10.1038/s41598-021-91025-5},
DOI={10.1038/s41598-021-91025-5},
number={1},
journal={Scientific Reports},
publisher={Springer Science and Business Media LLC},
author={Matelsky, Jordan K. and Reilly, Elizabeth P. and Johnson, Erik C. and Stiso, Jennifer and Bassett, Danielle S. and Wester, Brock A. and Gray-Roncal, William},
year={2021},
month={Jun}
}
```