Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/apple/corenet
CoreNet: A library for training deep neural networks
https://github.com/apple/corenet
Last synced: about 15 hours ago
JSON representation
CoreNet: A library for training deep neural networks
- Host: GitHub
- URL: https://github.com/apple/corenet
- Owner: apple
- License: other
- Created: 2024-04-18T16:52:40.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2024-10-14T17:43:28.000Z (3 months ago)
- Last Synced: 2025-01-07T10:06:43.728Z (8 days ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 4 MB
- Stars: 6,994
- Watchers: 65
- Forks: 543
- Open Issues: 16
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- ai-game-devtools - CoreNet
- awesome-production-machine-learning - CoreNet - CoreNet is a deep neural network toolkit that allows researchers and engineers to train standard and novel small and large-scale models for variety of tasks, including foundation models (e.g., CLIP and LLM), object classification, object detection, and semantic segmentation. (Training Orchestration)
- jimsghstars - apple/corenet - CoreNet: A library for training deep neural networks (Jupyter Notebook)
- AiTreasureBox - apple/corenet - 01-13_6994_-1](https://img.shields.io/github/stars/apple/corenet.svg)|CoreNet: A library for training deep neural networks| (Repos)
- StarryDivineSky - apple/corenet
README
# CoreNet: A library for training deep neural networks
CoreNet is a deep neural network toolkit that allows researchers and engineers to train standard and novel small and large-scale models for variety of tasks, including foundation models (e.g., CLIP and LLM), object classification, object detection, and semantic segmentation.
## Table of contents
* [What's new?](#whats-new)
* [Research efforts at Apple using CoreNet](#research-efforts-at-apple-using-corenet)
* [Installation](#installation)
* [Directory Structure](#directory-structure)
* [Maintainers](#maintainers)
* [Contributing to CoreNet](#contributing-to-corenet)
* [License](#license)
* [Relationship with CVNets](#relationship-with-cvnets)
* [Citation](#citation)## What's new?
* ***October 2024***: Version 0.1.1 of the CoreNet library includes
* [KV Prediction](./projects/kv-prediction/)## Research efforts at Apple using CoreNet
Below is the list of publications from Apple that uses CoreNet. Also, training and evaluation recipes, as well as links to pre-trained models, can be found inside the [projects](./projects/) folder. Please refer to it for further details.
* [KV Prediction for Improved Time to First Token](https://arxiv.org/abs/2410.08391)
* [OpenELM: An Efficient Language Model Family with Open Training and Inference Framework](https://arxiv.org/abs/2404.14619)
* [CatLIP: CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data](https://arxiv.org/abs/2404.15653)
* [Reinforce Data, Multiply Impact: Improved Model Accuracy and Robustness with Dataset Reinforcement](https://arxiv.org/abs/2303.08983)
* [CLIP meets Model Zoo Experts: Pseudo-Supervision for Visual Enhancement](https://arxiv.org/abs/2310.14108)
* [FastVit: A Fast Hybrid Vision Transformer using Structural Reparameterization](https://arxiv.org/abs/2303.14189)
* [Bytes Are All You Need: Transformers Operating Directly on File Bytes](https://arxiv.org/abs/2306.00238)
* [MobileOne: An Improved One millisecond Mobile Backbone](https://arxiv.org/abs/2206.04040)
* [RangeAugment: Efficient Online Augmentation with Range Learning](https://arxiv.org/abs/2212.10553)
* [Separable Self-attention for Mobile Vision Transformers (MobileViTv2)](https://arxiv.org/abs/2206.02680)
* [CVNets: High performance library for Computer Vision, ACM MM'22](https://arxiv.org/abs/2206.02002)
* [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer, ICLR'22](https://arxiv.org/abs/2110.02178)## Installation
You will need Git LFS (instructions below) to run tests and Jupyter notebooks
([instructions](https://jupyter.org/install)) in this repository,
and to contribute to it so we recommend that you install and activate it first.On Linux we recommend to use Python 3.10+ and PyTorch (version >= v2.1.0), on
macOS system Python 3.9+ should be sufficient.Note that the optional dependencies listed below are required if you'd like to
make contributions and/or run tests.For Linux (substitute `apt` for your package manager):
```bash
sudo apt install git-lfsgit clone [email protected]:apple/corenet.git
cd corenet
git lfs install
git lfs pull
# The following venv command is optional, but recommended. Alternatively, you can create and activate a conda environment.
python3 -m venv venv && source venv/bin/activate
python3 -m pip install --editable .
```To install optional dependencies for audio and video processing:
```bash
sudo apt install libsox-dev ffmpeg
```For macOS, assuming you use Homebrew:
```bash
brew install git-lfsgit clone [email protected]:apple/corenet.git
cd corenet
cd \$(pwd -P) # See the note below.
git lfs install
git lfs pull
# The following venv command is optional, but recommended. Alternatively, you can create and activate a conda environment.
python3 -m venv venv && source venv/bin/activate
python3 -m pip install --editable .
```To install optional dependencies for audio and video processing:
```bash
brew install sox ffmpeg
```Note that on macOS the file system is case insensitive, and case sensitivity
can cause issues with Git. You should access the repository on disk as if the
path were case sensitive, i.e. with the same capitalization as you see when you
list the directories `ls`. You can switch to such a path with the `cd $(pwd -P)`
command.## Directory Structure
This section provides quick access and a brief description for important CoreNet directories.
Description
Quick Access
Getting Started
Working with the examples is an easy way to get started with CoreNet.
└── tutorials
├── train_a_new_model_on_a_new_dataset_from_scratch.ipynb
├── guide_slurm_and_multi_node_training.md
├── clip.ipynb
├── semantic_segmentation.ipynb
└── object_detection.ipynb
Training Recipes
CoreNet provides reproducible training recipes, in addition to the pretrained model
weights and checkpoints for the publications that are listed inprojects/
directory.Publication project directories generally contain the following contents:
* `README.md` provides documentation, links to the pretrained weights, and citations.
* `/.yaml` provides configuration for reproducing the trainings and evaluations.
└── projects
├── kv-prediction (*)
├── byteformer
├── catlip
├── clip
├── fastvit
├── mobilenet_v1
├── mobilenet_v2
├── mobilenet_v3
├── mobileone
├── mobilevit
├── mobilevit_v2
├── openelm
├── range_augment
├── resnet
└── vit
(*) Newly released.
MLX Examples
MLX examples demonstrate how to run CoreNet models efficiently on Apple Silicon.
Please find further information in theREADME.md
file within the corresponding example directory.
└──mlx_example
├── clip
└── open_elm
Model Implementations
Models are organized by tasks (e.g. "classification"). You can find all model implementations for each
task in the corresponding task folder.Each model class is decorated by a
`@MODEL_REGISTRY.register(name="", type="")` decorator.
To use a model class in CoreNet training or evaluation,
assign `models..name = ` in the YAML configuration.
└── corenet
└── modeling
└── models
├── audio_classification
├── classification
├── detection
├── language_modeling
├── multi_modal_img_text
└── segmentation
Datasets
Similarly to the models, datasets are also categorized by tasks.
└── corenet
└── data
└── datasets
├── audio_classification
├── classification
├── detection
├── language_modeling
├── multi_modal_img_text
└── segmentation
Other key directories
In this section, we have highlighted the rest of the key directories that implement
classes corresponding to the names that are referenced in the YAML configurations.
└── corenet
├── loss_fn
├── metrics
├── optims
│ └── scheduler
├── train_eval_pipelines
├── data
│ ├── collate_fns
│ ├── sampler
│ ├── text_tokenizer
│ ├── transforms
│ └── video_reader
└── modeling
├── layers
├── modules
├── neural_augmentor
└── text_encoders## Maintainers
This code is developed and maintained by Maxwell Horton, Mohammad Sekhavat Yanzi Jin, and Dmitry Belenko.### Previous Maintainers
* Sachin Mehta
* Farzad Abdolhosseini## Contributing to CoreNet
We welcome PRs from the community! You can find information about contributing to CoreNet in our [contributing](CONTRIBUTING.md) document.
Please remember to follow our [Code of Conduct](CODE_OF_CONDUCT.md).
## License
For license details, see [LICENSE](LICENSE).
## Relationship with CVNets
CoreNet evolved from CVNets, to encompass a broader range of applications beyond computer vision. Its expansion facilitated the training of foundational models, including LLMs.
## Citation
If you find our work useful, please cite the following paper:
```
@inproceedings{mehta2022cvnets,
author = {Mehta, Sachin and Abdolhosseini, Farzad and Rastegari, Mohammad},
title = {CVNets: High Performance Library for Computer Vision},
year = {2022},
booktitle = {Proceedings of the 30th ACM International Conference on Multimedia},
series = {MM '22}
}
```