Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/apple/ml-interactive-data-augmentation
Interactive Data Augmentation (arXiv 2024)
https://github.com/apple/ml-interactive-data-augmentation
data-visualization large-language-models machine-learning synthetic-data-generation
Last synced: 9 days ago
JSON representation
Interactive Data Augmentation (arXiv 2024)
- Host: GitHub
- URL: https://github.com/apple/ml-interactive-data-augmentation
- Owner: apple
- License: other
- Created: 2024-12-11T18:28:46.000Z (18 days ago)
- Default Branch: main
- Last Pushed: 2024-12-11T20:28:19.000Z (18 days ago)
- Last Synced: 2024-12-16T00:52:54.279Z (14 days ago)
- Topics: data-visualization, large-language-models, machine-learning, synthetic-data-generation
- Language: Svelte
- Homepage:
- Size: 73 MB
- Stars: 5
- Watchers: 10
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
Awesome Lists containing this project
README
# Interactive Data Augmentation
Amplio is an interactive research tool for data augmentation. The system visualizes the embeddings of input sentences and helps users systematically explore and fill in "empty data spaces," i.e., parts of the desired dataset distribution with few or no data points. To do this, Amplio includes a suite of three human-in-the-loop methods for augmenting unstructured text datasets: *Augment with LLM*, *Augment by Interpolation*, and *Augment with Concepts*.
![Overview of Amplio](img/teaser.png)
This code accompanies the research paper:
**Exploring Empty Spaces: Human-in-the-Loop Data Augmentation**
Catherine Yeh, Donghao Ren, Yannick Assogba, Dominik Moritz, Fred Hohman
*arXiv, 2024.*
Paper: https://arxiv.org/abs/2410.01088## Demo and Development Setup
The system setup requires running two main components: (1) the backend server and (2) the frontend interface. The backend and frontend run on separate servers.
First, create a secrets file and install the pipenv environment.
### Secrets File
To add your API key, duplicate `secrets_example.json` and rename it to `secrets.json`. Then copy and paste your own API keys in `secrets.json`.
### Install Requirements
Install pipenv:
```
pip install pipenv
```Build requirements for project:
```
pipenv install
```Start virtual env:
```
pipenv shell
```### Backend
Navigate into [backend](backend) folder:
```
cd backend
```Start the backend server:
```
python server.py
```The server should now be running at [`127.0.0.1:5000`](http://127.0.0.1:5000).
### Frontend
After the backend server is running, in a separate terminal window, navigate into [frontend](frontend) folder:
```
cd frontend
```Install dependencies:
```
npm install
```Start frontend development server:
```
npm run dev
```The interface should now be live at [`localhost:5173`](http://localhost:5173).
## Data and Models
All data needed to run the system is available in the [data](data) folder. This data was generated using **Python 3.11**.
Similarly, all models needed to run the system are available in the [models](models) folder.
**Note:** you may run into issues if your Python version != 3.11. In this case, please run the [data/generate_data.ipynb](data/generate_data.ipynb) notebook to regenerate the data and model files needed to run the demo. You can also use this notebook to add new datasets.
### Adding a New Dataset
If you add a new dataset you will need to update these files:
* [backend/server.py](backend/server.py)
* [frontend/src/routes/components/LeftSidebar.svelte](frontend/src/routes/components/LeftSidebar.svelte)Look for the sections marked with `UPDATE HERE IF YOU ADD A NEW DATASET`.
Similarly, if you want to remove a dataset from the system, you will need to edit the files above.
## Contributing
When making contributions, refer to the [`CONTRIBUTING`](CONTRIBUTING.md) guidelines and read the [`CODE OF CONDUCT`](CODE_OF_CONDUCT.md).
## BibTeX
To cite our paper, please use:
```bibtex
@article{yeh2024exploring,
title={{Exploring Empty Spaces: Human-in-the-Loop Data Augmentation}},
author={Yeh, Catherine and Ren, Donghao and Assogba, Yannick and Moritz, Dominik and Hohman, Fred},
journal={arXiv preprint arXiv:2410.01088},
year={2024},
doi={10.48550/arXiv.2410.01088}
}
```## License
This code is released under the [`LICENSE`](LICENSE) terms.