Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/apple/ml-no-token-left-behind


https://github.com/apple/ml-no-token-left-behind

Last synced: 3 months ago
JSON representation

Awesome Lists containing this project

README

        

# PyTorch Implementation of [No Token Left Behind: Explainability-Aided Image Classification and Generation](https://arxiv.org/abs/2204.04908)

## Usage

### 1. Notebook for spatially conditioned image generation





Open In Colab

### 2. Notebook for image editing





Open In Colab

### 3. Notebook for image generation





Open In Colab

### 4. Prompt engineering running instructions

First, follow [DATASETS.md](external/CoOp/DATASETS.md) to install the datasets.
Create the required enviromnet with
```
conda env create -f external/CoOp/dassl_env.yml
conda activate dassl
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html
```
Then clone and install dassl under 'external' direrctory:
```
cd external/Dassl.pytorch/
python setup.py develop
cd ../../
```

To run the experiment please run:
```
python external/CoOp/train.py --root --trainer CoOp --dataset-config-file --config-file external/CoOp/configs/trainers/CoOp/_ep50.yaml --output-dir --model-dir --seed 1 DATASET.NUM_SHOTS 1 TRAINER.COOP.EXPL_WEIGHT TRAINER.COOP.CSC False TRAINER.COOP.RETURN_EXPL_SCORE True TRAINER.COOP.CLASS_TOKEN_POSITION middle TRAINER.COOP.N_CTX 16
```

## Citation
```
@misc{Paiss2022NoTL,
url = {https://arxiv.org/abs/2204.04908},
author = {Paiss, Roni and Chefer, Hila and Wolf, Lior},
title = {No Token Left Behind: Explainability-Aided Image Classification and Generation},
publisher = {arXiv},
year = {2022}
}
```
## Acknowledements
* Image manipulation code is based on [StyleCLIP](https://github.com/orpatashnik/StyleCLIP)
* Image generation code is based on [FuseDream](https://github.com/gnobitab/FuseDream)
* Image generation with spatial conditioning code is based on [VQGAN+CLIP](https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ#scrollTo=VA1PHoJrRiK9) and [VQGAN](https://github.com/CompVis/taming-transformers)
* Prompt engineering code is based on [CoOp](https://github.com/KaiyangZhou/CoOp) and [Dassl](https://github.com/KaiyangZhou/Dassl.pytorch)
* Explainability method code is based on [Transformer-MM-Explainability](https://github.com/hila-chefer/Transformer-MM-Explainability)
## License
This sample code is released under the [LICENSE](LICENSE) terms.