Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aqlaboratory/openfold
Trainable, memory-efficient, and GPU-friendly PyTorch reproduction of AlphaFold 2
https://github.com/aqlaboratory/openfold
alphafold2 protein-structure pytorch
Last synced: 2 days ago
JSON representation
Trainable, memory-efficient, and GPU-friendly PyTorch reproduction of AlphaFold 2
- Host: GitHub
- URL: https://github.com/aqlaboratory/openfold
- Owner: aqlaboratory
- License: apache-2.0
- Created: 2021-09-14T23:59:02.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-07-23T16:14:34.000Z (5 months ago)
- Last Synced: 2024-10-29T15:09:11.681Z (about 1 month ago)
- Topics: alphafold2, protein-structure, pytorch
- Language: Python
- Homepage:
- Size: 15.3 MB
- Stars: 2,785
- Watchers: 46
- Forks: 534
- Open Issues: 193
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
- Awesome-Computational-Structural-Biology - aqlaboratory/openfold: Trainable, memory-efficient, and GPU-friendly PyTorch reproduction of AlphaFold 2 (github.com)
- awesome-protein-design-software - OpenFold - [<img src="https://colab.research.google.com/assets/colab-badge.svg">](https://colab.research.google.com/github/aqlaboratory/openfold/blob/main/notebooks/OpenFold.ipynb) - [paper](https://www.biorxiv.org/content/10.1101/2022.11.20.517210) (Structure prediction)
- awesome-list - OpenFold - Trainable, memory-efficient, and GPU-friendly PyTorch reproduction of AlphaFold 2. (Other Machine Learning Applications / Others)
- top-life-sciences - **aqlaboratory/openfold** - efficient, and GPU-friendly PyTorch reproduction of AlphaFold 2<br>`alphafold2`, `protein-structure`, `pytorch`<br><img src='https://github.com/HubTou/topgh/blob/main/icons/gstars.png'> 2572 <img src='https://github.com/HubTou/topgh/blob/main/icons/forks.png'> 466 <img src='https://github.com/HubTou/topgh/blob/main/icons/code.png'> Python <img src='https://github.com/HubTou/topgh/blob/main/icons/license.png'> Apache License 2.0 <img src='https://github.com/HubTou/topgh/blob/main/icons/last.png'> 2024-06-04 08:33:28 | (Ranked by starred repositories)
- StarryDivineSky - aqlaboratory/openfold
- awesome-ai-papers - [openfold - pytorch](https://github.com/lucidrains/alphafold3-pytorch)\]\[[Protenix](https://github.com/bytedance/Protenix)\]\[[AlphaFold3](https://github.com/kyegomez/AlphaFold3)\]\[[Ligo-Biosciences/AlphaFold3](https://github.com/Ligo-Biosciences/AlphaFold3)\]\[[LucaOne](https://github.com/LucaOne/LucaOne)\]\[[esm](https://github.com/evolutionaryscale/esm)\]\[[AlphaPPImd](https://github.com/AspirinCode/AlphaPPImd)\]\[[visual-med-alpaca](https://github.com/cambridgeltl/visual-med-alpaca)\]\[[chai-lab](https://github.com/chaidiscovery/chai-lab)\]\[[evo](https://github.com/evo-design/evo)\] (NLP / 3. Pretraining)
- awesome-ai-papers - [openfold - pytorch](https://github.com/lucidrains/alphafold3-pytorch)\]\[[Protenix](https://github.com/bytedance/Protenix)\]\[[AlphaFold3](https://github.com/kyegomez/AlphaFold3)\]\[[Ligo-Biosciences/AlphaFold3](https://github.com/Ligo-Biosciences/AlphaFold3)\]\[[LucaOne](https://github.com/LucaOne/LucaOne)\]\[[esm](https://github.com/evolutionaryscale/esm)\]\[[AlphaPPImd](https://github.com/AspirinCode/AlphaPPImd)\]\[[visual-med-alpaca](https://github.com/cambridgeltl/visual-med-alpaca)\]\[[chai-lab](https://github.com/chaidiscovery/chai-lab)\]\[[evo](https://github.com/evo-design/evo)\] (NLP / 3. Pretraining)
README
![header ](imgs/of_banner.png)
_Figure: Comparison of OpenFold and AlphaFold2 predictions to the experimental structure of PDB 7KDX, chain B._# OpenFold
A faithful but trainable PyTorch reproduction of DeepMind's
[AlphaFold 2](https://github.com/deepmind/alphafold).# Documentation
See our new home for docs at [openfold.readthedocs.io](https://openfold.readthedocs.io/en/latest/), with instructions for installation and model inference/training.Much of the content from this page may be found [here.](https://github.com/aqlaboratory/openfold/blob/main/docs/source/original_readme.md)
## Copyright Notice
While AlphaFold's and, by extension, OpenFold's source code is licensed under
the permissive Apache Licence, Version 2.0, DeepMind's pretrained parameters
fall under the CC BY 4.0 license, a copy of which is downloaded to
`openfold/resources/params` by the installation script. Note that the latter
replaces the original, more restrictive CC BY-NC 4.0 license as of January 2022.## Contributing
If you encounter problems using OpenFold, feel free to create an issue! We also
welcome pull requests from the community.## Citing this Work
Please cite our paper:
```bibtex
@article {Ahdritz2022.11.20.517210,
author = {Ahdritz, Gustaf and Bouatta, Nazim and Floristean, Christina and Kadyan, Sachin and Xia, Qinghui and Gerecke, William and O{\textquoteright}Donnell, Timothy J and Berenberg, Daniel and Fisk, Ian and Zanichelli, Niccolò and Zhang, Bo and Nowaczynski, Arkadiusz and Wang, Bei and Stepniewska-Dziubinska, Marta M and Zhang, Shang and Ojewole, Adegoke and Guney, Murat Efe and Biderman, Stella and Watkins, Andrew M and Ra, Stephen and Lorenzo, Pablo Ribalta and Nivon, Lucas and Weitzner, Brian and Ban, Yih-En Andrew and Sorger, Peter K and Mostaque, Emad and Zhang, Zhao and Bonneau, Richard and AlQuraishi, Mohammed},
title = {{O}pen{F}old: {R}etraining {A}lpha{F}old2 yields new insights into its learning mechanisms and capacity for generalization},
elocation-id = {2022.11.20.517210},
year = {2022},
doi = {10.1101/2022.11.20.517210},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/10.1101/2022.11.20.517210},
eprint = {https://www.biorxiv.org/content/early/2022/11/22/2022.11.20.517210.full.pdf},
journal = {bioRxiv}
}
```
If you use OpenProteinSet, please also cite:```bibtex
@misc{ahdritz2023openproteinset,
title={{O}pen{P}rotein{S}et: {T}raining data for structural biology at scale},
author={Gustaf Ahdritz and Nazim Bouatta and Sachin Kadyan and Lukas Jarosch and Daniel Berenberg and Ian Fisk and Andrew M. Watkins and Stephen Ra and Richard Bonneau and Mohammed AlQuraishi},
year={2023},
eprint={2308.05326},
archivePrefix={arXiv},
primaryClass={q-bio.BM}
}
```
Any work that cites OpenFold should also cite [AlphaFold](https://www.nature.com/articles/s41586-021-03819-2) and [AlphaFold-Multimer](https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1) if applicable.