Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/arangogutierrez/metropolis

Metropolis–Hastings algorithm In statistics and in statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution for which direct sampling is difficult. This sequence can be used to approximate the distribution (e.g., to generate a histogram), or to compute an integral (such as an expected value). Metropolis–Hastings and other MCMC algorithms are generally used for sampling from multi-dimensional distributions, especially when the number of dimensions is high. For single-dimensional distributions, other methods are usually available (e.g. adaptive rejection sampling) that can directly return independent samples from the distribution, and are free from the problem of autocorrelated samples that is inherent in MCMC methods.
https://github.com/arangogutierrez/metropolis

Last synced: 9 days ago
JSON representation

Metropolis–Hastings algorithm In statistics and in statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution for which direct sampling is difficult. This sequence can be used to approximate the distribution (e.g., to generate a histogram), or to compute an integral (such as an expected value). Metropolis–Hastings and other MCMC algorithms are generally used for sampling from multi-dimensional distributions, especially when the number of dimensions is high. For single-dimensional distributions, other methods are usually available (e.g. adaptive rejection sampling) that can directly return independent samples from the distribution, and are free from the problem of autocorrelated samples that is inherent in MCMC methods.

Awesome Lists containing this project