Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ararslan/jackknife.jl
Jackknife resampling and estimation in Julia
https://github.com/ararslan/jackknife.jl
estimation jackknife julia statistics
Last synced: 10 days ago
JSON representation
Jackknife resampling and estimation in Julia
- Host: GitHub
- URL: https://github.com/ararslan/jackknife.jl
- Owner: ararslan
- License: mit
- Created: 2016-07-15T00:02:46.000Z (over 8 years ago)
- Default Branch: main
- Last Pushed: 2022-08-09T20:49:47.000Z (about 2 years ago)
- Last Synced: 2024-10-15T18:33:05.551Z (21 days ago)
- Topics: estimation, jackknife, julia, statistics
- Language: Julia
- Size: 27.3 KB
- Stars: 24
- Watchers: 7
- Forks: 8
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Jackknife.jl
[![CI](https://github.com/ararslan/Jackknife.jl/workflows/CI/badge.svg)](https://github.com/ararslan/Jackknife.jl/actions?query=workflow%3ACI+branch%3Amaster)
[![Codecov](http://codecov.io/github/ararslan/Jackknife.jl/coverage.svg?branch=master)](http://codecov.io/github/ararslan/Jackknife.jl?branch=master)This package provides [jackknife](https://en.wikipedia.org/wiki/Jackknife_resampling)
resampling and estimation functions for Julia.## Installation
This package is registered in the General registry and can be installed from the Julia
REPL with```julia
julia> using Pkgjulia> Pkg.add("Jackknife")
```or in the Pkg REPL mode with `]add Jackknife`.
## Functions
None of the functions here are exported, so you'll have to call them with the prefix
`Jackknife.` or explicitly import them.Each function takes the following two arguments:
* A point estimator, given as a `Function`.
The function must return a scalar when passed a vector.* A real-valued vector of length > 1.
### Resampling
```julia
leaveoneout(estimator, x)
```
Compute a vector of point estimates based on systematic subsamples of `x` wherein
each index is omitted one at a time.
These are the "leave-one-out" estimates.
The resulting vector will have length `length(x) - 1`.### Estimation
```julia
variance(estimator, x)
```
The variance of the estimator computed using the jackknife technique.```julia
bias(estimator, x)
```
The bias of the estimator computed using the jackknife technique.```julia
estimate(estimator, x)
```
The bias-corrected jackknife estimate of the parameter.