Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aravindsrinivas/flowpp
Code for reproducing Flow ++ experiments
https://github.com/aravindsrinivas/flowpp
deep-learning density-estimation generative-models neural-networks normalizing-flows tensorflow
Last synced: about 2 months ago
JSON representation
Code for reproducing Flow ++ experiments
- Host: GitHub
- URL: https://github.com/aravindsrinivas/flowpp
- Owner: aravindsrinivas
- License: mit
- Created: 2018-10-02T01:21:36.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-04-27T21:40:11.000Z (over 5 years ago)
- Last Synced: 2024-08-03T08:02:32.834Z (5 months ago)
- Topics: deep-learning, density-estimation, generative-models, neural-networks, normalizing-flows, tensorflow
- Language: Python
- Homepage:
- Size: 103 KB
- Stars: 186
- Watchers: 6
- Forks: 28
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- awesome-face-related-list - Flow++
README
# Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
This repository contains Tensorflow implementation of experiments from the paper [Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design](https://arxiv.org/abs/1902.00275) - [Jonathan Ho](http://www.jonathanho.me/), [Xi Chen](http://peterchen.io/), [Aravind Srinivas](https://people.eecs.berkeley.edu/~aravind/), [Yan Duan](http://rockyduan.com/), [Pieter Abbeel](https://people.eecs.berkeley.edu/~pabbeel/)
# Dependencies
* python3.6
* Tensorflow v1.10.1
* [horovod v0.14.1](https://github.com/uber/horovod)[Horovod GPU setup instructions](https://github.com/uber/horovod/blob/master/docs/gpus.md)
# Usage Instructions
We trained our models using 8 GPUs with data-parallelism using Horovod.
# CIFAR 10
```
mpiexec -n 8 python3.6 run_cifar.py
```
# Imagenet## Data for Imagenet Experiments:
Script to create dataset [here](https://github.com/aravind0706/flowpp/blob/master/flows_imagenet/create_imagenet_benchmark_datasets.py)## Imagenet 32x32
```
mpiexec -n 8 python3.6 -m flows_imagenet.launchers.imagenet32_official
```
# Imagenet 64x64
```
mpiexec -n 6 python3.6 -m flows_imagenet.launchers.imagenet64_official
mpiexec -n 6 python3.6 -m flows_imagenet.launchers.imagenet64_5bit_official```
# CelebA-HQ 64x64## Data:
Download links in [README](https://github.com/aravind0706/flowpp/tree/master/flows_celeba)```
mpiexec -n 8 python3.6 -m flows_celeba.launchers.celeba64_5bit_official
mpiexec -n 8 python3.6 -m flows_celeba.launchers.celeba64_3bit_official```
# ContactPlease open an issue
# Credits
flowpp was originally developed by Jonathan Ho (UC Berkeley), Peter Chen (UC Berkeley / covariant.ai), Aravind Srinivas (UC Berkeley), Yan Duan (covariant.ai), and Pieter Abbeel (UC Berkeley / covariant.ai).