Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/aravindsrinivas/flowpp

Code for reproducing Flow ++ experiments
https://github.com/aravindsrinivas/flowpp

deep-learning density-estimation generative-models neural-networks normalizing-flows tensorflow

Last synced: 3 months ago
JSON representation

Code for reproducing Flow ++ experiments

Awesome Lists containing this project

README

        

# Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design

This repository contains Tensorflow implementation of experiments from the paper [Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design](https://arxiv.org/abs/1902.00275) - [Jonathan Ho](http://www.jonathanho.me/), [Xi Chen](http://peterchen.io/), [Aravind Srinivas](https://people.eecs.berkeley.edu/~aravind/), [Yan Duan](http://rockyduan.com/), [Pieter Abbeel](https://people.eecs.berkeley.edu/~pabbeel/)

# Dependencies

* python3.6
* Tensorflow v1.10.1
* [horovod v0.14.1](https://github.com/uber/horovod)

[Horovod GPU setup instructions](https://github.com/uber/horovod/blob/master/docs/gpus.md)

# Usage Instructions

We trained our models using 8 GPUs with data-parallelism using Horovod.

# CIFAR 10
```
mpiexec -n 8 python3.6 run_cifar.py
```
# Imagenet

## Data for Imagenet Experiments:
Script to create dataset [here](https://github.com/aravind0706/flowpp/blob/master/flows_imagenet/create_imagenet_benchmark_datasets.py)

## Imagenet 32x32

```
mpiexec -n 8 python3.6 -m flows_imagenet.launchers.imagenet32_official
```
# Imagenet 64x64
```
mpiexec -n 6 python3.6 -m flows_imagenet.launchers.imagenet64_official
mpiexec -n 6 python3.6 -m flows_imagenet.launchers.imagenet64_5bit_official

```
# CelebA-HQ 64x64

## Data:
Download links in [README](https://github.com/aravind0706/flowpp/tree/master/flows_celeba)

```
mpiexec -n 8 python3.6 -m flows_celeba.launchers.celeba64_5bit_official
mpiexec -n 8 python3.6 -m flows_celeba.launchers.celeba64_3bit_official

```
# Contact

Please open an issue

# Credits

flowpp was originally developed by Jonathan Ho (UC Berkeley), Peter Chen (UC Berkeley / covariant.ai), Aravind Srinivas (UC Berkeley), Yan Duan (covariant.ai), and Pieter Abbeel (UC Berkeley / covariant.ai).