Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/arc53/DocsGPT
GPT-powered chat for documentation, chat with your documents
https://github.com/arc53/DocsGPT
ai gpt hacktoberfest hacktoberfest2023 natural-language-processing python react web-app
Last synced: 3 months ago
JSON representation
GPT-powered chat for documentation, chat with your documents
- Host: GitHub
- URL: https://github.com/arc53/DocsGPT
- Owner: arc53
- License: mit
- Created: 2023-02-02T11:03:23.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-04-13T11:02:05.000Z (9 months ago)
- Last Synced: 2024-04-14T10:17:44.487Z (9 months ago)
- Topics: ai, gpt, hacktoberfest, hacktoberfest2023, natural-language-processing, python, react, web-app
- Language: Python
- Homepage: https://docsgpt.arc53.com/
- Size: 39.1 MB
- Stars: 14,124
- Watchers: 89
- Forks: 1,390
- Open Issues: 100
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Security: SECURITY.md
Awesome Lists containing this project
- awesome-open-gpt - DocsGPT
- awesome-chatgpt - DocsGPT - Documentation assistant. (Web apps / Hosted and self-hosted)
- awesome-ai-api-projects - DocsGPT - tuned model) | ![GitHub last commit](https://img.shields.io/github/last-commit/arc53/DocsGPT?label=%20) | (AI Agent / File)
- StarryDivineSky - arc53/DocsGPT
- awesome-hacktoberfest - DocsGPT
- awesome-chatgpt - DocsGPT - Documentation assistant. (Web apps / Hosted and self-hosted)
- awesome-gpt - DocsGPT - powered chat for documentation search & assistance (Extend ChatGPT Feature / Other)
- project-awesome - arc53/DocsGPT - Chatbot for documentation, that allows you to chat with your data. Privately deployable, provides AI knowledge sharing and integrates knowledge into your AI workflow (Python)
- jimsghstars - arc53/DocsGPT - Chatbot for documentation, that allows you to chat with your data. Privately deployable, provides AI knowledge sharing and integrates knowledge into your AI workflow (Python)
- Awesome-ChatGPT - DocsGPT
- AiTreasureBox - arc53/DocsGPT - 01-07_15221_0](https://img.shields.io/github/stars/arc53/DocsGPT.svg)|GPT-powered chat for documentation, chat with your documents| (Repos)
- awesome - arc53/DocsGPT - Chatbot for documentation, that allows you to chat with your data. Privately deployable, provides AI knowledge sharing and integrates knowledge into your AI workflow (TypeScript)
- awesome - arc53/DocsGPT - Chatbot for documentation, that allows you to chat with your data. Privately deployable, provides AI knowledge sharing and integrates knowledge into your AI workflow (Python)
README
DocsGPT 🦖
Open-Source Documentation Assistant
DocsGPT is a cutting-edge open-source solution that streamlines the process of finding information in the project documentation. With its integration of the powerful GPT models, developers can easily ask questions about a project and receive accurate answers.
Say goodbye to time-consuming manual searches, and let DocsGPT help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
![link to main GitHub showing Stars number](https://img.shields.io/github/stars/arc53/docsgpt?style=social)
![link to main GitHub showing Forks number](https://img.shields.io/github/forks/arc53/docsgpt?style=social)
![link to license file](https://img.shields.io/github/license/arc53/docsgpt)
![link to discord](https://img.shields.io/discord/1070046503302877216)
![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/docsgptai)
### Production Support / Help for Companies:
We're eager to provide personalized assistance when deploying your DocsGPT to a live environment.
- [Get Enterprise / teams Demo :wave:](https://www.docsgpt.cloud/contact)
- [Send Email :email:](mailto:[email protected]?subject=DocsGPT%20support%2Fsolutions)![video-example-of-docs-gpt](https://d3dg1063dc54p9.cloudfront.net/videos/demov3.gif)
## Roadmap
You can find our roadmap [here](https://github.com/orgs/arc53/projects/2). Please don't hesitate to contribute or create issues, it helps us improve DocsGPT!
## Our Open-Source Models Optimized for DocsGPT:
| Name | Base Model | Requirements (or similar) |
| --------------------------------------------------------------------- | ----------- | ------------------------- |
| [Docsgpt-7b-mistral](https://huggingface.co/Arc53/docsgpt-7b-mistral) | Mistral-7b | 1xA10G gpu |
| [Docsgpt-14b](https://huggingface.co/Arc53/docsgpt-14b) | llama-2-14b | 2xA10 gpu's |
| [Docsgpt-40b-falcon](https://huggingface.co/Arc53/docsgpt-40b-falcon) | falcon-40b | 8xA10G gpu's |If you don't have enough resources to run it, you can use bitsnbytes to quantize.
## Features
![Main features of DocsGPT showcasing six main features](https://user-images.githubusercontent.com/17906039/220427472-2644cff4-7666-46a5-819f-fc4a521f63c7.png)
## Useful Links
- :mag: :fire: [Cloud Version](https://app.docsgpt.cloud/)
- :speech_balloon: :tada: [Join our Discord](https://discord.gg/n5BX8dh8rU)
- :books: :sunglasses: [Guides](https://docs.docsgpt.cloud/)
- :couple: [Interested in contributing?](https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md)
- :file_folder: :rocket: [How to use any other documentation](https://docs.docsgpt.cloud/Guides/How-to-train-on-other-documentation)
- :house: :closed_lock_with_key: [How to host it locally (so all data will stay on-premises)](https://docs.docsgpt.cloud/Guides/How-to-use-different-LLM)
## Project Structure
- Application - Flask app (main application).
- Extensions - Chrome extension.
- Scripts - Script that creates similarity search index for other libraries.
- Frontend - Frontend uses Vite and React.
## QuickStart
> [!Note]
> Make sure you have [Docker](https://docs.docker.com/engine/install/) installedOn Mac OS or Linux, write:
`./setup.sh`
It will install all the dependencies and allow you to download the local model, use OpenAI or use our LLM API.
Otherwise, refer to this Guide for Windows:
1. Download and open this repository with `git clone https://github.com/arc53/DocsGPT.git`
2. Create a `.env` file in your root directory and set the env variables and `VITE_API_STREAMING` to true or false, depending on whether you want streaming answers or not.
It should look like this inside:```
LLM_NAME=[docsgpt or openai or others]
VITE_API_STREAMING=true
API_KEY=[if LLM_NAME is openai]
```See optional environment variables in the [/.env-template](https://github.com/arc53/DocsGPT/blob/main/.env-template) and [/application/.env_sample](https://github.com/arc53/DocsGPT/blob/main/application/.env_sample) files.
3. Run [./run-with-docker-compose.sh](https://github.com/arc53/DocsGPT/blob/main/run-with-docker-compose.sh).
4. Navigate to http://localhost:5173/.To stop, just run `Ctrl + C`.
## Development Environments
### Spin up Mongo and Redis
For development, only two containers are used from [docker-compose.yaml](https://github.com/arc53/DocsGPT/blob/main/docker-compose.yaml) (by deleting all services except for Redis and Mongo).
See file [docker-compose-dev.yaml](./docker-compose-dev.yaml).Run
```
docker compose -f docker-compose-dev.yaml build
docker compose -f docker-compose-dev.yaml up -d
```### Run the Backend
> [!Note]
> Make sure you have Python 3.10 or 3.11 installed.1. Export required environment variables or prepare a `.env` file in the project folder:
- Copy [.env_sample](https://github.com/arc53/DocsGPT/blob/main/application/.env_sample) and create `.env`.(check out [`application/core/settings.py`](application/core/settings.py) if you want to see more config options.)
2. (optional) Create a Python virtual environment:
You can follow the [Python official documentation](https://docs.python.org/3/tutorial/venv.html) for virtual environments.a) On Mac OS and Linux
```commandline
python -m venv venv
. venv/bin/activate
```b) On Windows
```commandline
python -m venv venv
venv/Scripts/activate
```3. Download embedding model and save it in the `model/` folder:
You can use the script below, or download it manually from [here](https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip), unzip it and save it in the `model/` folder.```commandline
wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip
unzip mpnet-base-v2.zip -d model
rm mpnet-base-v2.zip
```4. Install dependencies for the backend:
```commandline
pip install -r application/requirements.txt
```5. Run the app using `flask --app application/app.py run --host=0.0.0.0 --port=7091`.
6. Start worker with `celery -A application.app.celery worker -l INFO`.### Start Frontend
> [!Note]
> Make sure you have Node version 16 or higher.1. Navigate to the [/frontend](https://github.com/arc53/DocsGPT/tree/main/frontend) folder.
2. Install the required packages `husky` and `vite` (ignore if already installed).```commandline
npm install husky -g
npm install vite -g
```3. Install dependencies by running `npm install --include=dev`.
4. Run the app using `npm run dev`.## Contributing
Please refer to the [CONTRIBUTING.md](CONTRIBUTING.md) file for information about how to get involved. We welcome issues, questions, and pull requests.
## Code Of Conduct
We as members, contributors, and leaders, pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. Please refer to the [CODE_OF_CONDUCT.md](CODE_OF_CONDUCT.md) file for more information about contributing.
## Many Thanks To Our Contributorsâš¡
## License
The source code license is [MIT](https://opensource.org/license/mit/), as described in the [LICENSE](LICENSE) file.
Built with [:bird: :link: LangChain](https://github.com/hwchase17/langchain)