An open API service indexing awesome lists of open source software.

https://github.com/archsyscall/convnets-tensorflow2

⛵️ Implementation a variety of popular Image Classification Models using TensorFlow2. [ResNet, GoogLeNet, VGG, Inception-v3, Inception-v4, MobileNet, MobileNet-v2, ShuffleNet, ShuffleNet-v2, etc...]
https://github.com/archsyscall/convnets-tensorflow2

deep-learning googlenet inception-v3 inception-v4 machine-learning mobilenet mobilenet-v2 resnet shufflenet shufflenet-v2 tensorflow vgg

Last synced: 5 months ago
JSON representation

⛵️ Implementation a variety of popular Image Classification Models using TensorFlow2. [ResNet, GoogLeNet, VGG, Inception-v3, Inception-v4, MobileNet, MobileNet-v2, ShuffleNet, ShuffleNet-v2, etc...]

Awesome Lists containing this project

README

          

![TF Depend](https://img.shields.io/badge/TensorFlow-2.1-orange) ![License Badge](https://img.shields.io/badge/license-Apache%202-green)



Convolutional Nets in TensorFlow2

[ConvNets-TensorFlow2](https://github.com/marload/ConvNetsRL-TensorFlow2) is a repository that implements a variety of popular Deep Convolutional Network Architectures using [TensorFlow2](https://tensorflow.org). The core of this repository is intuitive code and concise architecture. If you are a user of TensorFlow2 and want to study various and popular CNN architectures, this repository will be the best choice to study. ConvNets-TensorFlow2 is continuously updated and managed. This repository has been very much influenced by [Cifar100-pytorch](https://github.com/weiaicunzai/pytorch-cifar100).

## Usage
```bash
$ python main.py
--nets={NETS}
--batch_size={BATCH_SIZE}
--lr={LEARNING_RATE}
--epochs={EPOCHS}
```

## Models

- [VGG](#vgg)
- [GoogLeNet](#googlenet)
- [ResNet](#resnet)
- [DenseNet](#densenet)
- [InceptionV3](#inceptionv3)
- [InceptionV4](#inceptionv4)
- [MobileNet](#mobilenet)
- [MobileNetV2](#mobilenetv2)
- [Squeezenet](#squeezenet)
- [SENet](#senet)
- [ShuffleNet](#shufflenet)
- [CondenseNet](#condenseNet)
- [Xcention](#xception)
- [PreActResNet](#preactresnet)
- [ResAttNet](#resattnet)
- [ResNeXt](#resnext)
- [PolyNet](#polynet)
- [PyramidNet](#pyramidnet)


### VGG

**Paper** [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)

**Author** Karen Simonyan, Andrew Zissermanr

**Code** [VGG.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/VGG.py)



**Model Options**

```bash
--nets {VGG11 or VGG13 or VGG16 or VGG19}
```


### GoogLeNet

**Paper** [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842)

**Author** Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

**Code** [GoogLeNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/GoogLeNet.py)



**Model Options**

```bash
--nets {GoogLeNet}
```


### ResNet

**Paper** [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)

**Author** Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

**Code** [ResNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/ResNet.py)



**Model Options**

```bash
--nets {ResNet18 or ResNet34 ResNet50 ResNet101 ResNet 152}
```



### DenseNet

**Paper** [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993)

**Author** Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger


**Code** [DenseNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/DenseNet.py)



**Model Options**

```bash
--nets {DenseNet121 or DenseNet169 or DenseNet201 or DenseNet161}
```


### InceptionV3

**Paper** [Rethinking the Inception Architecture for Computer Vision](https://arxiv.org/abs/1512.00567)

**Author** Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna


**Code** [InceptionV3.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/InceptionV3.py)



**Model Options**

```bash
--nets {InceptionV3}
```


### InceptionV4

**Paper** [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261)

**Author** Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi


**Code** [InceptionV4.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/InceptionV4.py)



**Model Options**

```bash
--nets {InceptionV4}
```


### MobileNet

**Paper** [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)

**Author** Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam


**Code** [MobileNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/MobileNet.py)



**Model Options**

```bash
--nets {MobileNet}
```


### MobileNetV2

**Paper** [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)

**Author** Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen


**Code** [MobileNetV2.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/MobileNetV2.py)



**Model Options**

```bash
--nets {MobileNetV2}
```


### SqueezeNet

**Paper** [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://arxiv.org/abs/1602.07360)

**Author** Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer


**Code** [SqueezeNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/SqueezeNet.py)



**Model Options**

```bash
--nets {SqueezeNet}
```


### SENet

**Paper** [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507)

**Author** Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu


**Code** [SEResNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/SEResNet.py)



**Model Options**

```bash
--nets {SEResNet18 or SEResNet34 or SEResNet50 or SEResNet101 or SEResNet152}
```


### ShuffleNet

**Paper** [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083)

**Author** Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun


**Code** Coming Soon



**Model Options**

```bash
// Coming Soon
```


### CondenseNet

**Paper** [CondenseNet: An Efficient DenseNet using Learned Group Convolutions](https://arxiv.org/abs/1711.09224)

**Author** Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger


**Code** Coming Soon



**Model Options**

```bash
// Coming Soon
```


### Xception

**Paper** [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357)

**Author** François Chollet


**Code** Coming Soon



**Model Options**

```bash
// Coming Soon
```


### PreActResNet

**Paper** [Identity Mappings in Deep Residual Networks](https://arxiv.org/abs/1603.05027)

**Author** Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun


**Code** Coming Soon



**Model Options**

```bash
// Coming Soon
```


### ResAttNet

**Paper** [Residual Attention Network for Image Classification](https://arxiv.org/abs/1704.06904)

**Author** Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang


**Code** Coming Soon



**Model Options**

```bash
// Coming Soon
```


### PolyNet

**Paper** [PolyNet: A Pursuit of Structural Diversity in Very Deep Networks](https://arxiv.org/abs/1611.05725)

**Author** Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin


**Code** Coming Soon



**Model Options**

```bash
// Coming Soon
```


### PyramidNet

**Paper** [Deep Pyramidal Residual Networks](https://arxiv.org/abs/1610.02915)

**Author** Dongyoon Han, Jiwhan Kim, Junmo Kim


**Code** Coming Soon



**Model Options**

```bash
// Coming Soon
```


## Reference

- https://github.com/weiaicunzai/pytorch-cifar100
- https://github.com/tensorflow/tensorflow