https://github.com/archsyscall/convnets-tensorflow2
⛵️ Implementation a variety of popular Image Classification Models using TensorFlow2. [ResNet, GoogLeNet, VGG, Inception-v3, Inception-v4, MobileNet, MobileNet-v2, ShuffleNet, ShuffleNet-v2, etc...]
https://github.com/archsyscall/convnets-tensorflow2
deep-learning googlenet inception-v3 inception-v4 machine-learning mobilenet mobilenet-v2 resnet shufflenet shufflenet-v2 tensorflow vgg
Last synced: 5 months ago
JSON representation
⛵️ Implementation a variety of popular Image Classification Models using TensorFlow2. [ResNet, GoogLeNet, VGG, Inception-v3, Inception-v4, MobileNet, MobileNet-v2, ShuffleNet, ShuffleNet-v2, etc...]
- Host: GitHub
- URL: https://github.com/archsyscall/convnets-tensorflow2
- Owner: archsyscall
- License: apache-2.0
- Created: 2020-04-22T11:22:01.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-05-05T13:49:57.000Z (over 5 years ago)
- Last Synced: 2025-03-30T22:32:21.090Z (6 months ago)
- Topics: deep-learning, googlenet, inception-v3, inception-v4, machine-learning, mobilenet, mobilenet-v2, resnet, shufflenet, shufflenet-v2, tensorflow, vgg
- Language: Python
- Homepage:
- Size: 145 KB
- Stars: 105
- Watchers: 5
- Forks: 31
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
 
![]()
Convolutional Nets in TensorFlow2
[ConvNets-TensorFlow2](https://github.com/marload/ConvNetsRL-TensorFlow2) is a repository that implements a variety of popular Deep Convolutional Network Architectures using [TensorFlow2](https://tensorflow.org). The core of this repository is intuitive code and concise architecture. If you are a user of TensorFlow2 and want to study various and popular CNN architectures, this repository will be the best choice to study. ConvNets-TensorFlow2 is continuously updated and managed. This repository has been very much influenced by [Cifar100-pytorch](https://github.com/weiaicunzai/pytorch-cifar100).
## Usage
```bash
$ python main.py
--nets={NETS}
--batch_size={BATCH_SIZE}
--lr={LEARNING_RATE}
--epochs={EPOCHS}
```## Models
- [VGG](#vgg)
- [GoogLeNet](#googlenet)
- [ResNet](#resnet)
- [DenseNet](#densenet)
- [InceptionV3](#inceptionv3)
- [InceptionV4](#inceptionv4)
- [MobileNet](#mobilenet)
- [MobileNetV2](#mobilenetv2)
- [Squeezenet](#squeezenet)
- [SENet](#senet)
- [ShuffleNet](#shufflenet)
- [CondenseNet](#condenseNet)
- [Xcention](#xception)
- [PreActResNet](#preactresnet)
- [ResAttNet](#resattnet)
- [ResNeXt](#resnext)
- [PolyNet](#polynet)
- [PyramidNet](#pyramidnet)
### VGG
**Paper** [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)
**Author** Karen Simonyan, Andrew Zissermanr
**Code** [VGG.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/VGG.py)
**Model Options**```bash
--nets {VGG11 or VGG13 or VGG16 or VGG19}
```
### GoogLeNet
**Paper** [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842)
**Author** Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
**Code** [GoogLeNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/GoogLeNet.py)
**Model Options**```bash
--nets {GoogLeNet}
```
### ResNet
**Paper** [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
**Author** Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
**Code** [ResNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/ResNet.py)
**Model Options**```bash
--nets {ResNet18 or ResNet34 ResNet50 ResNet101 ResNet 152}
```
### DenseNet
**Paper** [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993)
**Author** Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
**Code** [DenseNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/DenseNet.py)
**Model Options**```bash
--nets {DenseNet121 or DenseNet169 or DenseNet201 or DenseNet161}
```
### InceptionV3
**Paper** [Rethinking the Inception Architecture for Computer Vision](https://arxiv.org/abs/1512.00567)
**Author** Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna
**Code** [InceptionV3.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/InceptionV3.py)
**Model Options**```bash
--nets {InceptionV3}
```
### InceptionV4
**Paper** [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
**Author** Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
**Code** [InceptionV4.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/InceptionV4.py)
**Model Options**```bash
--nets {InceptionV4}
```
### MobileNet
**Paper** [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
**Author** Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
**Code** [MobileNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/MobileNet.py)
**Model Options**```bash
--nets {MobileNet}
```
### MobileNetV2
**Paper** [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
**Author** Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
**Code** [MobileNetV2.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/MobileNetV2.py)
**Model Options**```bash
--nets {MobileNetV2}
```
### SqueezeNet
**Paper** [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://arxiv.org/abs/1602.07360)
**Author** Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
**Code** [SqueezeNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/SqueezeNet.py)
**Model Options**```bash
--nets {SqueezeNet}
```
### SENet
**Paper** [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507)
**Author** Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu
**Code** [SEResNet.py](https://github.com/marload/ConvNets-TensorFlow2/blob/master/models/SEResNet.py)
**Model Options**```bash
--nets {SEResNet18 or SEResNet34 or SEResNet50 or SEResNet101 or SEResNet152}
```
### ShuffleNet
**Paper** [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083)
**Author** Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
**Code** Coming Soon
**Model Options**```bash
// Coming Soon
```
### CondenseNet
**Paper** [CondenseNet: An Efficient DenseNet using Learned Group Convolutions](https://arxiv.org/abs/1711.09224)
**Author** Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger
**Code** Coming Soon
**Model Options**```bash
// Coming Soon
```
### Xception
**Paper** [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357)
**Author** François Chollet
**Code** Coming Soon
**Model Options**```bash
// Coming Soon
```
### PreActResNet
**Paper** [Identity Mappings in Deep Residual Networks](https://arxiv.org/abs/1603.05027)
**Author** Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
**Code** Coming Soon
**Model Options**```bash
// Coming Soon
```
### ResAttNet
**Paper** [Residual Attention Network for Image Classification](https://arxiv.org/abs/1704.06904)
**Author** Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang
**Code** Coming Soon
**Model Options**```bash
// Coming Soon
```
### PolyNet
**Paper** [PolyNet: A Pursuit of Structural Diversity in Very Deep Networks](https://arxiv.org/abs/1611.05725)
**Author** Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin
**Code** Coming Soon
**Model Options**```bash
// Coming Soon
```
### PyramidNet
**Paper** [Deep Pyramidal Residual Networks](https://arxiv.org/abs/1610.02915)
**Author** Dongyoon Han, Jiwhan Kim, Junmo Kim
**Code** Coming Soon
**Model Options**```bash
// Coming Soon
```
## Reference
- https://github.com/weiaicunzai/pytorch-cifar100
- https://github.com/tensorflow/tensorflow