Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/argmaster/bachelors_thesis
Finished with grade 5 (2-5 range), unfortunately only Polish version is available.
https://github.com/argmaster/bachelors_thesis
cssfinder quantum-entanglement separable-states
Last synced: 3 days ago
JSON representation
Finished with grade 5 (2-5 range), unfortunately only Polish version is available.
- Host: GitHub
- URL: https://github.com/argmaster/bachelors_thesis
- Owner: Argmaster
- Created: 2023-05-10T23:32:36.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-07-06T00:50:59.000Z (6 months ago)
- Last Synced: 2024-10-13T09:51:44.658Z (3 months ago)
- Topics: cssfinder, quantum-entanglement, separable-states
- Language: Jupyter Notebook
- Homepage:
- Size: 42.9 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Bachelor's thesis: *Optimization of quantum entanglement detection software*
> ## Introduction
>
> Closest Separable State Finder (CSSFinder) is a program which can be used for
> detection of entanglement in quantum system and determining how strong this
> entanglement is. It is based on an adapted algorithm by Elmer G. Gilbert, which allows
> for calculating the approximate value of the Hilbert-Schmidt distance between a
> quantum state and a set of separated states. The operation of this algorithm is
> described in a paper titled `Hilbert-Schmidt distance and entanglement witnessing'
> whose authors are Palash Pandya, Omer Sakarya and Marcin Wieśniak.
>
> Dr. Marcin Wieśniak, prof. of UG, created an implementation of the CSSF algorithm in the
> Python language, using the NumPy library to perform the necessary matrix calculations.
> This choice was dictated by the possibilities offered by this toolkit. It allows you to
> quickly create simple code, capable of performing calculations relatively efficiently on
> all the most popular systems for desktop computers.
>
> The advantages of the Python language are widely noted by both the academia as well as
> the commercial community, as is clearly evident in compilations such as those published
> by GitHub, Inc. `The top programming languages' (2022). The Python language ranks second
> in it.
>
> Alternatives in the form of the C, C++ or Fortran languages would require more and more
> complex code, while forcing you to manually compile a build system, external libraries,
> and using dedicated solutions for each operating system operating system. In addition,
> performing calculations would be difficult, due to the the complicated process of
> integrating specialized libraries for linear algebra, the need for manual memory
> handling and static typing.Finished with grade 5 (2-5 range), unfortunately full version is available only in Polish.
## Table of contents
```
1 Introduction.........................................................................3
1.1 Operation of the Program.......................................................3
1.2 Purpose of the work............................................................4
1.3 Reasons to proceed with optimization...........................................5
2 Tools................................................................................5
2.1 AOT compilation................................................................5
2.2 JIT compilation................................................................6
2.3 Tool selection.................................................................7
2.3.1 Python and NumPy.........................................................7
2.3.2 Python and NumPy with AOT................................................7
2.3.3 Python and NumPy with JIT................................................8
2.3.4 Rust and Ndarray.........................................................8
2.3.5 Rust and Ndarray with OpenBLAS...........................................9
3 Methods..............................................................................9
3.1 Modularization.................................................................9
3.2 Test data.....................................................................10
3.3 Test environment..............................................................11
3.4 Profiling.....................................................................11
3.5 Calculation precision.........................................................12
3.6 Graphs........................................................................13
4 Results.............................................................................13
4.1 Preliminary profiling.........................................................13
4.2 Preliminary performance measurements..........................................15
4.3 Double precision measurements.................................................16
4.3.1 Python and NumPy........................................................17
4.3.2 Python and NumPy with AOT...............................................17
4.3.3 Python and NumPy with JIT...............................................19
4.3.4 Rust and Ndarray........................................................20
4.3.5 Rust and Ndarray with OpenBLAS..........................................20
4.4 Single precision measurements.....................................................21
4.4.1 Python and NumPy........................................................21
4.4.2 Python and NumPy with AOT...............................................22
4.4.3 Python and NumPy with JIT...............................................22
4.4.4 Rust and Ndarray........................................................24
4.4.5 Rust and Ndarray with OpenBLAS..........................................24
4.5 Matrix statements.............................................................25
4.5.1 Matrix ρ1 (32 × 32).....................................................25
4.5.2 Matrix ρ2 (4 × 4).......................................................26
4.5.3 Matrix ρ3 (8 × 8).......................................................27
4.5.4 Matrix ρ4 (16 × 16).....................................................27
4.5.5 Matrix ρ5 (32 × 32).....................................................27
4.5.6 Matrix ρ6 (64 × 64).....................................................28
4.6 Rust profiling with OpenBLAS..................................................29
5 Discussion..........................................................................30
5.1 Summary.......................................................................30
5.2 Follow-up.....................................................................31
5.3 Overlooked tools..............................................................32
5.3.1 PyTorch and TensorFlow..................................................32
5.3.2 PyPy....................................................................32
5.3.3 C/C++...................................................................32
6 Conclusions.........................................................................33
6.1 Conclusion....................................................................33
6.2 Code..........................................................................33
References............................................................................35
```