https://github.com/arindam-modak/robust-lane-detection-in-hazy-environment-using-encoder-decoder-cnn-lstm-dcp
Robust Lane Detection in hazy/foggy environment using Encoder Decoder CNN & LSTM and Dark Channel Prior to tackle with hazy environemnt
https://github.com/arindam-modak/robust-lane-detection-in-hazy-environment-using-encoder-decoder-cnn-lstm-dcp
convlstm dark-channel-prior dcnn encoder-decoder google-colab image-segmentation image-transformations neural-networks segnet tusimple-dataset
Last synced: about 2 months ago
JSON representation
Robust Lane Detection in hazy/foggy environment using Encoder Decoder CNN & LSTM and Dark Channel Prior to tackle with hazy environemnt
- Host: GitHub
- URL: https://github.com/arindam-modak/robust-lane-detection-in-hazy-environment-using-encoder-decoder-cnn-lstm-dcp
- Owner: arindam-modak
- Created: 2019-10-11T13:45:23.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-01-01T09:15:12.000Z (over 5 years ago)
- Last Synced: 2024-03-20T17:06:50.147Z (about 1 year ago)
- Topics: convlstm, dark-channel-prior, dcnn, encoder-decoder, google-colab, image-segmentation, image-transformations, neural-networks, segnet, tusimple-dataset
- Language: Jupyter Notebook
- Homepage:
- Size: 16.7 MB
- Stars: 4
- Watchers: 3
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Robust-Lane-Detection-using-Encoder-Decoder-CNN-LSTM
Robust Lane Detection in hazy/foggy environment using Encoder Decoder CNN & LSTM and Dark Channel Prior to tackle with hazy environemnt.