Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/armandgiraud/betclick
https://github.com/armandgiraud/betclick
Last synced: 6 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/armandgiraud/betclick
- Owner: ArmandGiraud
- Created: 2019-10-16T17:05:04.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2019-10-24T19:02:55.000Z (about 5 years ago)
- Last Synced: 2024-01-17T20:34:12.704Z (10 months ago)
- Language: Jupyter Notebook
- Size: 434 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
# Betclick Churn Analysis
This repo contains an Assignment for betclick### Install:
- clone the repo
- `pip install -r "requirements.txt"``
- `cd ./src`---
Run with docker:change env variable `PASSWORD` in docker-compose
`sudo docker-compose up --build`### Fit
- fit the model on data using:
```python main.py```The script will:
- download the data, and optionnally ask a password for unzipping
- label the data and drop leaky rows
- preprocess and write serializables necessary for inference on disk### Predict
`python main.py --predict`
- predict whether each customer in a subsample of the dataset is a potential churner.
- write a file on disk in the preds folder
the first column rerpresents customer_key
the second column is the target| customer_key | is_churner |
|--------------|------------|
| 10390929 | True |
| 10390926 | True |
| 10390926 | False |
| 10390926 | True |
| 10390926 | False |
| 10390926 | False |#### Predict on private dataset
`python main.py --predict --private_file "my_data_file.csv"`
The data should have the same format as the original one, it might be necessary to handle mix typed columns.