Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/armyja/CHAOS_GCN
https://github.com/armyja/CHAOS_GCN
gcn pytorch
Last synced: 28 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/armyja/CHAOS_GCN
- Owner: armyja
- License: mit
- Created: 2019-03-28T06:51:37.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-05-23T07:15:42.000Z (over 5 years ago)
- Last Synced: 2024-08-03T06:01:13.992Z (4 months ago)
- Topics: gcn, pytorch
- Language: Python
- Size: 1.47 MB
- Stars: 5
- Watchers: 2
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome_medical - CHAOS_GCN - |[Global Convolutional Network](https://github.com/SConsul/Global_Convolutional_Network)|-| (Segmentation)
README
# CHAOS_GCN
The impementation of [CHAOS - Combined (CT-MR) Healthy Abdominal Organ Segmentation](https://chaos.grand-challenge.org/), using GCN([Global_Convolutional_Network
](https://github.com/SConsul/Global_Convolutional_Network))## Dataset
## Data Analysis
## Model Optimization
weight: 1, 4, 8, 8, 4
learning rate: 1e-3
adagrad
google-net boundary refine## TODO
Training set merge to one.(from training.txt)
Testing set generate one.(folders)data agumentation
change 3 layer to 4 layermulti-scale feature
SE-Block
liver
left kidney
right kidney
spleen## Requirements