An open API service indexing awesome lists of open source software.

https://github.com/aron0093/cy2path

Factorial latent dynamic models trained on Markovian simulations of biological processes using single cell RNA sequencing data.
https://github.com/aron0093/cy2path

hidden-markov-model markov-chain simulation single-cell-omics state-space-model

Last synced: 9 days ago
JSON representation

Factorial latent dynamic models trained on Markovian simulations of biological processes using single cell RNA sequencing data.

Awesome Lists containing this project

README

          

### Factorial latent dynamic models trained on Markovian simulations of biological processes using scRNAseq. data.



With a transition probability matrix $T$ over observed states $O$ and assuming Markovian dynamics,

$P(o \mid i) = P(o \mid o_{i-1})$

For iteration $i$,

$P(o \mid i) = P(o \mid i=0) \cdot T^i$

The animation overlays $P(i \mid o)$ on a 2D UMAP embedding of the data ([Cerletti et. al. 2020](https://doi.org/10.1101/2020.12.22.423929)) Since we are interested in modelling the dynamics in a smaller latent state space, we factorise the MSM simulation,

$P(o \mid i) = \sum\limits_{s \in S} P(o \mid s,i) P(s \mid i)$

Assuming Markovian dynamics in the latent space aswell,

$P(o \mid i) = \sum\limits_{s_{i} \in S} P(o \mid s_{i}) \sum\limits_{s_{i-1} \in S} P(s_{i} \mid s_{i-1})$

Multiple independent chains in a common latent space can be modelled using conditional latent TPMs ([Ghahramani & Jordan 1997](https://doi.org/10.1023/A:1007425814087)),

$P(o \mid i) = \sum\limits_{s_{i} \in S} P(o \mid s_{i}) \sum\limits_{l \in L} P(l) \sum\limits_{s_{i-1} \in S} P(s_{i} \mid s_{i-1}, l)$

### Citation

Claassen, M., & Gupta, R. (2023). Factorial state-space modelling for kinetic clustering and lineage inference. https://doi.org/10.1101/2023.08.21.554135

### Notebooks

Demonstration notebooks can be found [here](https://github.com/aron0093/cy2path_notebooks).