Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/arose13/gmem
Generalised Mixed Effects Model. Now any machine learning model can have random effects.
https://github.com/arose13/gmem
data-science machine-learning mixed-effects-models
Last synced: 14 days ago
JSON representation
Generalised Mixed Effects Model. Now any machine learning model can have random effects.
- Host: GitHub
- URL: https://github.com/arose13/gmem
- Owner: arose13
- Created: 2018-12-22T15:50:04.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-03-16T15:40:49.000Z (over 5 years ago)
- Last Synced: 2024-10-04T17:49:34.994Z (about 1 month ago)
- Topics: data-science, machine-learning, mixed-effects-models
- Language: Jupyter Notebook
- Homepage:
- Size: 581 KB
- Stars: 9
- Watchers: 3
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
GMEM
===============================Author: Stephen Anthony Rose
Fork of MERFOverview
--------Random Effects models for _any ML model_.
This is a generalisation of a Mixed Effects Random Forest modelInstallation / Usage
--------------------To install use pip:
$ pip install gmem
Or clone the repo:
$ git clone https://github.com/arose13/gmem.git
$ python setup.py install
Contributing
------------Me (Stephen Anthony Rose)
Example
-------To be announced.