Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/arrhythmia-detection/optimizedmlpfloat32
Deploys a simple MLP to ESP32-S3 chip to do arrhythmia classification using Chapman ECG dataset
https://github.com/arrhythmia-detection/optimizedmlpfloat32
arrhythmia-classification chapman-ecg esp32-arduino esp32-s3 tensorflow tensorflow-lite tensorflow-lite-micro tflm-arduino
Last synced: 8 days ago
JSON representation
Deploys a simple MLP to ESP32-S3 chip to do arrhythmia classification using Chapman ECG dataset
- Host: GitHub
- URL: https://github.com/arrhythmia-detection/optimizedmlpfloat32
- Owner: arrhythmia-detection
- Created: 2025-01-09T15:54:27.000Z (20 days ago)
- Default Branch: main
- Last Pushed: 2025-01-21T04:30:23.000Z (9 days ago)
- Last Synced: 2025-01-21T05:24:23.052Z (9 days ago)
- Topics: arrhythmia-classification, chapman-ecg, esp32-arduino, esp32-s3, tensorflow, tensorflow-lite, tensorflow-lite-micro, tflm-arduino
- Language: C++
- Homepage:
- Size: 32.2 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
TF MLP Float 32 Model Deployment on ESP32-S3
Tools
This is a standard [platformio](https://platformio.org/) project for `esp32-s3-devkitc-1`
board which deploys a vanilla [MLP](include/optimized_mlp_float32.h) (*non quantized and utilizes author extracted features*) to ESP32-S3 chip
and collects necessary performance metrics (see [Collected Metrics](CollectedMetrics.md)).
For model training etc., please refer to
[this repository](https://github.com/arrhythmia-detection/ArrhythmiaDetectionModels).