https://github.com/arthur151/dynacam
[CVPR 2023] DynaCam dataset - 3D human trajectories in global coordinates from videos captured by dynamic cameras
https://github.com/arthur151/dynacam
3d-human global-coordinates trajectory
Last synced: about 1 month ago
JSON representation
[CVPR 2023] DynaCam dataset - 3D human trajectories in global coordinates from videos captured by dynamic cameras
- Host: GitHub
- URL: https://github.com/arthur151/dynacam
- Owner: Arthur151
- License: mit
- Created: 2023-02-25T11:16:03.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-06-30T13:10:26.000Z (almost 2 years ago)
- Last Synced: 2025-04-01T18:50:14.658Z (3 months ago)
- Topics: 3d-human, global-coordinates, trajectory
- Language: Python
- Homepage: http://www.yusun.work/TRACE/TRACE.html
- Size: 21.5 KB
- Stars: 79
- Watchers: 3
- Forks: 3
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# DynaCam
| **[[Paper]](http://arxiv.org/abs/2306.02850)** | **[[Video]](https://youtu.be/PX-7cuZuxJs)** | **[[Project Page]](http://www.yusun.work/TRACE/TRACE.html)** |DynaCam contains **in-the-wild** RGB videos captured by dynamic cameras, including annotations:
- **3D human trajectories in world coordinates**For the details, please refer to our [project page](http://www.yusun.work/TRACE/TRACE.html).
## Download
[[Google drive]](https://drive.google.com/drive/folders/12zJYkTlKPn_3tlh96BQ6zuyEr3vTxqRw?usp=sharing)
[[Baidu drive (百度网盘)]](https://pan.baidu.com/s/19Fi0o8LH2p2BamWnETqMDA?pwd=8zht)
The structure of dataset is supposed to be:
```
|-- DynaCam
| --|-- video_frames
| | |-- panorama_test
| | |-- panorama_train
| | |-- panorama_val
| | |-- translation_test
| | |-- translation_train
| | |-- translation_val
| |-- annotations
| | |-- *.npz
```## Visualization
To visualize each video sequences and corresponding annotations, like 3D human trajectory, please download the [SMPL_NEUTRAL.pkl](https://github.com/Arthur151/DynaCam/releases/download/predictions/SMPL_NEUTRAL.pkl) and put it into 'assets/'
, then run
```
sh install.sh
# set the path to dynacam_folder in show_examples.py
python show_examples.py
```
![]()
Press `stop` to stop the animation, draw the `slider` to sellect the frame, press `ESC` on your keyboard to go next.
## Evaluation
To re-implement all results on DynaCam in our paper, please download [predictions](https://github.com/Arthur151/DynaCam/releases/tag/predictions), set the path in evaluation.py to ensure the structure like
```
|-- predictions
| --|-- TRACE
| --|-- GLAMR
| --|-- bev_dpvo
```
, then run:
```
sh install.sh
python evaluation.py
```## Citation
Please cite our paper if you use DynaCam in your research.
```bibtex
@InProceedings{TRACE,
author = {Sun, Yu and Bao, Qian and Liu, Wu and Mei, Tao and Black, Michael J.},
title = {{TRACE: 5D Temporal Regression of Avatars with Dynamic Cameras in 3D Environments}},
booktitle = {IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
month = June,
year = {2023}}
```