Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/arthurdsant/dataanalysis-agricultural_raw_material
This Python project performs analysis and visualization of agricultural raw material price data using a Kaggle dataset. Based on Jupiter Notebook and Python.
https://github.com/arthurdsant/dataanalysis-agricultural_raw_material
jupyter-notebook matplotlib numpy pandas python seaborn
Last synced: 8 days ago
JSON representation
This Python project performs analysis and visualization of agricultural raw material price data using a Kaggle dataset. Based on Jupiter Notebook and Python.
- Host: GitHub
- URL: https://github.com/arthurdsant/dataanalysis-agricultural_raw_material
- Owner: ArthurDSant
- Created: 2024-10-20T01:43:46.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-10-21T17:09:03.000Z (4 months ago)
- Last Synced: 2024-12-19T14:49:51.395Z (2 months ago)
- Topics: jupyter-notebook, matplotlib, numpy, pandas, python, seaborn
- Language: Jupyter Notebook
- Homepage:
- Size: 3.78 MB
- Stars: 0
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README

# Data Analysis - Agricultural Raw Material
This Python project performs the analysis and visualization of agricultural raw material price data using a dataset from Kaggle.## Stack used
       ## Features
1 - **Data Loading and Cleaning:** The dataset is loaded from a CSV file. Percent values, commas, and other symbols are removed to ensure data consistency. Missing values (NaN) are handled by removing the rows with incomplete data.2 - **Type Conversion:** The columns related to prices and percentage changes are converted to the float type to allow for precise numerical analysis.
3 - **Date Indexing:** The dates are formatted to the yyyy-mm-dd standard and set as the index, facilitating analysis over time.
4 - **Correlation Analysis:** Correlation matrices are generated to analyze the relationship between different raw material prices, with visualization through heatmaps.
5 - **Visualizations:** The project includes various graphs to explore the data:
- **Heatmap** of raw material price correlations.
- **Percentage Change Graphs** of prices over time.
- **Histograms** of the distribution of percentage changes.
- **Evolutionary Graphs** of prices over time.6 - **Libraries Used:**
- **NumPy** for array manipulation and data handling..
- **Pandas** for dataframe manipulation.
- **Seaborn** and **Matplotlib** for graphical visualization.## Installation
```bash
pip install numpy
pip install pandas
pip install seaborn
pip install matplotlib
or
pip install numpy pandas seaborn matplotlib
```## Screenshots
