https://github.com/artificialintelligencetoolkit/conx
The On-Ramp to Deep Learning
https://github.com/artificialintelligencetoolkit/conx
cntk deep-learning keras neural-network python tensorflow theano
Last synced: 4 months ago
JSON representation
The On-Ramp to Deep Learning
- Host: GitHub
- URL: https://github.com/artificialintelligencetoolkit/conx
- Owner: ArtificialIntelligenceToolkit
- License: other
- Archived: true
- Created: 2016-07-10T20:46:06.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2024-02-25T03:13:42.000Z (about 1 year ago)
- Last Synced: 2025-01-03T06:30:51.637Z (4 months ago)
- Topics: cntk, deep-learning, keras, neural-network, python, tensorflow, theano
- Language: Python
- Homepage: http://conx.readthedocs.io
- Size: 173 MB
- Stars: 96
- Watchers: 7
- Forks: 19
- Open Issues: 27
-
Metadata Files:
- Readme: README.md
- Changelog: Changelog.md
- License: LICENSE
Awesome Lists containing this project
README
# ConX Neural Networks
## The On-Ramp to Deep Learning
Built in Python 3 on Keras 2.
[](https://mybinder.org/v2/gh/Calysto/conx/master?filepath=binder%2Findex.ipynb)
[](https://circleci.com/gh/Calysto/conx/tree/master)
[](https://codecov.io/gh/Calysto/conx)
[](http://conx.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/conx)
[](https://pypistats.org/packages/conx)Read the documentation at [conx.readthedocs.io](http://conx.readthedocs.io/)
Ask questions on the mailing list: [conx-users](https://groups.google.com/forum/#!forum/conx-users)
Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either [TensorFlow](https://www.tensorflow.org/), [Theano](http://www.deeplearning.net/software/theano/), or [CNTK](https://www.cntk.ai/pythondocs/).
A network can be specified to the constructor by providing sizes. For example, Network("XOR", 2, 5, 1) specifies a network named "XOR" with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the `net.connect()` method.
Computing XOR via a target function:
```python
import conx as cxdataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)
```Creates dynamic, rendered visualizations like this:
## Examples
See [conx-notebooks](https://github.com/Calysto/conx-notebooks/blob/master/00_Index.ipynb) and the [documentation](http://conx.readthedocs.io/en/latest/) for additional examples.
## Installation
See [How To Run Conx](https://github.com/Calysto/conx-notebooks/tree/master/HowToRun#how-to-run-conx)
to see options on running virtual machines, in the cloud, and personal
installation.