Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/arturobp3/machine_learning

Projects that has been developed in the Machine Learning and Big Data subject. Python is the programming language used in them.
https://github.com/arturobp3/machine_learning

linear-regression neural-network numpy pandas python scikit-learn support-vector-machines

Last synced: 16 days ago
JSON representation

Projects that has been developed in the Machine Learning and Big Data subject. Python is the programming language used in them.

Awesome Lists containing this project

README

        


Machine Learning


Projects that has been developed in the Machine Learning and Big Data university subject. Python is the programming language used in them.

# Proyecto Final
Analysis performed on a dataset that contains data about clients that have requested a bank credit. Classification models have been used to determine if the client will receive the credit or not, based on the characteristics of each one. The data of each person has been replaced by symbols to protect their confidentiality.

* [Análisis en PDF](https://github.com/arturobp3/Machine_Learning/blob/master/Proyecto/Credit%20Approval.pdf)
* [Código realizado en Jupyter](https://github.com/arturobp3/Machine_Learning/blob/master/Proyecto/Credit%20Approval.ipynb)

# Prácticas Realizadas

## Práctica 0: Python
* [Enunciado](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica0/p0.pdf)

## Práctica 1: Regresión Lineal
* [Enunciado](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica1/p1.pdf)
* [Archivos necesarios](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica1/p1.zip)

## Práctica 2: Regresión Logística (Clasificación)
* [Enunciado](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica2/p2.pdf)
* [Archivos necesarios](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica2/p2.zip)

## Práctica 3: Regresión Logística multi-clase y Redes Neuronales
* [Enunciado](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica3/p3.pdf)
* [Archivos necesarios](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica3/p3.zip)

## Práctica 4: Entrenamiento de Redes Neuronales
* [Enunciado](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica4/p4.pdf)
* [Archivos necesarios](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica4/p4.zip)

## Práctica 5: Regresión lineal regularizada: Sesgo y Varianza
* [Enunciado](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica5/p5.pdf)
* [Archivos necesarios](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica5/ex5data1.mat)

## Práctica 6: Support Vector Machines
* [Enunciado](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica6/p6.pdf)
* [Archivos necesarios](https://github.com/arturobp3/Machine_Learning/blob/master/docs/practica6/p6.zip)